A naturally light & bent dilaton

Javi Serra

The University of Manchester

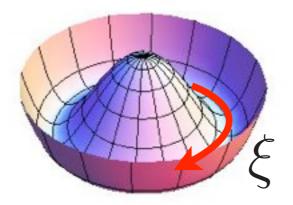
with B.Bellazzini, C.Csaki, J.Hubisz, J.Terning arXiv:1305.3919 arXiv:14xx.xxxx

> SUSY 2014 Manchester July 22, 2014

DILATON = Goldstone Boson of Spontaneous Breaking of Scale Invariance

$$\mathcal{L} = (\partial \Phi^{\dagger})(\partial \Phi) + m^2 \Phi^{\dagger} \Phi - \lambda (\Phi^{\dagger} \Phi)^2$$

Broken phase



Spontaneous internal Symmetry Breaking: G -> H

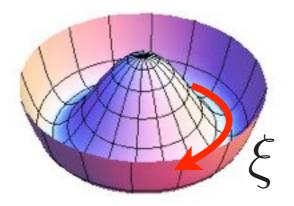
(approximately) Massless Goldstone mode appear = phase

$$\Phi = e^{i\xi} (\langle \Phi \rangle + \sigma)$$
$$V(\xi) = 0$$

DILATON = Goldstone Boson of Spontaneous Breaking of Scale Invariance

$$\mathcal{L} = (\partial \Phi^{\dagger})(\partial \Phi) + m^2 \Phi^{\dagger} \Phi - \lambda (\Phi^{\dagger} \Phi)^2$$

Broken phase



Spontaneous <u>space-time</u> Symmetry Breaking: G -> H

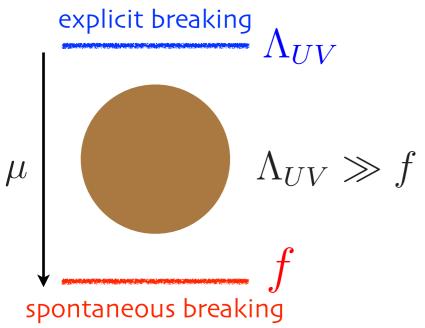
The dilaton behaves more like the Amplitude mode

$$\Phi = e^{i\xi} (\langle \Phi \rangle + \sigma)$$
$$V(\sigma) \neq 0$$

Scale (conformal) invariant sector

$$x \to e^{\alpha} x, \ \Phi(x) \to e^{d_{\Phi}\alpha} \Phi(e^{\alpha} x)$$

$$S_{CFT} = \int d^4 x \sum_i \mathcal{O}_i, \quad d_i = 4$$

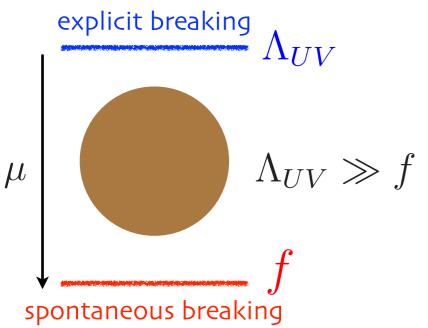


- •d>4: Irrelevant invariant terms are unimportant at low energies.
- •d < 4: No large relevant invariant terms can be present.

Scale (conformal) invariant sector

$$x \to e^{\alpha} x, \ \Phi(x) \to e^{d_{\Phi}\alpha} \Phi(e^{\alpha} x)$$

$$S_{CFT} = \int d^4 x \sum_i \mathcal{O}_i, \quad d_i = 4$$



- •d>4: Irrelevant invariant terms are unimportant at low energies.
- •d < 4: No large relevant invariant terms can be present.

