A naturally light \& bent dilaton

Javi Serra

MANCHESTER 1824

The University of Manchester
with B.Bellazzini, C.Csaki, J.Hubisz, J.Terning arXiv:1305-3919 arXiv:14xx.xxxx

SUSY 2014
Manchester
July 22, 2014

DILATON = Goldstone Boson of Spontaneous Breaking of Scale Invariance

$$
\mathcal{L}=\left(\partial \Phi^{\dagger}\right)(\partial \Phi)+m^{2} \Phi^{\dagger} \Phi-\lambda\left(\Phi^{\dagger} \Phi\right)^{2}
$$

Spontaneous internal Symmetry Breaking: G -> H
(approximately) Massless Goldstone mode appear = phase

$$
\begin{gathered}
\Phi=e^{i \xi}(\langle\Phi\rangle+\sigma) \\
V(\xi)=0
\end{gathered}
$$

DILATON = Goldstone Boson of Spontaneous Breaking of Scale Invariance

$$
\mathcal{L}=\left(\partial \Phi^{\dagger}\right)(\partial \Phi)+m^{2} \Phi^{\dagger} \Phi-\lambda\left(\Phi^{\dagger} \Phi\right)^{2}
$$

Spontaneous space-time Symmetry Breaking: G -> H
The dilaton behaves more like the Amplitude mode

$$
\begin{gathered}
\Phi=e^{i \xi}(\langle\Phi\rangle \sigma \sigma) \\
V(\sigma) \neq 0
\end{gathered}
$$

Scale (conformal) invariant sector

$$
\begin{gathered}
x \rightarrow e^{\alpha} x, \Phi(x) \rightarrow e^{d_{\Phi} \alpha} \Phi\left(e^{\alpha} x\right) \\
S_{C F T}=\int d^{4} x \sum_{i} \mathcal{O}_{i}, \quad d_{i}=4
\end{gathered}
$$

-d>4: Irrelevant invariant terms are unimportant at low energies.
-d < 4: No large relevant invariant terms can be present.

Scale (conformal) invariant sector

$$
\begin{gathered}
x \rightarrow e^{\alpha} x, \Phi(x) \rightarrow e^{d_{\Phi} \alpha} \Phi\left(e^{\alpha} x\right) \\
S_{C F T}=\int d^{4} x \sum_{i} \mathcal{O}_{i}, \quad d_{i}=4
\end{gathered}
$$

-d>4: Irrelevant invariant terms are unimportant at low energies.
-d < 4: No large relevant invariant terms can be present.

Spontaneous breaking of scale invariance

$$
\begin{aligned}
& \langle\Phi(x)\rangle=f^{d_{\Phi}} \quad \mathrm{SO}(4,2) / \mathrm{SO}(3,1) \\
& \quad \sigma(x) \rightarrow \sigma\left(e^{\alpha} x\right)+\alpha f \quad \chi \equiv f e^{\sigma / f} \rightarrow e^{\alpha} \chi
\end{aligned}
$$

Effective theory of CFT spontaneous breaking

$$
\mathcal{L}_{e f f}=\frac{1}{2}(\partial \chi)^{2}-a_{0} \chi^{4}+\cdots
$$

Quartic potential allowed

Is there really a light scalar when scale symmetry spontaneously breaks?

$\langle\chi\rangle \rightarrow 0$
CFT/AdS4
runaway

$\langle\chi\rangle=f=?$
CFT/Poincare4
flat direction

CFT/dS4
runaway

Fubini '76

$$
\mathcal{L}_{e f f}=\frac{1}{2}(\partial \chi)^{2}-a_{0} \chi^{4}+\cdots
$$

Quartic potential allowed

Is there really a light scalar when scale symmetry spontaneously breaks?

CFT/dS4
runaway

Fubini '76
TUNING

$$
\left\langle a_{0} \chi^{4}\right\rangle=a_{0} f^{4} \sim(4 \pi f)^{2} f^{2} \text { vacuum energy }
$$

$$
\mathcal{L}_{e f f}=\frac{1}{2}(\partial \chi)^{2}-a_{0} \chi^{4}+\cdots
$$

Quartic potential allowed

Is there really a light scalar when scale symmetry spontaneously breaks?

