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Broken phase

Spontaneous internal Symmetry Breaking: G -> H

(approximately) Massless Goldstone mode appear = phase
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DILATON =Goldstone Boson of Spontaneous Breaking of Scale Invariance1 A
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Broken phase

Spontaneous space-time Symmetry Breaking: G -> H

The dilaton behaves more like the Amplitude mode
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Figure 1:

1 A

〈Φ〉 = fdΦ , ΛIR ∼ 4πf
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Quartic potential allowed

One additional important property of the effective potential (3.12) is that it is auto-
matically minimized at a solution that satisfies the bulk equations of motion and all BC’s.
The minimum of the potential is at

dVeff

dy1
= −4A′e−4A

[
V1 +

6

κ2
A′
]

+ e−4A

[
∂V1

∂φ
φ′ +

6

κ2
A′′
]

(3.16)

The first term vanishes by the BC for the metric (3.6), while the second term (using a
combination of the bulk EOM’s A′′ = κ2φ′2/3 can be brought to the form of the scalar
boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution
automatically minimizes the dilaton potential: since the dilaton potential is a part of the
full bulk action evaluated along the equations of motion (without imposing the BC for
the warp factor), a full solution which extremizes the full action should also minimize the
effective potential. The key question is whether a flat solution actually exists without
tuning the parameters or not.

The potential (3.13) also has a very clear holographic interpretation in terms of a 4D
picture. The generic form of the dilaton potential is given by

Veff(χ) = χ4F (λ(χ)) + Λ4
UV , (3.17)

where λ is a coupling of an operator explicitly breaking the scale invariance. If the coupling
is constant, the potential is a pure quartic as discussed before. Based on our expression for
the potential (3.13 we can identify

F = V1 +
6

κ2
A′ (3.18)

In addition, the coupling λ will be identified with the bulk scalar through the relation,

φ ≡ log(λ) (3.19)
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Quartic potential allowed

One additional important property of the effective potential (3.12) is that it is auto-
matically minimized at a solution that satisfies the bulk equations of motion and all BC’s.
The minimum of the potential is at
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The first term vanishes by the BC for the metric (3.6), while the second term (using a
combination of the bulk EOM’s A′′ = κ2φ′2/3 can be brought to the form of the scalar
boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution
automatically minimizes the dilaton potential: since the dilaton potential is a part of the
full bulk action evaluated along the equations of motion (without imposing the BC for
the warp factor), a full solution which extremizes the full action should also minimize the
effective potential. The key question is whether a flat solution actually exists without
tuning the parameters or not.

The potential (3.13) also has a very clear holographic interpretation in terms of a 4D
picture. The generic form of the dilaton potential is given by
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where λ is a coupling of an operator explicitly breaking the scale invariance. If the coupling
is constant, the potential is a pure quartic as discussed before. Based on our expression for
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Quartic potential allowed

One additional important property of the effective potential (3.12) is that it is auto-
matically minimized at a solution that satisfies the bulk equations of motion and all BC’s.
The minimum of the potential is at
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∂φ
φ′ +

6

κ2
A′′
]

(3.16)

The first term vanishes by the BC for the metric (3.6), while the second term (using a
combination of the bulk EOM’s A′′ = κ2φ′2/3 can be brought to the form of the scalar
boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution
automatically minimizes the dilaton potential: since the dilaton potential is a part of the
full bulk action evaluated along the equations of motion (without imposing the BC for
the warp factor), a full solution which extremizes the full action should also minimize the
effective potential. The key question is whether a flat solution actually exists without
tuning the parameters or not.

The potential (3.13) also has a very clear holographic interpretation in terms of a 4D
picture. The generic form of the dilaton potential is given by

Veff(χ) = χ4F (λ(χ)) + Λ4
UV , (3.17)

where λ is a coupling of an operator explicitly breaking the scale invariance. If the coupling
is constant, the potential is a pure quartic as discussed before. Based on our expression for
the potential (3.13 we can identify

F = V1 +
6

κ2
A′ (3.18)

In addition, the coupling λ will be identified with the bulk scalar through the relation,

φ ≡ log(λ) (3.19)
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dVeff(χ)

dχ

∣∣∣∣
χ=〈χ〉

= 0 , (3.20)

with

dVeff(χ)

dχ
= 4χ3F + χ4 ∂F

∂λ
β , β =

∂λ

∂χ
(3.21)

We can then identify (using ∂χ/∂y1 = −A′χ),

χ
∂F

∂λ
β =

1

A′

(
∂V1

∂φ
φ′ +

6

κ2
A′′
)

(3.22)

8

One additional important property of the effective potential (3.12) is that it is auto-
matically minimized at a solution that satisfies the bulk equations of motion and all BC’s.
The minimum of the potential is at

dVeff

dy1
= −4A′e−4A

[
V1 +

6

κ2
A′
]

+ e−4A

[
∂V1

∂φ
φ′ +

6

κ2
A′′
]

(3.16)

The first term vanishes by the BC for the metric (3.6), while the second term (using a
combination of the bulk EOM’s A′′ = κ2φ′2/3 can be brought to the form of the scalar
boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution
automatically minimizes the dilaton potential: since the dilaton potential is a part of the
full bulk action evaluated along the equations of motion (without imposing the BC for
the warp factor), a full solution which extremizes the full action should also minimize the
effective potential. The key question is whether a flat solution actually exists without
tuning the parameters or not.