Spontaneous breaking of scale invariance

$$\langle \Phi(x) \rangle = f^{d_{\Phi}} \quad \text{SO}(4,2)/\text{SO}(3,1)$$

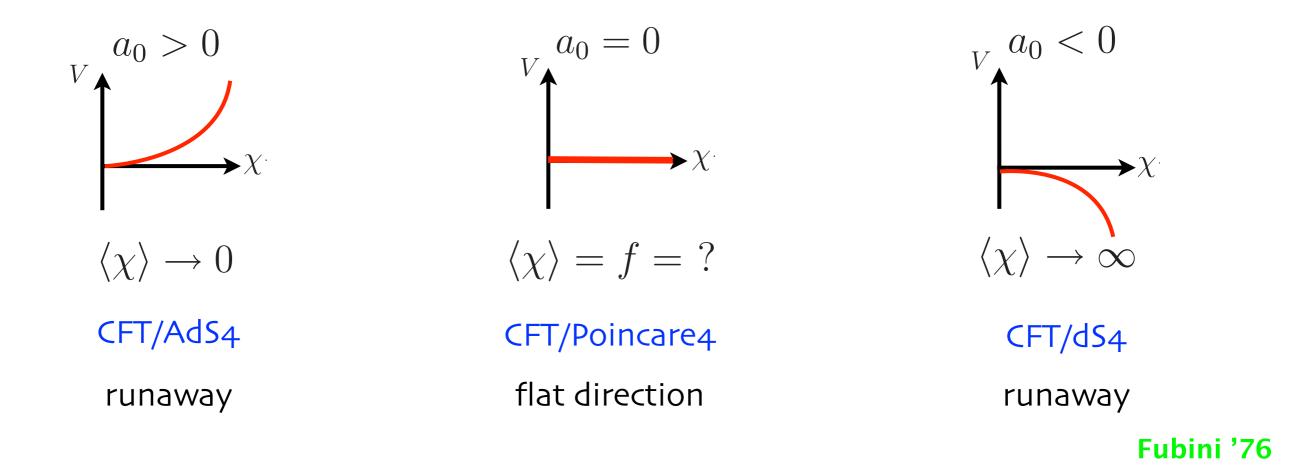
$$\sigma(x) \to \sigma(e^{\alpha}x) + \alpha f$$

$$\chi \equiv f e^{\sigma/f} \to e^{\alpha}\chi$$

$$\mathcal{L}_{eff} = \frac{1}{2} (\partial \chi)^2 - a_0 \chi^4 + \cdots$$

Quartic potential allowed

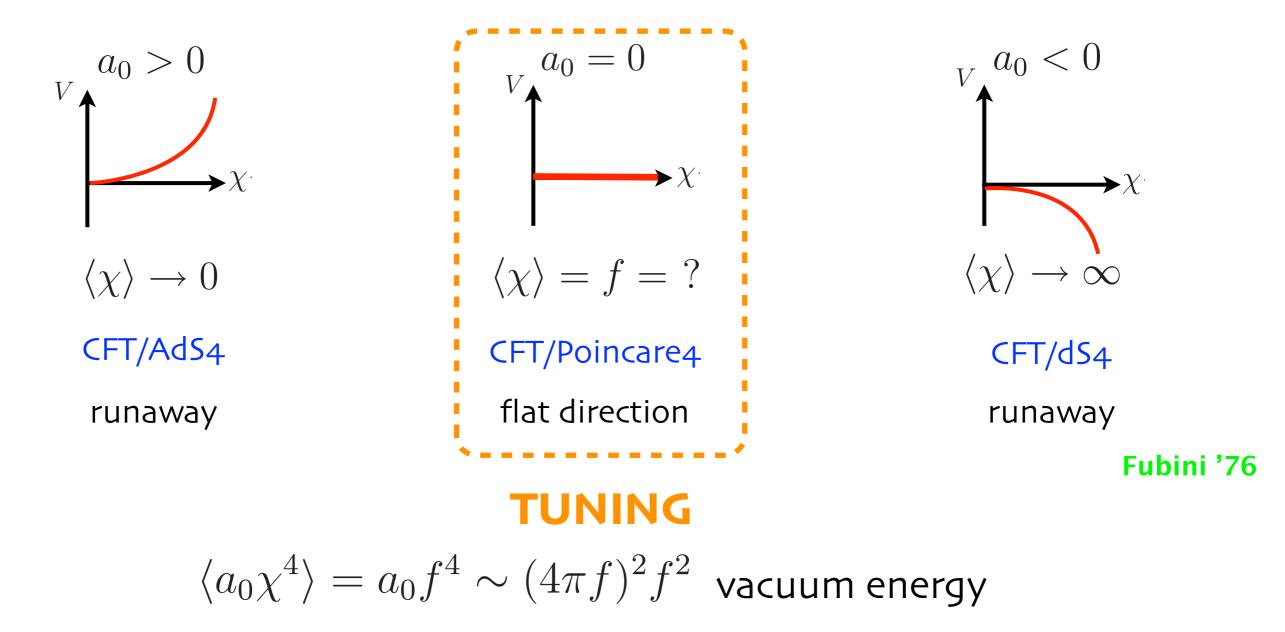
Is there really a light scalar when scale symmetry spontaneously breaks?