Fubini '76

$$
\left\langle a_{0} \chi^{4}\right\rangle=a_{0} f^{4} \sim(4 \pi f)^{2} f^{2} \text { vacuum energy }
$$

We need a perturbation, aka explicit breaking

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{C F T}+\lambda \mathcal{O} \quad[\mathcal{O}]=4-\beta / \lambda \quad \frac{d \lambda(\mu)}{d \log \mu}=\frac{\beta(\lambda)}{\lambda} \neq 0 \\
\downarrow \text { spurion: } \mu \rightarrow \chi \\
V(\chi)=\chi^{4} F(\lambda(\chi)) \\
F(\lambda(\chi))=a_{0}+\sum_{n} a_{n} \lambda^{n}(\chi)
\end{gathered}
$$

Quartic gets dependence on running coupling.

The dilaton effectively scans the landscape of quartics.

Effective theory of CFT spontaneous breaking

Minimum and dilaton mass

$$
\begin{gathered}
\langle\chi\rangle=f \\
V^{\prime}=f^{3}\left[4 F(\lambda(f))+\beta F^{\prime}(\lambda(f))\right]=0 \\
m_{d}^{2} \simeq 4 f^{2} \beta F^{\prime}(\lambda(f))=-16 f^{2} F(\lambda(f))=-16 V(f) / f^{2}
\end{gathered}
$$

i) Dilaton mass prop. to explicit breaking at condensate scale, $\beta=\beta(\lambda(f))$
ii) Potential at minimum, aka vacuum energy, also prop. to explicit breaking iii) Hierarchy between UV and IR scales fixed by dimensional transmutation, dependent on the explicit breaking along the whole running

Effective theory of CFT spontaneous breaking

Minimum and dilaton mass

$$
\begin{gathered}
\langle\chi\rangle=f \\
V^{\prime}=f^{3}\left[4 F(\lambda(f))+\beta F^{\prime}(\lambda(f))\right]=0 \\
m_{d}^{2} \simeq 4 f^{2} \beta F^{\prime}(\lambda(f))=-16 f^{2} F(\lambda(f))=-16 V(f) / f^{2}
\end{gathered}
$$

i) Dilaton mass prop. to explicit breaking at condensate scale, $\beta=\beta(\lambda(f))$
ii) Potential at minimum, aka vacuum energy, also prop. to explicit breaking
iii) Hierarchy between UV and IR scales fixed by dimensional transmutation, dependent on the explicit breaking along the whole running

Dynamical (theory space) requirement

$$
\beta(\lambda)=\epsilon b(\lambda), \quad \epsilon \ll 1, \quad b(\lambda)=O(1)
$$

Large hierarchy, light dilaton, small cosmological constant

An Extra-D Computable Example

Contino, Pomarol, Rattazzi, ‘10
Bellazzini, Csaki, Hubisz, Terning, JS, '13
Coradeschi, Lodone, Pappadopulo, Rattazzi, Vitale, '13
Megias, Pujolas '14

Randall \& Sundrum setup

Randall, Sundrum '99

μ
$e^{-k y_{0}}$
$\Lambda_{U V}$
$e^{-k y_{1}}$
χ
radion
dilaton
The brane separation - hierarchy of scales, is fixed by $\langle\chi\rangle=f$.

Adding explicit breaking perturbation in AdS/CFT

$$
\begin{aligned}
& \mathbf{A d S}_{5} \longmapsto \mathrm{CFT}_{4} \\
& \phi \longmapsto \mathcal{O} \\
& V^{\prime}(\phi)=d V / d \phi \longmapsto \beta(\lambda) \\
& V(\phi)=\Lambda_{(5)} \\
& \text { exa } \\
&\left.(\partial \phi)\right|_{y=y_{0}}=\left.0 \quad \phi\right|_{y=y_{0}} \longmapsto \lambda_{U V}
\end{aligned}
$$