The potential (3.13) also has a very clear holographic interpretation in terms of a 4D
picture. The generic form of the dilaton potential is given by

Veff(χ) = χ4F (λ(χ)) + Λ4
UV , (3.17)

where λ is a coupling of an operator explicitly breaking the scale invariance. If the coupling
is constant, the potential is a pure quartic as discussed before. Based on our expression for
the potential (3.13 we can identify

F = V1 +
6

κ2
A′ (3.18)

In addition, the coupling λ will be identified with the bulk scalar through the relation,

φ ≡ log(λ) (3.19)

The minimization condition of the dilaton potential (3.16) can then be rewritten as

dVeff(χ)

dχ

∣∣∣∣
χ=〈χ〉

= 0 , (3.20)

with

dVeff(χ)

dχ
= 4χ3F + χ4 ∂F

∂λ
β , β =

∂λ

∂χ
(3.21)

We can then identify (using ∂χ/∂y1 = −A′χ),

χ
∂F

∂λ
β =

1

A′

(
∂V1

∂φ
φ′ +

6

κ2
A′′
)

(3.22)

8

One additional important property of the effective potential (3.12) is that it is auto-
matically minimized at a solution that satisfies the bulk equations of motion and all BC’s.
The minimum of the potential is at

dVeff

dy1
= −4A′e−4A

[
V1 +

6

κ2
A′
]

+ e−4A

[
∂V1

∂φ
φ′ +

6

κ2
A′′
]

(3.16)

The first term vanishes by the BC for the metric (3.6), while the second term (using a
combination of the bulk EOM’s A′′ = κ2φ′2/3 can be brought to the form of the scalar
boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution
automatically minimizes the dilaton potential: since the dilaton potential is a part of the
full bulk action evaluated along the equations of motion (without imposing the BC for
the warp factor), a full solution which extremizes the full action should also minimize the
effective potential. The key question is whether a flat solution actually exists without
tuning the parameters or not.

The potential (3.13) also has a very clear holographic interpretation in terms of a 4D
picture. The generic form of the dilaton potential is given by

Veff(χ) = χ4F (λ(χ)) + Λ4
UV , (3.17)

where λ is a coupling of an operator explicitly breaking the scale invariance. If the coupling
is constant, the potential is a pure quartic as discussed before. Based on our expression for
the potential (3.13 we can identify

F = V1 +
6

κ2
A′ (3.18)

In addition, the coupling λ will be identified with the bulk scalar through the relation,

φ ≡ log(λ) (3.19)

The minimization condition of the dilaton potential (3.16) can then be rewritten as

dVeff(χ)

dχ

∣∣∣∣
χ=〈χ〉

= 0 , (3.20)

with

dVeff(χ)

dχ
= 4χ3F + χ4 ∂F

∂λ
β , β =

∂λ

∂χ
(3.21)

We can then identify (using ∂χ/∂y1 = −A′χ),

χ
∂F

∂λ
β =

1

A′

(
∂V1

∂φ
φ′ +

6

κ2
A′′
)

(3.22)

8

1 A

S = −
∫

y=y0

dx4√g0Λ0 −
∫

√
g

(

2M3
∗
R + Λ(5)

)

−
∫

y=y0

dx4√g1Λ1

ΛUV # f

Leff =
1

2
(∂χ)2 − a0χ

4 +
a2

χ4
(∂χ)4 + · · ·

a0 > 0

a0 = 0

a0 < 0

1

1 A

S = −
∫

y=y0

dx4√g0Λ0 −
∫

√
g

(

2M3
∗
R + Λ(5)

)

−
∫

y=y0

dx4√g1Λ1

ΛUV # f

Leff =
1

2
(∂χ)2 − a0χ

4 +
a2

χ4
(∂χ)4 + · · ·

a0 > 0

a0 = 0

a0 < 0

1

1 A

S = −
∫

y=y0

dx4√g0Λ0 −
∫

√
g

(

2M3
∗
R + Λ(5)

)

−
∫

y=y0

dx4√g1Λ1

ΛUV # f

Leff =
1

2
(∂χ)2 − a0χ

4 +
a2

χ4
(∂χ)4 + · · ·

a0 > 0

a0 = 0

a0 < 0

1

CFT/AdS4 CFT/Poincare4 CFT/dS4

flat direction runawayrunaway

Is there really a light scalar when scale symmetry spontaneously breaks?

Effective theory of CFT spontaneous breaking                                                     .

1 A

φ0 = φ(xµ, y)|AdS boundary

Leff =
1

2
(∂χ)2 − a0χ

4 + · · ·

dV =
v2

f 2

dψ =
1

2

v2

f 2
γψ

dgg = −
g2

s

32π2

v2

f 2

(

b
(3)
IR − b

(3)
UV

)

c3 =
1

3

v

f

(

5 + α
m2
χ

(4πf)2

)

1

1 A

〈a0χ
4〉 = a0f

4 ∼ (4πf)2f 2

1

vacuum energy

1 A

〈a0χ
4〉 = a0f

4 ∼ (4πf)2f 2

V

1

1 A

〈a0χ
4〉 = a0f

4 ∼ (4πf)2f 2

V

1

1 A

〈a0χ
4〉 = a0f

4 ∼ (4πf)2f 2

V

1

6Tuesday, 22 July 14



Figure 1:

1 A

L ⊃ λO , [O] = 4 − ε

dλ

d log µ
= β(λ) #= 0

V (χ) = χ4F (λ(χ))

1

Coleman, Weinberg ’73

We need a perturbation, aka explicit breaking

1 A

S = −
∫

y=y0

dx4√g0Λ0 −
∫

√
g

(

2M3
∗
R + Λ(5)

)

−
∫

y=y0

dx4√g1Λ1

ΛUV # f

Leff =
1

2
(∂χ)2 − a0χ

4 +
a2,4

χ4
(∂χ)4 + · · ·

a0 > 0

a0 = 0

a0 < 0

(a0)RS = Λ1 − Λ(5)k

F (λ(χ)) = a0 +
∑

n

anλ
n(χ)

1

One additional important property of the effective potential (3.12) is that it is auto-
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boundary condition (3.7). From the 5D picture it is not too surprising that a flat solution
automatically minimizes the dilaton potential: since the dilaton potential is a part of the
full bulk action evaluated along the equations of motion (without imposing the BC for
the warp factor), a full solution which extremizes the full action should also minimize the
effective potential. The key question is whether a flat solution actually exists without
tuning the parameters or not.
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Quartic gets dependence on running coupling.
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1 A

S = −
∫

y=y0

dx4√g0Λ0 −
∫

√
g

(

1

2κ2
R + Λ(5)

)