$$\mathcal{L}_{eff} = \frac{1}{2} (\partial \chi)^2 - a_0 \chi^4 + \cdots$$

Quartic potential allowed

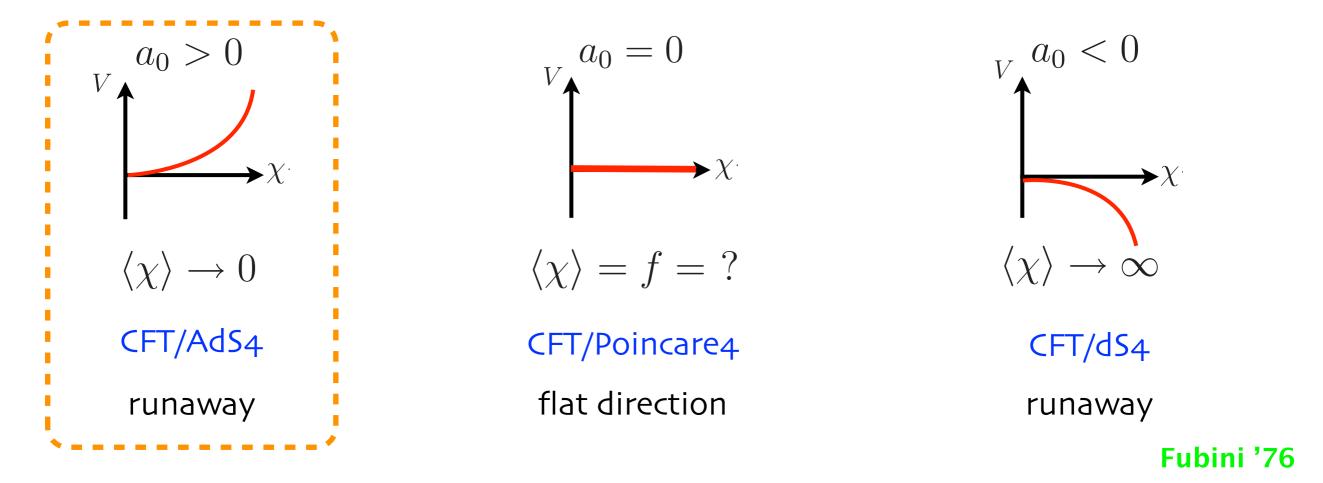
Is there really a light scalar when scale symmetry spontaneously breaks?



$$\mathcal{L}_{eff} = \frac{1}{2} (\partial \chi)^2 - a_0 \chi^4 + \cdots$$

Quartic potential allowed

Is there really a light scalar when scale symmetry spontaneously breaks?



$$\langle a_0 \chi^4 \rangle = a_0 f^4 \sim (4\pi f)^2 f^2$$
 vacuum energy

We <u>need</u> a perturbation, aka explicit breaking

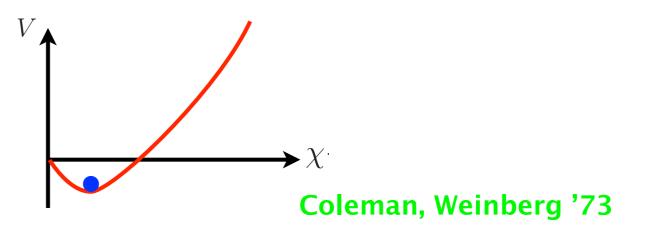
$$\mathcal{L} = \mathcal{L}_{CFT} + \lambda \mathcal{O} \qquad [\mathcal{O}] = 4 - \beta/\lambda \qquad \frac{d\lambda(\mu)}{d\log\mu} = \frac{\beta(\lambda)}{\lambda} \neq 0$$

$$\int \text{spurion: } \mu \to \chi$$

$$V(\chi) = \chi^4 F(\lambda(\chi))$$

$$F(\lambda(\chi)) = a_0 + \sum_n a_n \lambda^n(\chi)$$

Quartic gets dependence on running coupling.



The dilaton effectively scans the landscape of quartics.

Minimum and dilaton mass

 $\langle \chi \rangle = f$

$$V' = f^3[4F(\lambda(f)) + \beta F'(\lambda(f))] = 0$$

 $m_d^2 \simeq 4f^2 \beta F'(\lambda(f)) = -16f^2 F(\lambda(f)) = -16V(f)/f^2$

i) Dilaton mass prop. to explicit breaking at condensate scale, $\pmb{\beta}=\beta(\lambda(f))$

ii) Potential at minimum, aka vacuum energy, also prop. to explicit breaking

iii) Hierarchy between UV and IR scales fixed by dimensional transmutation, dependent on the explicit breaking along the whole running

Minimum and dilaton mass

 $\langle \chi \rangle = f$

$$V' = f^3[4F(\lambda(f)) + \beta F'(\lambda(f))] = 0$$

 $m_d^2 \simeq 4f^2 \beta F'(\lambda(f)) = -16f^2 F(\lambda(f)) = -16V(f)/f^2$

i) Dilaton mass prop. to explicit breaking at condensate scale, $\pmb{\beta}=\beta(\lambda(f))$

ii) Potential at minimum, aka vacuum energy, also prop. to explicit breaking

iii) Hierarchy between UV and IR scales fixed by dimensional transmutation, dependent on the explicit breaking along the whole running

