Searches for Dark Matter Production with Mono-objects and MET in ATLAS

David Šálek

(Nikhef / University of Amsterdam)

on behalf of the **ATLAS Collaboration**

SUSY 2104 Conference Manchester 21 - 26 July 2014

Dark Matter searches

- Experimental evidence for Dark Matter
 - DM accounts for 24% of matter-energy content of the Universe (WMAP/Planck).
 - Galactic rotation curves
 - Bullet Cluster
 - • •
- Direct and indirect DM detection
 - model assumptions
 - kinematic limitations
- DM production at the LHC
 - independent of astrophysical assumptions
 - sensitive to light DM particles

DM production at the LHC

DM production at the LHC

mono-X searches

Effective Field Theory

- simple benchmark models
 - couplings to quarks and gluons
 - couplings to vector bosons
- only two free parameters: m_X, suppression scale M*
- validity concerns at the LHC energies

Simplified models

- UV-complete
- s-channel or t-channel
- parameters: m_X, i liator mass and width, couplings
- Higgs-portal DM

Name	Initial state	Туре	Operator
D1	qq	scalar	$rac{m_q}{M_\star^3}ar{\chi}\chiar{q}q$
D5	qq	vector	$rac{1}{M_{\star}^2}ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$
D8	qq	axial-vector	$rac{1}{M_{\star}^2}ar{\chi}\gamma^{\mu}\gamma^5\chiar{q}\gamma_{\mu}\gamma^5q$
D9	qq	tensor	$rac{1}{M_{\star}^2}ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$
D11	<i>99</i>	scalar	$rac{1}{4M_{\star}^3}ar{\chi}\chilpha_s(G^a_{\mu u})^2$

mono-jet

8 TeV 10.5 fb⁻¹

ATLAS-CONF-2012-147

Event selection

- central jet $|\eta| < 2.0$
- electron veto (pT > 20 GeV)
- muon veto (pT > 7 GeV)
- at most two jets (pT > 30 GeV)
- Δφ(jet, MET)>0.5
- signal region (SR) defined by symmetric cuts on the leading jet pT and MET > 120, 220, 350, 500 GeV

Dominant backgrounds

- ZVV from Zll and WlV control region (CR)
- Wlv from Wlv CR

Uncertainties

- limited CR statistics
- uncertainty 3.4 to 17%

mono-jet

ATLAS-CONF-2012-147

• Limits on the suppression scale of the EFT operators are set assuming full EFT validity.

ATL-PHYS-PUB-2014-007

- Simplified models with Z'-like mediators reveal that
 - EFT limits are conservative in the resonant region.
 - EFT limits are not valid for light mediators.

EFT validity

mono-Z(ll)

8 TeV 20.3 fb⁻¹

Event selection

- two opposite sign leptons,
 67 < mll < 106 GeV
- 3rd lepton veto (pT > 7 GeV)
- |MET pT*ll* / pT*ll* < 0.5
- $\Delta \phi(\text{pT}\ell\ell, \text{MET}) < 2.5$
- $\Delta |\eta \ell \ell| < 2.5$
- jet veto (pT > 25 GeV)
- SR defined by MET > 150, 250, 350, 450 GeV

Uncertainties

 35% theory uncertainty on background

Dominant backgrounds

 ZZ→ℓℓ∨∨ taken from MC (validated in ZZ→ℓℓℓℓ CR)

arXiv:1404.0051 (accepted by PRD)

- WZ->lvll taken from MC
- WW and top from eµ CR

- dimension-5 operators
 - not as sensitive as other mono-X channels

- dimension-7 operators
 - unique sensitivity to
 ZZχχ and γ*Zχχ coupling

mono-Z(ll)

- Simplified model: t-channel with a scalar coloured mediator η
- Upper limits on the coupling strength in the m_χ-m_η plane

ZH(→invisible)