4D gravity is readily included $g_{M N} \longleftrightarrow$ graviton + dilaton

4D effective Lagrangian

$$
\mathcal{L}=\sqrt{g}\left[\mathcal{L}_{C F T}+\lambda \mathcal{O}+M_{P}^{2} R\right]
$$

Generalized Randall-Sundrum

The general \& stabilized \& bent RS

Bellazzini, Csaki, Hubisz, Terning, JS, '13

$$
\begin{aligned}
S=\int d^{5} x \sqrt{g}\left(-\frac{1}{2 \kappa^{2}} \mathcal{R}+\frac{1}{2} g^{M N} \partial_{M} \phi \partial_{N} \phi-V(\phi)\right)-\int d^{4} x \sqrt{g_{0}} V_{0}(\phi)-\int d^{4} x \sqrt{g_{1}} V_{1}(\phi) \\
d s^{2}=e^{-2 A(y)}\left[d t^{2} e^{2 H t} d \vec{x}^{2}\right]-d y^{2} \\
\text { UV brane }
\end{aligned}
$$

We solve for the scalar \& the warp factor profiles \& Hubble
bulk E.O.M.'s

$$
\begin{aligned}
A^{\prime 2}+H^{2} e^{2 A} & =\frac{\kappa^{2} \phi^{\prime 2}}{12}-\frac{\kappa^{2}}{6} V(\phi) \\
\phi^{\prime \prime} & =4 A^{\prime} \phi^{\prime}+\frac{\partial V}{\partial \phi}
\end{aligned}
$$

$$
\begin{aligned}
\left.2 A^{\prime}\right|_{y=y_{0}, y_{1}} & = \pm\left.\frac{\kappa^{2}}{3} V_{0,1}(\phi)\right|_{y=y_{0}, y_{1}} \\
\left.2 \phi^{\prime}\right|_{y=y_{0}, y_{1}} & = \pm\left.\frac{\partial V_{0,1}}{\partial \phi}\right|_{y=y_{0}, y_{1}},
\end{aligned}
$$

General 4D effective potential

$$
\begin{gathered}
V_{e f f}=V_{I R}+V_{R} \\
V_{I R}=e^{-4 A\left(y_{1}\right)}\left[V_{1}\left(\phi\left(y_{1}\right)\right) \mp \frac{6}{\kappa^{2}} A^{\prime}\left(y_{1}\right)\right] \\
V_{R}=-3 H^{2}\left(y_{0}, y_{1}\right) M_{P l}^{2}\left(y_{0}, y_{1}\right) \quad M_{P l}^{2}=\frac{2}{\kappa^{2}} \int_{y_{0}}^{y_{1}} d y e^{-2 A(y)}
\end{gathered}
$$

Modified quartic dilaton potential from two sources of explicit breaking
running UV perturbation

$$
V_{\lambda}=\chi^{4} F_{\lambda}(\lambda(\chi)) \quad V_{H}=\chi^{4} F_{H}(H(\chi))
$$

$$
V(\phi)=\Lambda_{(5)}+m^{2} \phi^{2}
$$

$$
\begin{aligned}
m^{2}=-2 \epsilon k^{2} \quad & \epsilon \ll 1 \quad d_{\mathcal{O}} \approx 4-\epsilon \\
& \downarrow \text { expansion in back-reaction }
\end{aligned}
$$

$$
\begin{gathered}
F_{\lambda}(\chi) \simeq\left(\Lambda_{1}-\frac{\Lambda_{(5)}}{k}\right)+\left[\lambda_{I R}-\lambda_{U V}\left(\frac{\Lambda_{U V}}{\chi}\right)^{\epsilon}\right]^{2} \\
F_{H}(\chi) \simeq\left(\Lambda_{0}+\frac{\Lambda_{(5)}}{k}\right) \frac{\Lambda_{U V}^{2}}{\chi^{2}}\left(1+\frac{\Lambda_{U V}^{2}}{\chi^{2}}\right)
\end{gathered}
$$