Dynamical (theory space) requirement

 $\beta(\lambda) = \epsilon b(\lambda) , \quad \epsilon \ll 1 , \quad b(\lambda) = O(1)$

Large hierarchy, light dilaton, small cosmological constant

An Extra-D Computable Example

Contino, Pomarol, Rattazzi, '10

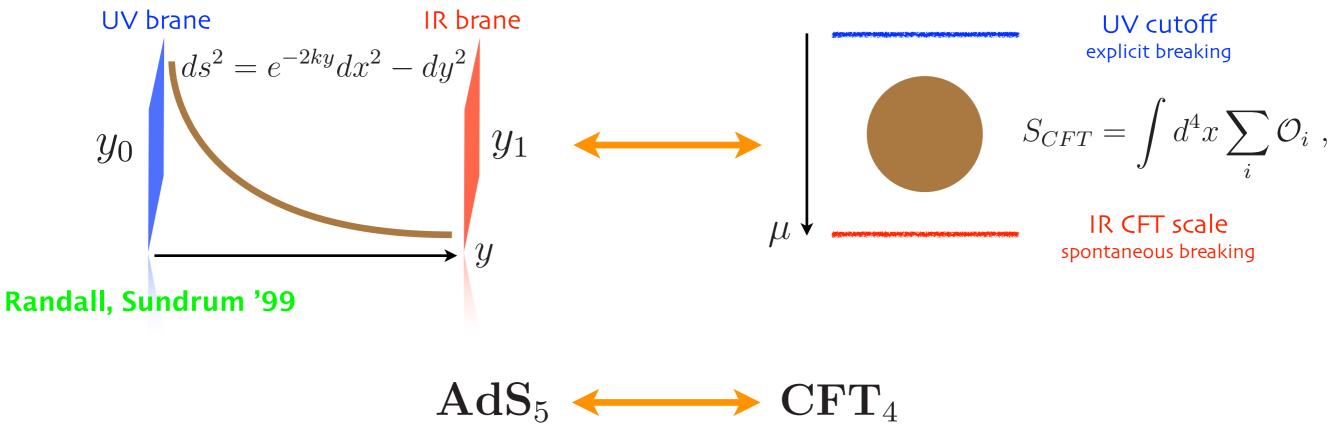
Bellazzini, Csaki, Hubisz, Terning, JS, '13

Coradeschi, Lodone, Pappadopulo, Rattazzi, Vitale, '13

Megias, Pujolas '14

AdS/CFT phenomenological correspondence

Randall & Sundrum setup



$$e^{-ky} \longleftrightarrow \mu$$

$$e^{-ky_0} \longleftrightarrow \Lambda_{UV}$$

$$e^{-ky_1} \longleftrightarrow \chi$$

The brane separation – hierarchy of scales, is fixed by $\langle \chi
angle = f$.

AdS/CFT phenomenological correspondence

Adding explicit breaking perturbation in AdS/CFT

 $\begin{aligned} \operatorname{AdS}_{5} &\longleftrightarrow \operatorname{CFT}_{4} \\ \phi & \longleftarrow & \mathcal{O} \\ V'(\phi) &= dV/d\phi & \longleftrightarrow & \beta(\lambda) = d\lambda/d\log\mu \\ V(\phi) &= \Lambda_{(5)} & \text{exactly marginal} \\ (\partial \phi)|_{y=y_{0}} &= 0 & \phi|_{y=y_{0}} &\longleftrightarrow & \lambda_{UV} \end{aligned}$

4D gravity is readily included

 $g_{MN} \longleftarrow graviton + dilaton$

4D effective Lagrangian

 $\mathcal{L} = \sqrt{g} \left[\mathcal{L}_{CFT} + \lambda \mathcal{O} + M_P^2 R \right]$

The general & stabilized & bent RS

Bellazzini, Csaki, Hubisz, Terning, JS, '13

$$S = \int d^5 x \sqrt{g} \left(-\frac{1}{2\kappa^2} \mathcal{R} + \frac{1}{2} g^{MN} \partial_M \phi \partial_N \phi - V(\phi) \right) - \int d^4 x \sqrt{g_0} V_0(\phi) - \int d^4 x \sqrt{g_1} V_1(\phi)$$

$$UV \text{ brane}$$

$$IR \text{ brane}$$

$$y$$

We solve for the scalar & the warp factor profiles & Hubble

boundary conditions

$$2A'|_{y=y_0,y_1} = \pm \frac{\kappa^2}{3} V_{0,1}(\phi)|_{y=y_0,y_1}$$
$$2\phi'|_{y=y_0,y_1} = \pm \frac{\partial V_{0,1}}{\partial \phi}|_{y=y_0,y_1},$$

bulk E.O.M.'s

$$A'^{2} + H^{2}e^{2A} = \frac{\kappa^{2}\phi'^{2}}{12} - \frac{\kappa^{2}}{6}V(\phi)$$
$$\phi'' = 4A'\phi' + \frac{\partial V}{\partial \phi}$$