−
∫

y=y0

dx4√g1Λ1

a0 ∼
16π2

∆

∆ !
Λ

md

m2
d $ Λ2

φ

φ|y=y0

λUV

L = LCFT + λO

V (φ) = ct

1

1 A

a(v0 = 0) ∼ v1

T > TC

T < TC

j = J/U

L = (∂φ)2 + m2φ2 − λφ4

m ∼ (T − TC), (j − jC), (Λ − ΛQ)

Λ # m

φ = eiα(φ0 + σ)

O = ψ̄ψ

O = (φ,ψ)

[O] = 4 − β/λ

1

1 A

a(v0 = 0) ∼ v1

4πf

gf

µ → χ

1

1 A

dλ(µ)

d log µ
=

β(λ)

λ
!= 0

a(v0 = 0) ∼ v1

4πf

gf

µ → χ

1

spurion:

1 A

〈a0χ
4〉 = a0f

4 ∼ (4πf)2f 2

V

1

Effective theory of CFT spontaneous breaking                                                     .

7Tuesday, 22 July 14



Figure 1:

1 A

V ′ = f 3[4F (λ(f)) + βF ′(λ(f))] = 0

1

Figure 1:

1 A

εK : 14

∆ !
2ΛIR

mdil

! 50

(

f

246 GeV

)

v

f
! 1

b(i), γf " O(1)

L(0) ⊃
m2

W

2
W 2

µ

(

1 + 2cV

h

v
+ dV

h2

v2

)

A(s) !
s

v2
(1 − c2

V ) = s
1 − v2/f 2

v2

W

A(s) !
s

v2
(dV − c2

V ) = 0 + O(s2/f 4)

√

dV = cV =
v

f

〈χ〉 = f

1

Minimum and dilaton mass1 A

a(v0 = 0) ∼ v1

m2

d " 4f 2βF ′(λ(f)) = −16f 2F (λ(f)) = −16V (f)/f 2

T > TC

T < TC

j = J/U

L = (∂φ)2 + m2φ2 − λφ4

m ∼ (T − TC), (j − jC), (Λ − ΛQ)

Λ $ m

φ = eiα(φ0 + σ)

O = ψ̄ψ

O = (φ,ψ)

[O] = 4 − β/λ

m2 = −2εk2

1

1 A

β = β(λ(f))

1

i) Dilaton mass prop. to explicit breaking at condensate scale,

ii) Potential at minimum, aka vacuum energy, also prop. to explicit breaking

iii) Hierarchy between UV and IR scales fixed by dimensional transmutation, 
dependent on the explicit breaking along the whole running
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An Extra-D Computable Example

Contino, Pomarol, Rattazzi, ‘10

Bellazzini, Csaki, Hubisz, Terning, JS, ’13

Megias, Pujolas ’14

Coradeschi, Lodone, Pappadopulo, Rattazzi, Vitale, ’13

9Tuesday, 22 July 14



Randall & Sundrum setup
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Adding explicit breaking perturbation in AdS/CFT
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AdS/CFT phenomenological correspondence                                                        .

4D gravity is readily included
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gMN
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graviton + dilaton
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g
[

LCFT + λO + M2

P R
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gMN
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The general & stabilized & bent RS

3 The dilaton e↵ective potential in holographic

models

A general holographic model can be obtained by considering the action

S =

Z
d5x
p

g

✓
� 1

22
R+

1

2
gMN@

M

�@
N

�� V (�)

◆
�

Z
d4x
p

g0V0(�)�
Z

d4x
p

g1V1(�).

(3.1)
of a bulk scalar field � coupled to gravity. Here 2 is the 5D Newton constant, which is
related to 5D Planck scale via 2 = 1

2M

3
⇤
. We will be considering 4D Lorentz invariant

solutions to the Einstein equations, thus our metric ansatz will be

ds2 = e�2A(y)dx2 � dy2. (3.2)

where e�A(y) is the general warp factor. The AdS/CFT prescription gives an identification
between the extra dimensional coordinate and an energy scale in a dual 4D CFT:

µ = ke�A(y) , (3.3)

where k =
q

�⇤(5)
2

6 is the curvature of the AdS space, determined by the 5D cosmological
constant ⇤(5).

We can then calculate the e↵ective potential for the dilaton for an arbitrary back-
ground. We will assume that the general background is cut o↵ at the position y = y1 with
orbifold boundary conditions, which corresponds to the presumed spontaneous breaking of
conformality. The dilaton is identified as the scale of the spontaneous breaking, which in
this case corresponds to the IR brane position y1, implying

� = e
�
f = e�A(y1) . (3.4)

Both µ and � are identified up to an unphysical arbitrary constant, A(y)! A(y)+a being
a symmetry of the system. We will fix it by requiring A(0)=0. Besides, reparametrizations
of the dilaton field should not change physical quantities, and when convenient we will
simply take � = e�ky1 (see also Appendix E).

The background has to solve the bulk equations of motion

4A02 � A00 = �22

3
V (�)

A02 =
2�02

12
� 2

6
V (�)

�00 = 4A0�0 +
@V

@�
. (3.5)

7

bulk E.O.M.’s boundary conditionsThe BC’s (assumed to be Z2-symmetric) are then:

2A0|
y=y0,y1 = ±2

3
V0,1(�)|

y=y0,y1 (3.6)

2�0|
y=y0,y1 = ±@V0,1

@�
|
y=y0,y1 , (3.7)

where the + sign is for the UV brane and the � sign for the IR brane.