$$
\begin{gathered}
V(\phi)=\Lambda_{(5)}+m^{2} \phi^{2} \\
m^{2}=-2 \epsilon k^{2} \quad \epsilon \ll 1 \quad d_{\mathcal{O}} \approx 4-\epsilon \\
F_{\lambda}(\chi) \simeq\left(\Lambda_{1}-\frac{\Lambda_{(5)}}{k}\right)+\left[\lambda_{I R}-\lambda_{U V}\left(\frac{\Lambda_{U V}}{\chi}\right)\right] \\
F_{H}(\chi) \simeq\left(\Lambda_{0}+\frac{\Lambda_{(5)}}{k}\right): \frac{\Lambda_{U V}^{2}}{\chi^{2}}\left(1+\frac{\Lambda_{U V}^{2}}{\chi^{2}}\right) \quad \beta / \lambda
\end{gathered}
$$

$$
\begin{gathered}
V(\phi)=\Lambda_{(5)}+m^{2} \phi^{2} \\
m^{2}=-2 \epsilon k^{2} \quad \epsilon \ll 1 \quad d_{\mathcal{O}} \approx 4-\epsilon \\
F_{\lambda}(\chi) \simeq\left(\Lambda_{1}-\frac{\Lambda_{(5)}}{k}\right)+\left[\lambda_{I R}-\lambda_{U V}\left(\frac{\Lambda_{U V}}{\chi}\right)\right] \\
F_{H}(\chi) \simeq\left(\Lambda_{0}+\frac{\Lambda_{(5)}}{k}\right): \frac{\Lambda_{U V}^{2}}{\chi^{2}}\left(1+\frac{\Lambda_{U V}^{2}}{\chi^{2}}\right) \quad \beta / \lambda \\
----H_{U V}^{2} / \Lambda_{U V}^{2}
\end{gathered}
$$

And eliminating cut-off effects (UV cosmological constant tuning) $H_{U V}=0$,

$$
V_{\lambda} \simeq \chi^{4}\left\{\Lambda_{1}-\frac{\Lambda_{(5)}}{k} \cosh \left[\lambda_{I R}-\lambda_{U V}\left(\Lambda_{U V} / \chi\right)^{\epsilon}\right]\right\}
$$

The large hierarchy

$\langle\chi\rangle=f$

$$
\frac{f}{\Lambda_{U V}}=\left(\frac{\lambda_{U V}}{\lambda_{I R}-\operatorname{sign}(\epsilon) \operatorname{arcsech}\left(\Lambda_{(5)} / k \Lambda_{1}\right)}\right)^{1 / \epsilon}
$$

Because of slow running for a long time.

The light dilaton

$$
\begin{aligned}
& \begin{array}{lll}
3 . \times 10^{-53} \\
2 . \times 10^{-53} & \epsilon=0.1
\end{array} \\
& m_{\chi}^{2} \sim \epsilon 48 \lambda_{U V} \tanh \left[\frac{1}{2}\left(\lambda_{I R}-\lambda_{U V}\left(\Lambda_{U V} / f\right)^{\epsilon}\right)\right]\left(\Lambda_{U V} / f\right)^{\epsilon} f^{2}
\end{aligned}
$$

Because of slow running at the minimum.

The small cosmological constant

$V_{I R}^{\min }=-\epsilon 3 \lambda_{U V} \tanh \left[\frac{1}{2}\left(\lambda_{I R}-\lambda_{U V}\left(\Lambda_{U V} / f\right)^{\epsilon}\right)\right]\left(\Lambda_{U V} / f\right)^{\epsilon} f^{4}$
Because of slow running at the minimum.

Approximate Spontaneous Breaking of Scale Invariance offers a natural way to obtain a light scalar, the Dilaton,

$$
\beta(\lambda)=\epsilon b(\lambda), \quad \epsilon \ll 1, \quad b(\lambda)=O(1)
$$

and to suppress the spontaneously generated Vacuum energy.