General 4D effective potential

$$V_{eff} = V_{IR} + V_R$$

$$V_{IR} = e^{-4A(y_1)} \left[V_1(\phi(y_1)) \mp \frac{6}{\kappa^2} A'(y_1) \right]$$

$$V_R = -3H^2(y_0, y_1) M_{Pl}^2(y_0, y_1) \qquad M_{Pl}^2 = \frac{2}{\kappa^2} \int_{y_0}^{y_1} dy \, e^{-2A(y)}$$
We obtain just what we expected

Modified quartic dilaton potential from **two** sources of explicit breaking

running UV perturbation

 $V_{\lambda} = \chi^4 F_{\lambda}(\lambda(\chi))$

UV Hubble constant

$$V_H = \chi^4 F_H(H(\chi))$$

Generalized Randall-Sundrum

$$V(\phi) = \Lambda_{(5)} + m^2 \phi^2$$

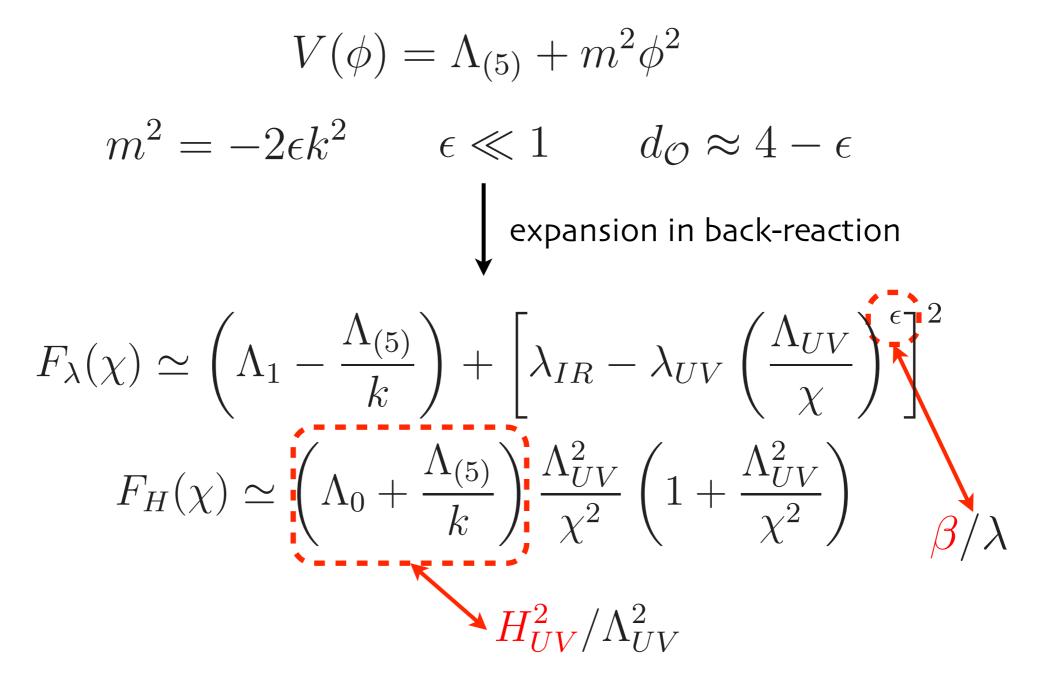
$$m^2 = -2\epsilon k^2 \quad \epsilon \ll 1 \quad d_{\mathcal{O}} \approx 4 - \epsilon$$