Let us now calculate the e↵ective potential for the dilaton in these general backgrounds.
The e↵ective potential is obtained by integrating the bulk action over the solutions of the
bulk equations of motion, with the scalar BC’s (3.6) imposed both at the UV and the IR.
We do not impose the Israel junction conditions (3.6) corresponding to the BC for the
warp factor. Eventually the UV brane junction condition can be imposed thereby fixing
the location y0 of the UV brane, and possibly at the price of tuning the UV brane tension.
The e↵ective potential in terms of the general warp factor A(y) and the general scalar
background �(y) is then given by

V
eff

(�) = �2

Z
y1

y0

dy
p

g


� 1

22
(20A02 � 8A00)� 1

2
�02 � V (�)

�
+
p

gV |0 +
p

gV |1 (3.8)

Here we have integrated over the full circle rather than just over the orbifold. Special
attention has to be paid to the singular pieces in A00 at the two boundaries, which will give
an additional contribution to the e↵ective potential of

V
(sing)
eff

=

p
g
8A0

2

�1

0

(3.9)

while using the bulk equations of motion in (3.5) the smooth part of the bulk is given by

V
bulk

=
2

2

Z
y1

y0

dye�4A(y)(4A02 � A00) = �
p

g
2

2
A0

�1

0

. (3.10)

As expected, the entire e↵ective potential is a boundary term, given in terms of the location
of the IR brane y1 by

V
eff

= V
UV

+ V
IR

(3.11)

with

V
UV/IR

= e�4A(y0,1)


V0,1 (�(y0,1))⌥ 6

2
A0(y0,1)

�
. (3.12)

An alternative derivation of this e↵ective potential using the Gibbons-Hawking boundary
action is given in Appendix A. As expected, this potential vanishes for a solution that
actually satisfies the boundary conditions (3.6) which we have not yet imposed. Once
those are satisfied one has a flat solution to the bulk equations of motion and the resulting
e↵ective 4D cosmological constant necessarily vanishes. This does not mean that the entire

8
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We solve for the scalar & the warp factor profiles & Hubble

UV brane IR brane
1 A

y

ke−ky

µ

e−ky0

1

The background solutions for the warp factor and the scalar are,

A(y) ' a + ky +
2

12

�
�2

IRe(8�2✏)ky + �2
UV e2✏ky + 2✏�IR�UV e4ky

�
(11)

�(y) ' �UV e✏ky + �IRe(4�✏)ky , (12)

corresponding to an expansion in the scalar back-reaction and also in ✏, keeping O(✏) terms, and all

orders in e✏ky. Notice we do not need to include O(2�2) corrections in �, given that in the action

Eq. (1) only the Ricci scalar R carries a �2 factor.

The � B.C.’s fix

�UV ' v0µ
4�✏
0 � v1�4�✏

µ4�2✏
0 � �4�2✏

(13)

�IR ' v0µ
�✏
0 � v1��✏

µ4�2✏
0 � �4�2✏

, (14)

at zeroth order in ✏, enough for our purposes. We have identified in this case µ0 = e�ky0 and

� = e�ky1 for convenience.

It is straightforward to derive the e↵ective potential,

VUV e4a ' (�0 � ✏kv2
0)µ

4
0

✓
1 +

�2

µ2
0

+
�4

µ4
0

◆
� ✏k2v0

✓
µ0

�

◆✏✓
v1 � v0

✓
µ0

�

◆✏◆
�4 + O

✓
�6

µ2
0

◆
(15)

VIRe4a '
"
�1 + 4k

✓
v1 � v0

✓
µ0

�

◆✏◆2

� ✏k

 
v2

1 � 6v1v0

✓
µ0

�

◆✏

+ 4v2
0

✓
µ0

�

◆2✏
!#

�4 + O

✓
�6

µ2
0

◆
.

(16)

This result is important, given that we can already expect that when the 4D slices are bent, H will

be e↵ectively determined by VUV (or VIR) above.

2 Accounting of bent 4D slices

The 5D action is the same as before, Eq. (1), however now our ansatz allows for bent 4D slices,

ds2 = e�2A(y)
⇥
dt2 � e2Htd~x2

⇤� dy2 , (17)

corresponding to dS4 space. AdS4 space is obtained by the substitutions t$ ix3 and H ! iH.

3

1 A

L =
√

g
[

LCFT + λO + M2

P R
]

gMN

A′2 + H2e2A =
κ2φ′2

12
−

κ2

6
V (φ) (1)

φ′′ = 4A′φ′ +
∂V

∂φ
(2)

1
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General 4D effective potential

The E.O.M.’s for the background fields are modified to include the e↵ect of a non-zero Hubble

constant (working with the AdS4 ansatz),

A02 + H2e2A =
2�02

12
� 2

6
V (�) (18)

�00 = 4A0�0 +
@V

@�
, (19)

with the same B.C.’s as before, Eq. (6) and Eq. (7).

Importantly, a non-zero Hubble constant introduces another term in the e↵ective potential

Eq. (9).

VH = �3H2(y0, y1)M
2
Pl(y0, y1) , (20)

where

M2
Pl =

2

2

Z y1

y0

dy e�2A(y) . (21)

Given that both H and MPl depend on the UV and IR brane positions, they carry a dependence

on µ0 and �.

Before moving to the results, let us note that we will be obtaining the Hubble constant by

applying the A UV B.C.. This in turn implies that the UV piece of the e↵ective potential vanishes

automatically VUV = 0, thus Veff = VIR + VH . Therefore the UV-IR hierarchy will be fixed by the

minimization of such e↵ective potential, which should be equivalent to VIR|�=h�i = 0, that is the A

IR B.C..1 This then consistently implies the relation Veff |�=h�i = �3H2M2
Pl, given the 4D e↵ective

gravitational action

S = �M2
Pl

Z
d4x

p
ĝ

�R(ĝ)/2� 3H2
�

(22)

where ĝ is the e↵ective 4D metric.

Importantly, under the rescalings H ! He�a and MPl ! MPle+a, the vacuum energy is left

invariant. This comes from the fact that the solutions of the E.O.M.’s Eq. (18) and Eq. (19) with

B.C.’s Eq. (6) and Eq. (7) are invariant under A! A+a along with H ! He�a. This is important

when considering the limit of decoupling 4D gravity.

In our previous work we solved the system with flat branes only in an approximate way, given

the di�culty to find analytic formulae. We used a boundary layer analysis that splits the extra

dimension in a long region of slow evolution of � where the metric is close to the RS one, dubbed the

1It is understood that we could likewise solve the system the other way around.