> Is this possibility realized in Nature?
> Inflaton as Dilaton arxiv:1406.5192
> Higgs as Dilaton arriv:1209.3299 Dilaton in Phase Transitions arxiv:14xx.xxxxx

We just have to wait and see

Thank you for your attention

1) Small cosmological constant \& light dilaton signal the approximate scale invariance at the IR scale:

$$
V^{\prime}(\phi)=d V / d \phi \quad \longleftrightarrow \beta(\lambda)=d \lambda / d \log \mu
$$

Change the bulk potential, change the running.
Chacko, Mishra, Stolarski '13

1) Small cosmological constant \& light dilaton signal the approximate scale invariance at the IR scale:

$$
V^{\prime}(\phi)=d V / d \phi \quad \longleftrightarrow \beta(\lambda)=d \lambda / d \log \mu
$$

Change the bulk potential, change the running.
Chacko, Mishra, Stolarski '13
2) The suppression is parametrically better than in SUSY:

SUSY

$\Lambda_{C C}^{I R}=c\left(m_{b}^{4}-m_{f}^{4}\right) \simeq c\left(m_{b}^{2}+m_{f}^{2}\right) g_{s}^{2} F_{s}^{2}$

CFT

$$
\Lambda_{C C}^{I R}=\tilde{c} \in(4 \pi)^{2} f^{4} \simeq \tilde{c} \in \Lambda_{I R}^{2} f^{2}
$$

1) Small cosmological constant \& light dilaton signal the approximate scale invariance at the IR scale:

$$
V^{\prime}(\phi)=d V / d \phi \quad \longleftrightarrow \beta(\lambda)=d \lambda / d \log \mu
$$

Change the bulk potential, change the running.
Chacko, Mishra, Stolarski '13
2) The suppression is parametrically better than in SUSY:

SUSY

$$
\Lambda_{C C}^{I R}=c\left(m_{b}^{4}-m_{f}^{4}\right) \simeq c\left(m_{b}^{2}+m_{f}^{2}\right) g_{s}^{2} F_{s}^{2}
$$

$$
\Lambda_{C C}^{I R}=\tilde{c} \epsilon(4 \pi)^{2} f^{4} \simeq \tilde{c} \in \Lambda_{I R}^{2} f^{2}
$$

3) Our result is consistent with Weinberg's no-go theorem:
$\epsilon=0$ can remove the $C C$, but $\epsilon \neq 0$ is required for a unique vacuum
A very light state must be in the spectrum.

Comments on the Cosmological Constant

1) Small cosmological constant \& light dilaton signal the approximate scale invariance at the IR scale:

$$
V^{\prime}(\phi)=d V / d \phi \quad \longleftrightarrow \beta(\lambda)=d \lambda / d \log \mu
$$

Change the bulk potential, change the running.
Chacko, Mishra, Stolarski '13
2) The suppression is parametrically better than in SUSY:

SUSY

$$
\Lambda_{C C}^{I R}=c\left(m_{b}^{4}-m_{f}^{4}\right) \simeq c\left(m_{b}^{2}+m_{f}^{2}\right) g_{s}^{2} F_{s}^{2}
$$

$$
\Lambda_{C C}^{I R}=\tilde{c} \epsilon(4 \pi)^{2} f^{4} \simeq \tilde{c} \in \Lambda_{I R}^{2} f^{2}
$$

3) Our result is consistent with Weinberg's no-go theorem:
$\epsilon=0$ can remove the $C C$, but $\epsilon \neq 0$ is required for a unique vacuum
A very light state must be in the spectrum.
4) UV contribution to the cosmological constant must be tuned away.

(perturbative) Example: bulk mass

$$
V(\phi)=\Lambda_{(5)}+m^{2} \phi^{2}
$$

Scaling dimension of operator

$$
d_{\mathcal{O}}=2+\sqrt{4+m^{2} / k^{2}}
$$

Background scalar solution of E.O.M.

$$
\begin{aligned}
& \phi(y)=\underbrace{\phi_{0} e^{-k y\left(4-d_{\mathcal{O}}\right)}}_{\text {running }}+\underbrace{\phi_{1} e^{-k y d_{\mathcal{O}}}}_{\text {condensate }} \\
& \phi_{0}=\lim _{\Lambda_{U V \rightarrow \infty}} \Lambda_{U V}^{4-d_{\mathcal{O}}} \lambda_{U V} \\
& \frac{d \lambda}{d \log \mu} \equiv \beta(\lambda)=\left(4-d_{\mathcal{O}}\right) \lambda
\end{aligned}
$$