$$\downarrow \text{ expansion in back-reaction}$$

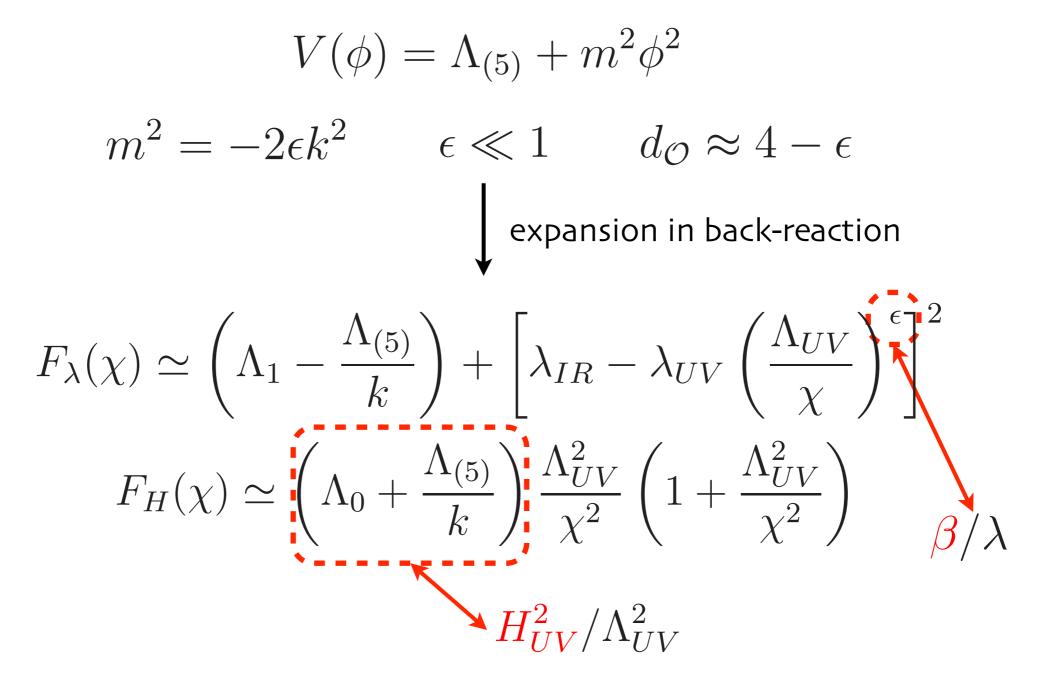
$$F_{\lambda}(\chi) \simeq \left(\Lambda_1 - \frac{\Lambda_{(5)}}{k}\right) + \left[\lambda_{IR} - \lambda_{UV} \left(\frac{\Lambda_{UV}}{\chi}\right)^{\epsilon}\right]^2$$

$$F_H(\chi) \simeq \left(\Lambda_0 + \frac{\Lambda_{(5)}}{k}\right) \frac{\Lambda_{UV}^2}{\chi^2} \left(1 + \frac{\Lambda_{UV}^2}{\chi^2}\right)$$

