GAUGE MEDIATION OF EXACT SCALE BREAKING

Alberto Mariotti

Institute for Particle Physics Phenomenology (IPPP) Durham University, UK

22 July 2014 SUSY 2014 – Manchester

Based on Phys.Rev.D89(2014)125018 [arXiv:1312.5335] with Steve Abel

NATURALNESS PROBLEM AND NEW PHYSICS

• Higgs boson discovered in July 2012

Naturalness problem is even more timely now, given the existence of the scalar particle

POSSIBLE ROUTES:

HIGGS AS A GOLDSTONE MODE OF A BROKEN SYMMETRY

- Global symmetry (Composite Models, Little Higgs)
- Scale invariance (Higgs is actually a dilaton)

SYMMETRY TO PROTECT HIGGS MASS FROM QUANT. CORRECTIONS

- Supersymmetry
- Scale invariance

SCALE INVARIANCE TO PROTECT HIGGS MASS

- The Higgs is a fundamental scalar (doublet as in the SM)
- Mass terms are forbidden in scale invariant theory
- $\bullet\,\Rightarrow$ Higgs mass term could be protected by scale symmetry
- But: Scale symmetry is explicitly broken by RG running (Quantum Anomaly)

TWO APPROACHES

CLASSICAL SCALE INVARIANCE

BARDEEN '95; MEISSNER, NICOLAI '06; ..

- Scale invariance at a classical level as a principle
- Coleman Weiberg mechanism at quantum level breaks it

EXACT (QUANTUM) SCALE INVARIANCE

- Theory emanates from a quantum UV fixed point analogous to asymptotic safety idea weinberg '76, Shaposhnikov - Wetterich '09
- Exact scale symmetry in the UV

COLEMAN WEINBERG MECHANISM

- Assume classical scale invariance is a principle
- $\bullet\,\Rightarrow$ Tree level lagrangian without dimensionful terms
- Scale symmetry is broken by quantum effects
- Example: complex scalar coupled to U(1) gauge boson
- Compute effective potential and renormalize it

$$V_{eff} = rac{\lambda}{4!} |\phi|^4 + rac{3g^4}{64\pi^2} |\phi|^4 \left(\log rac{|\phi|^2}{\mu^2} - rac{25}{6}
ight) \qquad rac{\partial^2 V}{\partial \phi^2} |_{\phi=0} = 0 \quad rac{\partial^4 V}{\partial \phi^4} |_{\phi=\mu} = \lambda$$

- We imposed no generation of mass terms!
- Minimization leads to dimensional transmutation

$$\langle \phi \rangle = \mu e^{\frac{11}{6} - \frac{4\pi^2 \lambda}{9g^4}}$$

• Ratio of mass over vev is a prediction of the model

$$m_{\phi}^2 = rac{\partial V^2}{\partial \phi^2}|_{\phi=\langle \phi
angle} \qquad \qquad rac{m_{\phi}^2}{\langle \phi
angle^2} = rac{3g^4}{8\pi^2}$$

 $\bullet \ \Rightarrow \text{Cannot work in SM}$

Can classical symmetry be a guiding principle in a UV complete theory?

EXACT SCALE INVARIANCE AND THE HIGGS MASS

- UV complete the theory with exact scale invariance at quantum level
- In the UV, the theory merges into a CFT
- ⇒ Scale invariance restoration in the UV protects the Higgs mass from large radiative corrections coming from high energies
- Can this protect enough the Higgs mass?

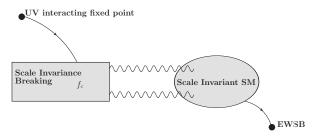
HIGGS MASS NATURALNESS AND SCALE INVARIANCE TAVARES, SCHMALTZ, SKIBA'13

- The UV fixed point cannot be free theory, otherwise it does not tame the divergences in Higgs mass
- $\bullet \ \Rightarrow$ One needs an interacting UV fixed point
- There exists a high scale where the running of the couplings deviates from SM towards the UV fixed point
- The Higgs mass is sensitive to this scale (naively at one loop)
- $\bullet\,\Rightarrow$ This scale cannot be too large (few TeV)
- At this scale we expect new physics \leftarrow Experimental constraints

?? Can we improve these features ??