4

1 A

Veff(χ) ! ΛUV
CC + m2

χχ2 + χ4F (χ)

Veff = VIR + VH

VIR = e−4A(y1)

[

V1 (φ(y1)) ∓
6

κ2
A′(y1)

]

1

1 A

Veff(χ) ! ΛUV
CC + m2

χχ2 + χ4F (χ)

Veff = VIR + VR

VIR = e−4A(y1)

[

V1 (φ(y1)) ∓
6

κ2
A′(y1)

]

VR = −3H2(y0, y1)M
2
P l(y0, y1)

Vλ = χ4F (λ(χ/ΛUV ))
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VR = M2
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1

Modified quartic dilaton potential from two sources of explicit breaking

running UV perturbation UV Hubble constant

1 A

Veff(χ) ! ΛUV
CC + m2

χχ2 + χ4F (χ)

Veff = VIR + VR

VIR = e−4A(y1)

[

V1 (φ(y1)) ∓
6

κ2
A′(y1)

]

VR = −3H2(y0, y1)M
2
P l(y0, y1)

Vλ = χ4Fλ(λ(χ))

VH = χ4FH(H(χ))

VR = M2
P (χ/ΛUV )R

1

1 A

Veff(χ) ! ΛUV
CC + m2

χχ2 + χ4F (χ)

Veff = VIR + VR

VIR = e−4A(y1)

[

V1 (φ(y1)) ∓
6

κ2
A′(y1)

]

VR = −3H2(y0, y1)M
2
P l(y0, y1)

Vλ = χ4Fλ(λ(χ))

VH = χ4FH(H(χ))

VR = M2
P (χ/ΛUV )R

1

13Tuesday, 22 July 14



Generalized Randall-Sundrum                                                                                 .

1 A

S = −
∫

y=y0

dx4√g0Λ0 −
∫

√
g

(

1

2κ2
R + Λ(5)

)

−
∫

y=y0

dx4√g1Λ1

a0 ∼
16π2

∆

∆ !
Λ

md

m2
d $ Λ2

φ

φ|y=y0

λUV

L = LCFT + λO

V (φ) = Λ(5)

V ′(φ) = dV/dφ

β(λ) = dλ/d logµ

(∂φ)|y=y0
= 0

V (φ) = Λ(5) + m2φ2

dO = 2 +
√

4 + m2/k2 % 4+

1

1 A

(a0)RS = Λ1 − Λ(5)k → 0

V (φ) = Λ(5) − 2εk2φ2

dO ≈ 4 − ε

ε $ 1

1

1 A

(a0)RS = Λ1 − Λ(5)k → 0

V (φ) = Λ(5) − 2εk2φ2

dO ≈ 4 − ε

ε $ 1

1

1 A

a(v0 = 0) ∼ v1

T > TC

T < TC

j = J/U

L = (∂φ)2 + m2φ2 − λφ4

m ∼ (T − TC), (j − jC), (Λ − ΛQ)

Λ # m

φ = eiα(φ0 + σ)

O = ψ̄ψ

O = (φ,ψ)

[O] = 4 − β/λ

m2 = −2εk2

1

1 A

m2
χ =

ΛUV
CC

Λ2
UV

! Λ2
UV

[

Λ0 +
Λ(5)

k

]

F (χ) ! Λ0 + Λ1 + 3 [λIR − λUV (ΛUV /χ)ε]2

FH(χ) !

(

Λ0 +
Λ(5)

k

)

Λ2
UV

χ2

(

1 +
Λ2

UV

χ2

)

Fλ(χ) !

(

Λ1 −
Λ(5)

k

)

+ 3

[

λIR − λUV

(

ΛUV

χ

)ε]2

1

expansion in back-reaction1 A

Fλ(χ) !

(

Λ1 −
Λ(5)

k

)

+

[

λIR − λUV

(

ΛUV

χ

)ε]2

β/λ

1

14Tuesday, 22 July 14



Generalized Randall-Sundrum                                                                                 .

1 A

S = −
∫

y=y0

dx4√g0Λ0 −
∫

√
g

(

1

2κ2
R + Λ(5)

)

−
∫

y=y0

dx4√g1Λ1

a0 ∼
16π2

∆

∆ !
Λ

md

m2
d $ Λ2

φ

φ|y=y0

λUV

L = LCFT + λO

V (φ) = Λ(5)

V ′(φ) = dV/dφ

β(λ) = dλ/d logµ

(∂φ)|y=y0
= 0

V (φ) = Λ(5) + m2φ2

dO = 2 +
√

4 + m2/k2 % 4+

1

1 A

(a0)RS = Λ1 − Λ(5)k → 0

V (φ) = Λ(5) − 2εk2φ2

dO ≈ 4 − ε

ε $ 1

1

1 A

(a0)RS = Λ1 − Λ(5)k → 0

V (φ) = Λ(5) − 2εk2φ2

dO ≈ 4 − ε

ε $ 1

1

1 A

a(v0 = 0) ∼ v1

T > TC

T < TC

j = J/U

L = (∂φ)2 + m2φ2 − λφ4

m ∼ (T − TC), (j − jC), (Λ − ΛQ)

Λ # m

φ = eiα(φ0 + σ)

O = ψ̄ψ

O = (φ,ψ)

[O] = 4 − β/λ

m2 = −2εk2

1

1 A

m2
χ =

ΛUV
CC

Λ2
UV

! Λ2
UV

[

Λ0 +
Λ(5)

k

]

F (χ) ! Λ0 + Λ1 + 3 [λIR − λUV (ΛUV /χ)ε]2

FH(χ) !

(

Λ0 +
Λ(5)

k

)

Λ2
UV

χ2

(

1 +
Λ2

UV

χ2

)

Fλ(χ) !

(

Λ1 −
Λ(5)

k

)

+ 3

[

λIR − λUV

(

ΛUV

χ

)ε]2

1

expansion in back-reaction

1 A

m2
χ =

ΛUV
CC

Λ2
UV

! Λ2
UV

[

Λ0 +
Λ(5)

k

]

F (χ) ! Λ0 + Λ1 + 3 [λIR − λUV (ΛUV /χ)ε]2

FH(χ) !

(

Λ0 +
Λ(5)

k

)

Λ2
UV

χ2

(

1 +
Λ2

UV

χ2

)

Fλ(χ) !