Generalized Randall-Sundrum



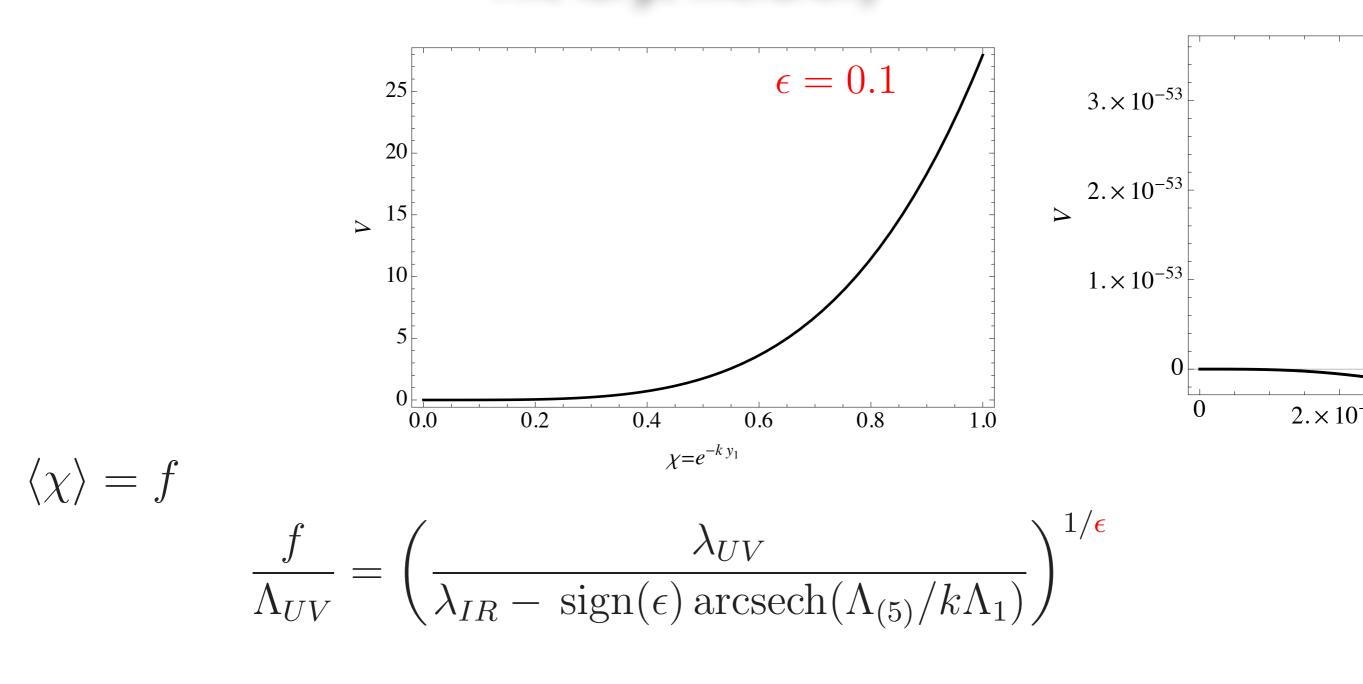
Generalized Randall-Sundrum



And eliminating cut-off effects (UV cosmological constant tuning) $H_{UV} = 0$,

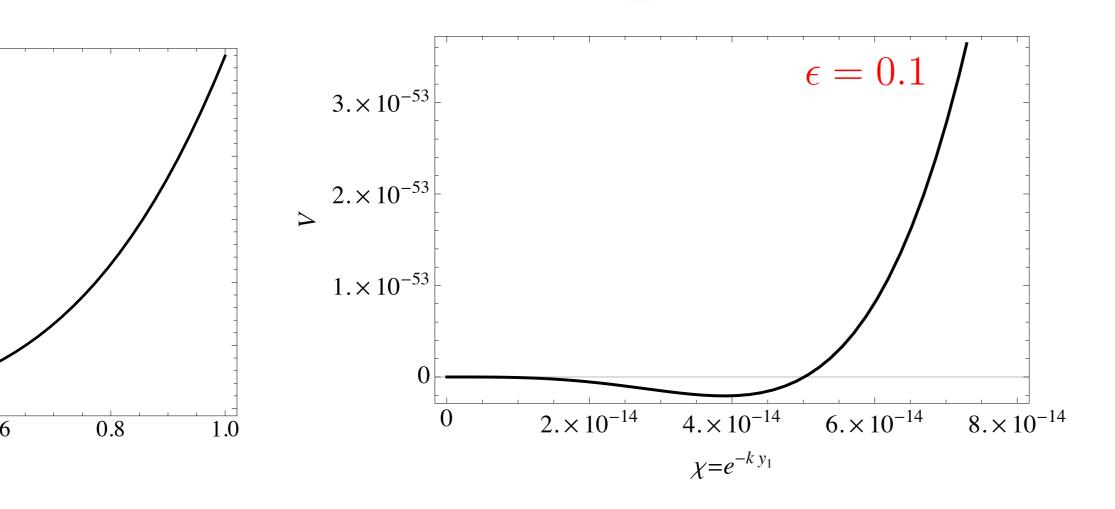
$$V_{\lambda} \simeq \chi^4 \left\{ \Lambda_1 - \frac{\Lambda_{(5)}}{k} \cosh\left[\lambda_{IR} - \lambda_{UV} (\Lambda_{UV}/\chi)^{\epsilon}\right] \right\}$$

The large hierarchy



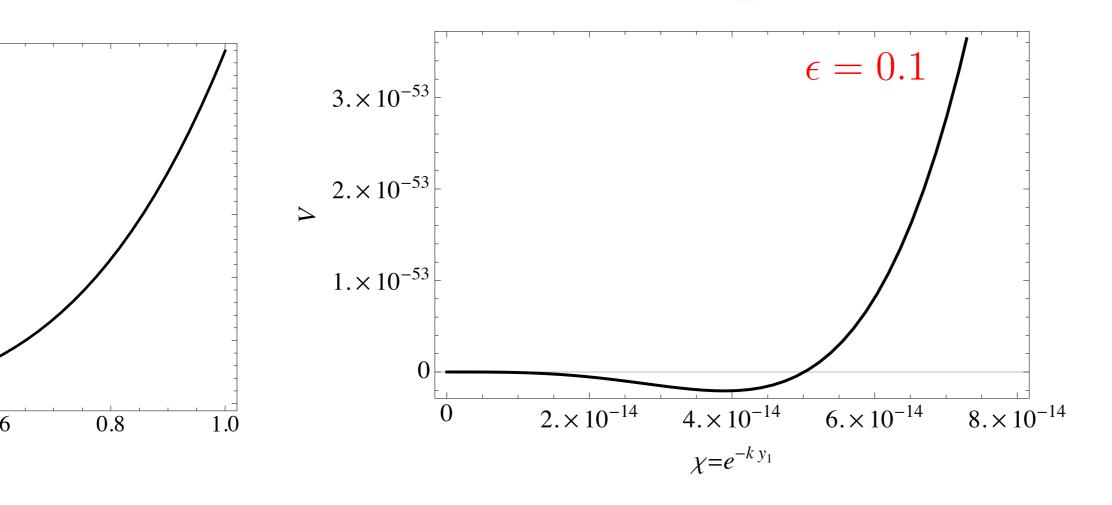
Because of slow running for a long time.