IDEA: MEDIATION OF EXACT SCALE BREAKING S.ABEL, A.M. '13

- Use a modular structure for the UV completion
- Split breaking of scale invariance (in a Hidden Sector) from SM sector
- Assume SM and Hidden Sector emanate from UV scale invariant theories
- Assume SM and Scale Breaking Sector (Hidden) are connected only via gauge interactions
- \Rightarrow Add a loop of protection to Higgs mass w.r.t. previous arguments



- Scale invariance breaking is communicated to the Higgs via loops effects
- \Rightarrow Operators proportional to f_c are generate in Higgs potential
- The true dilaton resides in the hidden sector

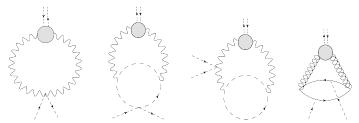
Setup

- Assume SM and Scale Breaking Sector are connected only via gauge interactions (perturbative)
- Lagrangian schematically (modular structure)

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{hid} + gA_{\mu}(J^{\mu}_{vis} + J^{\mu}_{hid})$$

• Parameterize hidden sector in terms of two point function

• Effective potential induced by loops of gauge fields with C_{hid} insertions



COMPUTATION OF EFFECTIVE POTENTIAL

$$V_{tree} = \lambda (HH^{\dagger})^2 \quad , \quad V_{loop} = \int \frac{d^4p}{(2\pi)^4} \log \left(1 + \frac{m_V^2}{p^2} + g^2 C_{vis}(p^2, H^2) + g^2 C_{hid}(p^2, f_c^2) \right) ,$$

- We are interested in relevant operators in the Higgs potential prop. to f_c
- Our assumptions imply that for $f_c \rightarrow 0$ no terms mixing the two sectors
- \Rightarrow Effective potential results

$$V_{eff} = \lambda (HH^{\dagger})^2 + \frac{9g_2^4 \mathcal{A}_2}{16\pi^2} f_c^2 HH^{\dagger} \left(4\pi^2 - \lambda_t^2 (6 + 16\frac{f_c^2 \mathcal{A}_3}{f_c^2 \mathcal{A}_2} \frac{g_3^4}{g_2^4}) + (\lambda - \frac{13}{8}g_2^2) \log \frac{HH^{\dagger}}{f_c^2} \right)$$

parameterize unknown hidden sector two point function integrals as

$$\mathcal{A}_{a} = \frac{1}{f_{c}^{2}} \int \frac{d^{4}p}{(2\pi)^{4}} \frac{1}{p^{2}} \left(C_{hid}^{(a)}(p^{2},0) - C_{hid}^{(a)}(p^{2},f_{c}^{2}) \right) , a = SU(2), SU(3)$$

- A_a naturally at least two loop suppressed
- \Rightarrow Loop suppressed f_c^2 determine EW scale

EFFECTIVE POTENTIAL SIMPLIFIED

- Parameterize Higgs as $H = e^{i\xi \cdot \tau} \begin{pmatrix} 0 \\ \phi/\sqrt{2} \end{pmatrix}$
- $\bullet \Rightarrow$ Effective potential can be written in terms of only physical quantities

$$V = rac{\lambda}{4}\phi^4 + rac{1}{4}\phi^2\left(-m_h^2 + \left(m_h^2 - 2\langle\phi
angle^2\lambda
ight)\log\left[rac{\phi^2}{\langle\phi
angle^2}
ight]
ight)\,.$$

where minimization conditions implies

$$\begin{aligned} \frac{9Yg_2^4}{64\pi^2} \mathcal{A}_2 &= X \frac{m_h^2}{f_c^2} \ ; \qquad Y = 13g_2^2 - 8\lambda \ ; \qquad X = \frac{2\langle \phi \rangle^2 \lambda}{m_h^2} - 1 \\ \mathcal{A}_3 &= \frac{\pi^2}{18g_3^4 \lambda_t^2} \left(1 + 16\frac{X}{Y}(2\pi^2 - 3\lambda_t^2) - \frac{X}{\pi^2} \log \frac{\langle \phi \rangle^2}{2f_c^2} \right) \frac{m_h^2}{f_c^2} \end{aligned}$$

- Observations:
 - Electroweak scale two to three loops suppressed with respect to fc

$$f_c \sim 10 - 100 \text{ TeV}$$

- Hidden sectors (A₂ and A₃) related to λ and ratio ^{m²_h}/_{(d)²}
- ► e.g.: given a value of λ, A₂ should be > 0 or < 0 to obtain correct EWSB</p>
- Higgs self coupling λ characterizes different phenomenologies

MINIMAL COMPUTABLE CASE

- Assume hidden sector made of fermions and bosons with anomalous dimensions
- Matter in the Hidden Sector has mass *f_c*
- Matter content to compensate β function of SM gauge coupling
- C_{hid} can be computed perturbatively (1-loop) as a function of

$$n_B = \sum_{bosons} C(r_\phi) ~,~ n_F = \sum_{fermions} C(r_\psi) ~,~ \gamma_B ~,~ \gamma_F$$

• \Rightarrow Simple expressions for \mathcal{A}_a integral

$$\mathcal{A}_{a} = \frac{1}{(16\pi^{2})^{2}} \left(2 \left(b_{0}^{SM} \right)_{(a)} + \frac{4n_{B}^{(a)}}{(\gamma_{B}^{(a)})^{2}} - \frac{8n_{F}^{(a)}}{\gamma_{F}^{(a)}} \right) \qquad a = SU(2), SU(3)$$

- Two independent sets of quantities for sector associated to SU(2) and SU(3)
- \mathcal{A}_2 and \mathcal{A}_3 generically positive for this minimal perturbative model

.