7 TeV 4.5 fb⁻¹ 8 TeV 20.3 fb⁻¹

Event selection

- two opposite sign leptons,
 67 < mll < 106 GeV
- 3rd lepton veto (pT > 7 GeV)
- |MET pT*ll* / pT*ll* < 0.2
- $\Delta \phi$ (MET, pTmiss) < 0.2
- $\Delta \varphi \ell \ell < 1.7$
- Δφ(Z, MET) > 2.6
- jet veto (pT > 25 GeV)
- MET > 90 GeV

ZH(→invisible)

- $BR(H \rightarrow inv) = 75\%$ observed (63% expected)
- Higgs portal Dark Matter interpretation
 - scalar, vector and fermion DM
 - sensitive to DM with $m_{\chi} < m_{H}/2$

mono-W/Z(qq)

8 TeV 20.3 fb⁻¹

PRL 112, 041802 (2014)

Event selection

- large R=1.2 Cambridge-Aachen jet $pT > 250 \text{ GeV}, |\eta| < 1.2,$ $50 < m < 120 \text{ GeV}, \sqrt{y} > 0.4$
- at most one extra light jet $pT > 40 \text{ GeV}, |\eta| < 4.5$ away from the fat jet (dR > 0.9) and MET (d ϕ > 0.4)
- lepton and photon veto (pT > 10 GeV)
- SR defined by MET > 350, 500 GeV
- Dominant backgrounds
 - Zvv+jets,W/Z from CR (inverted muon veto)

Uncertainties

- limited CR statistics
- MC theory uncertainties
- C-A jet energy scale/resolution
- total uncertainty 7-13%

mono-W/Z(qq)

- Sensitive to the sign of the DM couplings to up and down quarks.
 - C(u) = C(d) destructive interference
 - C(u) = -C(d) constructive interference

Order of magnitude improvement on the WIMP-nucleon cross section limits.

• $M^* > \sim 2 \text{ TeV}$ for D5 constructive mode.

• $\sigma(H \rightarrow inv) / \sigma_{total} = 1.2$ observed (2.2 expected)

mono- $W(\ell v)$

8 TeV 20.3 fb⁻¹

ATLAS-CONF-2014-017

Event selection

- one isolated lepton
 - electron: pT, MET>125 GeV
 - muon: pT, MET>45 GeV
- SR defined by cuts on $m_T(\ell, MET)$

mono-jet prospects @ 14 TeV

ATL-PHYS-PUB-2014-007

Event selection

- leading jet pT > 300 GeV
- Δφ(jet, MET) > 0.5
- electron and muon veto
- at most two jets
 - pT > 30 GeV @ 8 TeV
 - pT > 50 GeV @ I4 TeV
- SR defined by MET > 400, 600, 800 GeV

Backgrounds

• pure MC study

Systematic uncertainties

- 5% reasonable expectation for early Run-II
- 1% ultimate goal for HL-LHC

mono-jet prospects @ 14 TeV

- Already first data from Run-II will bring improvements in sensitivity to DM.
 - Exclusion limits can be improved by factor of 2 with first few fb⁻¹.
 - 5σ discovery potential for M* ~ 1.7 TeV with 300 fb⁻¹.

Summary

- ATLAS has probed various mono-X + MET final states in order to search for Dark Matter.
- Good agreement between data and Standard Model expectations are observed in all cases.
- Limits are set using Effective Field Theories and Simplified Models.
- Preliminary projections of DM @ 14 TeV in the mono-jet final states suggest the first data from Run-II will significantly increase sensitivity.

extra material

mono-photon

7 TeV 4.6 fb⁻¹

PRL 110, 011802 (2013)

Event selection

- photon pT > 150 GeV
- at most I jet (pT > 30 GeV)
- MET > 150 GeV

Dominant backgrounds

• $Zvv+\gamma$ and $W\ell v+\gamma$ from CR

Uncertainties

- photon/jet energy scale, MET
- showering and hadronization
- statistics in CR
- total uncertainty 15%

mono-jet