(

Λ1 −
Λ(5)

k

)

+ 3

[

λIR − λUV

(

ΛUV

χ

)ε]2

β = ελ

H2
UV /Λ2

UV

1

1 A

β/λ

1

1 A

Fλ(χ) !

(

Λ1 −
Λ(5)

k

)

+

[

λIR − λUV

(

ΛUV

χ

)ε]2

β/λ

1

14Tuesday, 22 July 14



Generalized Randall-Sundrum                                                                                 .

1 A

S = −
∫

y=y0

dx4√g0Λ0 −
∫

√
g

(

1

2κ2
R + Λ(5)

)

−
∫

y=y0

dx4√g1Λ1

a0 ∼
16π2

∆

∆ !
Λ

md

m2
d $ Λ2

φ

φ|y=y0

λUV

L = LCFT + λO

V (φ) = Λ(5)

V ′(φ) = dV/dφ

β(λ) = dλ/d logµ

(∂φ)|y=y0
= 0

V (φ) = Λ(5) + m2φ2

dO = 2 +
√

4 + m2/k2 % 4+

1

1 A

(a0)RS = Λ1 − Λ(5)k → 0

V (φ) = Λ(5) − 2εk2φ2

dO ≈ 4 − ε

ε $ 1

1

1 A

(a0)RS = Λ1 − Λ(5)k → 0

V (φ) = Λ(5) − 2εk2φ2

dO ≈ 4 − ε

ε $ 1

1

1 A

a(v0 = 0) ∼ v1

T > TC

T < TC

j = J/U

L = (∂φ)2 + m2φ2 − λφ4

m ∼ (T − TC), (j − jC), (Λ − ΛQ)

Λ # m

φ = eiα(φ0 + σ)

O = ψ̄ψ

O = (φ,ψ)

[O] = 4 − β/λ

m2 = −2εk2

1

1 A

m2
χ =

ΛUV
CC

Λ2
UV

! Λ2
UV

[

Λ0 +
Λ(5)

k

]

F (χ) ! Λ0 + Λ1 + 3 [λIR − λUV (ΛUV /χ)ε]2

FH(χ) !

(

Λ0 +
Λ(5)

k

)

Λ2
UV

χ2

(

1 +
Λ2

UV

χ2

)

Fλ(χ) !

(

Λ1 −
Λ(5)

k

)

+ 3

[

λIR − λUV

(

ΛUV

χ

)ε]2

1

expansion in back-reaction

1 A

m2
χ =

ΛUV
CC

Λ2
UV

! Λ2
UV

[

Λ0 +
Λ(5)

k

]

F (χ) ! Λ0 + Λ1 + 3 [λIR − λUV (ΛUV /χ)ε]2

FH(χ) !

(

Λ0 +
Λ(5)

k

)

Λ2
UV

χ2

(

1 +
Λ2

UV

χ2

)

Fλ(χ) !

(

Λ1 −
Λ(5)

k

)

+ 3

[

λIR − λUV

(

ΛUV

χ

)ε]2

β = ελ

H2
UV /Λ2

UV

1

1 A

β/λ

1

And eliminating cut-off effects (UV cosmological constant tuning)                 ,

1 A

Fλ(χ) !

(

Λ1 −
Λ(5)

k

)

+

[

λIR − λUV

(

ΛUV

χ

)ε]2

β/λ

1

1 A

Vλ ! χ4

{

Λ1 −
Λ(5)

k
cosh [λIR − λUV (ΛUV /χ)ε]

}

1

1 A

Vλ ! χ4

{

Λ1 −
Λ(5)

k
cosh [λIR − λUV (ΛUV /χ)ε]

}

HUV = 0

1

14Tuesday, 22 July 14



The large hierarchy
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Because of slow running for a long time.

Figure 1:

1 A

εK : 14

∆ !
2ΛIR

mdil

! 50

(

f

246 GeV

)

v

f
! 1

b(i), γf " O(1)

L(0) ⊃
m2

W

2
W 2

µ

(

1 + 2cV

h

v
+ dV

h2

v2

)

A(s) !
s

v2
(1 − c2

V ) = s
1 − v2/f 2

v2

W

A(s) !
s

v2
(dV − c2

V ) = 0 + O(s2/f 4)

√

dV = cV =
v

f

〈χ〉 = f

1

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

c=e-k y1

V

0 2.¥ 10-14 4.¥ 10-14 6.¥ 10-14 8.¥ 10-14
0

1.¥ 10-53

2.¥ 10-53

3.¥ 10-53

c=e-k y1

V

Figure 3: The plot of the e↵ective dilaton potential Eq. (5.19) for the parameters ✏ = 0.1,
v0 = 0.1, v1 = 4.5, ⇤1 = �50, µ0 = 1, and  = 0.5, all of them in units k = 1. The plot in
the right is a zoom of the region where the minimum of the potential is.

To leading order in ✏, the condition for the minimum of the potential is
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leading to a dilaton VEV

h�i
µ0

=

 
v0

v1 � sign(✏)
p

3
2

arcsech(�6k/2⇤1)

!1/✏

+ O(✏) (5.21)

while the potential will be obviously of order F [(µ0/�)✏] = O(✏). Notice that for this to be a
good minimum we need ⇤1 < 0 and |⇤1| > 6k/2. One can clearly see from Eq. (5.19) that
if these conditions are not satisfied then the e↵ective quartic is always positive F [�/µ0] > 0
for all �, and the minima can only be found at h�i = 0 or h�i = µ0. Furthermore, in order
for the e↵ective quartic to be positive at � = µ0 (thus avoiding this as a minimum), one
must have |⇤1| < 6k



2 cosh( 2p
3
(v1 � v0)). This condition is easily satisfied, either if v1 � v0,

a condition consistent with ✏ > 0, or v0 � v1, consistent with ✏ < 0. However, notice that
a large hierarchy, which in this scenario it is given by the point where 6A0/2 compensates
⇤1, is easier to produce for the case ✏ > 0, since in this case v1 �v0(µ0/�)✏ runs slower than
for ✏ < 0. This is the scenario we have advocated for naturally canceling a large quartic
at the scale µ0. We show a plot of the potential (5.19) in Fig. 3, where we can see that a
shallow stable minimum with a small mass is indeed generated.