TOY MODEL: BANKS-ZAKS FIXED POINT

• SU(N) theory with F Dirac fermions and a singlet scalar

$$\mathcal{L} = -\frac{1}{4g^2}F_{\mu\nu}^2 + i\bar{\psi}\gamma.D\psi + \frac{1}{2}\left(\partial h\right)^2 - \left(y\bar{t}th + h.c.\right) - \lambda h^4$$

- Only F' fermions *t* are coupled to the singlet scalar (F' < F)
- \Rightarrow There is a stable fixed point ($\beta_i = 0$) with couplings

$$4\pi N\{\alpha_{g*}, \, \alpha_{y*}, \, \alpha_{\lambda*}\} = 4\pi \frac{11\epsilon}{50} \left\{\frac{4}{3}, \, \frac{N}{F'}, \, \frac{N}{2F'}\right\} \qquad 0 < \epsilon \ll 1, \, F = \frac{11}{2}N(1-\epsilon)$$

TOY MODEL SM

- Consider $SU(3)_{color}$ at a BZ fixed point, with F = 15 and F' = 6 quarks
- Toy Standard Model: SU(3) gauge group with F' = 6 flavours coupled to a singlet scalar (the Higgs)

TOY MODEL HIDDEN SECTOR

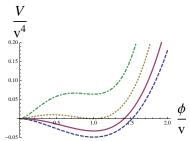
- F F' = 9 not coupled to the Higgs and can be considered part of the HS
- They are coupled only to SU(3) in the toy SM
- Embed F F' = 9 in a gauge theory with UV fixed point

PHENOMENOLOGY OF HIGGS POTENTIAL

Independently from hidden sector dynamics the Higgs potential results

$$V = rac{\lambda}{4}\phi^4 + rac{1}{4}\phi^2\left(-m_h^2 + \left(m_h^2 - 2\langle\phi
angle^2\lambda
ight)\log\left[rac{\phi^2}{\langle\phi
angle^2}
ight]
ight)\,.$$

 Three different phenomenology depending on value of λ (related to hidden sector A_a, so depending on hidden sector properties)

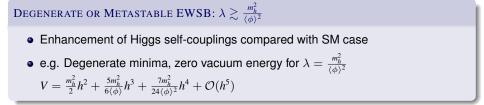


Expansion around EWSB vacuum

$$V = \frac{1}{4} \left(\langle \phi \rangle^4 \lambda - m_h^2 \langle \phi \rangle^2 \right) + \frac{m_h^2 h^2}{2} + \left(\frac{m_h^2}{6 \langle \phi \rangle} + \frac{2 \langle \phi \rangle \lambda}{3} \right) h^3 + \left(\frac{\lambda}{3} - \frac{m_h^2}{24 \langle \phi \rangle^2} \right) h^4$$

SM LIMIT:
$$\lambda = \frac{m_h^2}{2\langle \phi \rangle^2}$$

- Recover SM potential around EWSB vacuum $V = -\frac{m_h^2 \langle \phi \rangle^2}{8} + \frac{m_h^2}{2} h^2 + \frac{m_h^2}{2\langle \phi \rangle} h^3 + \frac{m_h^2}{8\langle \phi \rangle^2} h^4$
- It can be achieved with $A_2 \simeq 0$ and $A_3 > 0 \Rightarrow$ Mainly $SU(3)_c$ mediated breaking



Log Potential: $\lambda \ll 1$

- Similar to CW mechanism but with quadratic term
- Suppression of Higgs self-coupling compared with SM case $V = -\frac{m_h^2 \langle \phi \rangle^2}{4} + \frac{m_h^2}{2} h^2 + \frac{m_h^2}{6\langle \phi \rangle} h^3 \frac{m_h^2}{24\langle \phi \rangle^2} h^4 + \mathcal{O}(h^5)$

CONCLUSIONS AND OUTLOOK

- We proposed a gauge mediation principle for exact scale breaking in SM
- Scale invariance is broken in the Hidden sectors at scale *f_c*
- Gauge mediation structure protects Higgs mass sensitivity at two loops
- New physics scale fc is two or three loops enhanced w.r.t. EW scale
- Contains SM limit and possible new phenomenologies (unusual Higgs potentials and *self-couplings*)
- Given that self-couplings are predicted possible deviations from SM
- \Rightarrow LHC prospects for measuring Higgs self couplings?
- Interesting new possible shape for Higgs potential
- \Rightarrow Cosmological consequences?
- New physics states in Hidden Sector quite heavy, possibly stable
- → Heavy dark matter candidates?
- ?? Other symmetries to protect the Higgs mass ??

Dorsch, Huber, No '14

Thanks for your attention!