The light dilaton



$$m_{\chi}^2 \sim \epsilon \, 48 \lambda_{UV} \tanh \left[\frac{1}{2} (\lambda_{IR} - \lambda_{UV} (\Lambda_{UV}/f)^{\epsilon}) \right] (\Lambda_{UV}/f)^{\epsilon} f^2$$

Because of slow running at the minimum.



$$V_{IR}^{min} = -\epsilon \, 3\lambda_{UV} \, \tanh\left[\frac{1}{2}(\lambda_{IR} - \lambda_{UV}(\Lambda_{UV}/f)^{\epsilon})\right] \, (\Lambda_{UV}/f)^{\epsilon} f^4$$

Because of slow running at the minimum.

Approximate Spontaneous Breaking of Scale Invariance offers a <u>natural</u> way to obtain a <u>light scalar</u>, the **Dilaton**,

$$\beta(\lambda) = \epsilon b(\lambda) , \quad \epsilon \ll 1 , \quad b(\lambda) = O(1)$$

and to <u>suppress</u> the spontaneously generated Vacuum energy.

Is this possibility realized in Nature? Inflaton as Dilaton arXiv:1406.5192 Higgs as Dilaton arXiv:1209.3299 Dilaton in Phase Transitions arXiv:14xx.xxxx

We just have to wait and see

Thank you for your attention

$$V'(\phi) = dV/d\phi \quad \longleftarrow \quad \beta(\lambda) = d\lambda/d\log\mu$$

Change the bulk potential, change the running. Chacko, Mishra, Stolarski '13

$$V'(\phi) = dV/d\phi \iff \beta(\lambda) = d\lambda/d\log\mu$$

Change the bulk potential, change the running. Chacko, Mishra, Stolarski '13

2) The suppression is parametrically <u>better than in SUSY</u>:

SUSY

$$\Lambda_{CC}^{IR} = c(m_b^4 - m_f^4) \simeq c(m_b^2 + m_f^2) g_s^2 F_s^2 \qquad \Lambda_{CC}^{IR} = \tilde{c} \epsilon (4\pi)^2 f^4 \simeq \tilde{c} \epsilon \Lambda_{IR}^2 f^2$$

 $V'(\phi) = dV/d\phi \iff \beta(\lambda) = d\lambda/d\log\mu$

Change the bulk potential, change the running. Chacko, Mishra, Stolarski '13

2) The suppression is parametrically <u>better than in SUSY</u>:

SUSY

$$\Lambda_{CC}^{IR} = c(m_b^4 - m_f^4) \simeq c(m_b^2 + m_f^2) g_s^2 F_s^2 \qquad \Lambda_{CC}^{IR} = \tilde{c} \epsilon (4\pi)^2 f^4 \simeq \tilde{c} \epsilon \Lambda_{IR}^2 f^2$$

3) Our result is consistent with <u>Weinberg's no-go theorem</u>:

 $\epsilon=0\,{\rm can}$ remove the CC, but $\epsilon\neq 0\,{\rm is}$ required for a unique vacuum

A very light state must be in the spectrum.

 $V'(\phi) = dV/d\phi \iff \beta(\lambda) = d\lambda/d\log\mu$

Change the bulk potential, change the running. Chacko, Mishra, Stolarski '13

2) The suppression is parametrically <u>better than in SUSY</u>:

SUSY

$$\Lambda_{CC}^{IR} = c(m_b^4 - m_f^4) \simeq c(m_b^2 + m_f^2) g_s^2 F_s^2 \qquad \Lambda_{CC}^{IR} = \tilde{c} \epsilon (4\pi)^2 f^4 \simeq \tilde{c} \epsilon \Lambda_{IR}^2 f^2$$

3) Our result is consistent with <u>Weinberg's no-go theorem</u>:

 $\epsilon=0\,{\rm can}$ remove the CC, but $\epsilon\neq 0\,{\rm is}$ required for a unique vacuum

A very light state must be in the spectrum.

4) <u>UV contribution</u> to the cosmological constant must be tuned away.

Tuesday, 22 July 14

AdS/CFT phenomenological correspondence

(perturbative) Example: **bulk mass**

$$V(\phi) = \Lambda_{(5)} + m^2 \phi^2$$

Scaling dimension of operator

$$d_{\mathcal{O}} = 2 + \sqrt{4 + m^2/k^2}$$

Background scalar solution of E.O.M.

$$\phi(y) = \phi_0 e^{-ky(4-d_{\mathcal{O}})} + \phi_1 e^{-kyd_{\mathcal{O}}}$$

running
condensate
$$\phi_0 = \lim_{\Lambda_{UV} \to \infty} \Lambda_{UV}^{4-d_{\mathcal{O}}} \lambda_{UV}$$

$$\phi_1 = \frac{\langle \mathcal{O} \rangle}{2d_{\mathcal{O}} - 4}$$

$$\frac{d\lambda}{d\log \mu} \equiv \beta(\lambda) = (4 - d_{\mathcal{O}})\lambda$$