The dual CFT interpretation of the potential Eq. (5.19) for the interesting ✏ > 0 is
simple. The quartic in the absence of perturbation (that is v0 = 0) is given by F0 =
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v1). This is generically large and positive, hence there is no SBSI at high

scales. Once the perturbation is turned on, it grows larger in the IR, v0(µ0/�)✏. This in turn
decreases the e↵ective quartic, until the minimum F [�/µ0] = O(✏) is found. E↵ectively,
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One might be concerned that phase transitions in the early universe may substantially
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The small cosmological constant
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Figure 3: The plot of the e↵ective dilaton potential Eq. (5.19) for the parameters ✏ = 0.1,
v0 = 0.1, v1 = 4.5, ⇤1 = �50, µ0 = 1, and  = 0.5, all of them in units k = 1. The plot in
the right is a zoom of the region where the minimum of the potential is.
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Approximate Spontaneous Breaking of Scale Invariance
offers a natural way to obtain a light scalar, the Dilaton,

Conclusions                                                                                                                 .

and to suppress the spontaneously generated Vacuum energy.

Is this possibility realized in Nature?
Inflaton as Dilaton

Higgs as Dilaton
Dilaton in Phase Transitions

...

We just have to wait and see

1 A

β(λ) = ε b(λ) , ε ! 1 , b(λ) = O(1)

1

arXiv:1406.5192

arXiv:1209.3299
arXiv:14xx.xxxx
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Thank you for your attention

NP: Themes
1. Necessity for new particles at TeV mass

2. Candidate TeV particles
weakly coupled: SUSY, Dark Matter, Long-lived

strongly coupled/composite: Randall-Sundrum, KK 
and Z’ resonances, long-lived particles

evolution of robust search strategies

3. Connection to dark matter problem
4. Connection to flavor issues

the questions of fine tuning 
and dark matter are still open

118

New particle searches at the current LHC.

current LHC searches

CMS Exotics Searches 

5!

q* (qg), dijet
q* (qW)
q* (qZ) 

q* , dijet pair
q* , boosted Z

e*, Λ = 2 TeV
μ*, Λ = 2 TeV

0 1 2 3 4 5 6
Z’SSM (ee, µµ)

Z’SSM (ττ)
Z’ (tt hadronic) width=1.2%

Z’ (dijet)
Z’ (tt lep+jet) width=1.2%

Z’SSM (ll) fbb=0.2
G (dijet)

G (ttbar hadronic)
G (jet+MET) k/M = 0.2

G (γγ) k/M = 0.1
G (Z(ll)Z(qq)) k/M = 0.1

W’ (lν)
W’ (dijet)

W’ (td)
W’→ WZ(leptonic)

WR’ (tb)
WR, MNR=MWR/2

WKK μ = 10 TeV
ρTC, πTC > 700 GeV

String Resonances (qg)
s8 Resonance (gg)

E6 diquarks (qq)
Axigluon/Coloron (qqbar)

gluino, 3jet, RPV
0 1 2 3 4 5 6

gluino, Stopped Gluino
stop, HSCP

stop, Stopped Gluino
stau, HSCP, GMSB

hyper-K, hyper-ρ=1.2 TeV
neutralino, cτ<50cm

0 1 2 3 4 5 6

Ms, γγ, HLZ, nED = 3
Ms, γγ, HLZ, nED = 6
Ms, ll, HLZ, nED = 3
Ms, ll, HLZ, nED = 6

MD, monojet, nED = 3
MD, monojet, nED = 6
MD, mono-γ, nED = 3
MD, mono-γ, nED = 6

MBH, rotating, MD=3TeV, nED = 2
MBH, non-rot, MD=3TeV, nED = 2

MBH, boil. remn., MD=3TeV, nED = 2
MBH, stable remn., MD=3TeV, nED = 2

MBH, Quantum BH, MD=3TeV, nED = 2
0 1 2 3 4 5 6Sh. Rahatlou 1

LQ1, β=0.5
LQ1, β=1.0
LQ2, β=0.5
LQ2, β=1.0

LQ3 (bν), Q=±1/3, β=0.0
LQ3 (bτ), Q=±2/3 or ±4/3, β=1.0

stop (bτ)
0 1 2 3 4 5 6

b’ → tW, (3l, 2l) + b-jet
q’, b’/t’ degenerate, Vtb=1

b’ → tW, l+jets
B’ → bZ (100%)
T’ → tZ (100%)

t’ → bW (100%), l+jets
t’ → bW (100%), l+l

0 1 2 3 4 5 6
C.I. Λ , Χ analysis, Λ+ LL/RR
C.I. Λ , Χ analysis, Λ- LL/RR

C.I., µµ, destructve LLIM
C.I., µµ, constructive LLIM

C.I., single e (HnCM)
C.I., single µ (HnCM)

C.I., incl. jet, destructive
C.I., incl. jet, constructive

0 5 10 15

95% CL EXCLUSION LIMITS (TEV)CMS EXOTICA

*similar results obtained by ATLAS!

ATLAS Supersymmetry Searches 

4!*similar results obtained by CMS!
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1) Small cosmological constant & light dilaton signal the approximate scale invariance at 
the IR scale:

Chacko, Mishra, Stolarski ’13

1 A
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y=y0

dx4√g0Λ0 −
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√
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∆ !
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λUV

L = LCFT + λO

V (φ) = Λ(5)

V ′(φ) = dV/dφ

1

1 A
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L = LCFT + λO

V (φ) = Λ(5)

V ′(φ) = dV/dφ

β(λ) = dλ/d logµ

1

Change the bulk potential, change the running.

Comments on the Cosmological Constant                                                             .
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Change the bulk potential, change the running.

2) The suppression is parametrically better than in SUSY:

SUSY CFT
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can remove the CC, but           is required for a unique vacuum
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1

A very light state must be in the spectrum.
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32
√

3kv0

κ
tanh

(

κ
√

3
(v1 − v0(µ0/f)ε)

)

f 2(µ0/f)ε

V min
IR = −ε

2
√

3kv0

κ
tanh

(

κ
√

3
(v1 − v0(µ0/f)ε)

)

f 4(µ0/f)ε

Λ(4) = c(m4
b − m4

f ) $ c(m2
b + m2

f)g
2
sF

2
s

Λ(4) = c̃ ε(4π)2f 4 $ c̃ εΛ2f 2

ε = 0

ε %= 0

1

can remove the CC, but           is required for a unique vacuum

1 A

VUV = µ4
0

[

Λ0 +
Λ(5)

k

]

VIR = χ4

[

Λ1 −
Λ(5)

k
cosh

(

2κ
√

3
(v1 − v0(µ0/χ)ε)

)]

ε = 0.1

f

µ0
=

(

v0

v1 − sign(ε)
√

3
2κ arcsech(Λ(5)/kΛ1)

)1/ε

m2
χ ∼ ε

32
√

3kv0

κ
tanh

(

κ
√

3
(v1 − v0(µ0/f)ε)

)

f 2(µ0/f)ε

V min
IR = −ε

2
√

3kv0

κ
tanh

(

κ
√

3
(v1 − v0(µ0/f)ε)

)

f 4(µ0/f)ε

Λ(4) = c(m4
b − m4

f ) $ c(m2
b + m2

f)g
2
sF

2
s

Λ(4) = c̃ ε(4π)2f 4 $ c̃ εΛ2f 2

ε = 0

ε %= 0

1

A very light state must be in the spectrum.

4) UV contribution to the cosmological constant must be tuned away.

Comments on the Cosmological Constant                                                             .

1 A

ΛIR
CC = c(m4

b − m4

f ) " c(m2

b + m2

f)g
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sF
2

s

ΛIR
CC = c̃ ε(4π)2f 4

" c̃ εΛ2

IRf 2

1

1 A

ΛIR
CC = c(m4

b − m4

f ) " c(m2

b + m2

f)g
2

sF
2

s

ΛIR
CC = c̃ ε(4π)2f 4

" c̃ εΛ2

IRf 2
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(perturbative) Example: bulk mass

1 A

S = −
∫

y=y0

dx4√g0Λ0 −
∫

√
g

(

1

2κ2
R + Λ(5)

)

−
∫

y=y0

dx4√g1Λ1

a0 ∼
16π2

∆

∆ !
Λ

md

m2
d $ Λ2

φ

φ|y=y0

λUV

L = LCFT + λO

V (φ) = Λ(5)

V ′(φ) = dV/dφ

β(λ) = dλ/d logµ

(∂φ)|y=y0
= 0

V (φ) = Λ(5) + m2φ2

dO = 2 +
√

4 + m2/k2 % 4+

1

1 A

S = −
∫

y=y0

dx4√g0Λ0 −
∫

√
g

(

1

2κ2
R + Λ(5)

)

−
∫

y=y0

dx4√g1Λ1

a0 ∼
16π2

∆

∆ !
Λ

md

m2
d $ Λ2

φ

φ|y=y0

λUV

L = LCFT + λO

V (φ) = Λ(5)

V ′(φ) = dV/dφ

β(λ) = dλ/d logµ

(∂φ)|y=y0
= 0

V (φ) = Λ(5) + m2φ2

dO = 2 +
√

4 + m2/k2

1

 Scaling dimension of operator

 Background scalar solution of E.O.M.

running condensate

1 A

S = −
∫

y=y0

dx4√g0Λ0 −
∫

√
g

(

1

2κ2
R + Λ(5)

)

−
∫

y=y0

dx4√g1Λ1

a0 ∼
16π2

∆

∆ !
Λ

md

m2
d $ Λ2

φ

φ|y=y0

λUV

L = LCFT + λO

V (φ) = Λ(5)

V ′(φ) = dV/dφ

β(λ) = dλ/d logµ

(∂φ)|y=y0
= 0

V (φ) = Λ(5) + m2φ2

dO = 2 +
√

4 + m2/k2

φ(y) = φ0e
−ky(4−dO) + φ1e

−kydO

{

1

1 A

µ0

dλ

d log µ
≡ β(λ) = (4 − dO)λ

φ0 = λUV

φ1 =
〈O〉

1

1
A S=

−∫

y=
y 0

dx
4√ g 0Λ

0−
∫

√ g(

1 2κ
2R+

Λ (5
))

−∫

y=
y 0

dx
4√ g 1Λ

1

a 0
∼16π

2

∆

∆
!

Λ m d

m2 d
$

Λ2

φ φ| y=
y 0

λ U
V

L=
L C

FT
+λ

O

V(
φ)

=
Λ (5

)

V′ (φ)
=

dV
/d

φ

β(
λ)

=
dλ

/d
log

µ

(∂φ
)| y=

y 0
=

0

V(
φ)

=
Λ (5

)+
m2 φ2

d O
=

2+
√

4+
m2 /k

2

φ(y
)=

φ 0e
−

ky
(4−

d O
) +〈

O〉e
−

ky
d O

{ 1

1
A S=

−∫

y=
y 0

dx
4√ g 0Λ

0−
∫

√ g(

1 2κ
2R+

Λ (5
))

−∫

y=
y 0

dx
4√ g 1Λ

1

a 0
∼16π

2

∆

∆
!

Λ m d

m2 d
$

Λ2

φ φ| y=
y 0

λ U
V

L=
L C

FT
+λ

O

V(
φ)

=
Λ (5

)

V′ (φ)
=

dV
/d

φ

β(
λ)

=
dλ

/d
log

µ

(∂φ
)| y=

y 0
=

0

V(
φ)

=
Λ (5

)+
m2 φ2

d O
=

2+
√

4+
m2 /k

2

φ(y
)=

φ 0e
−

ky
(4−

d O
) +〈

O〉e
−

ky
d O

{ 1

1 A

φ0 = lim
ΛUV →∞

Λ
4−dO
UV

λUV

1

1 A

φ1 =
〈O〉

2dO − 4

1
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