SUSY 2014 – Manchester, England (UK) 21 - 26 July 2014

Precision tests of the Standard Model with kaon decays at CERN

M. Piccini CERN & INFN - sezione di Perugia On behalf of the NA62 collaboration

INFN

AA62

Introduction

- Higgs found! Great success of the Standard Model!

- (Still) No evidence of new particles

the Standard Model may be a self-consistent weakly coupled effective field theory up to very high scales without adding new particles up to the Plank mass scale (!).

Is this the end of the story? No!

- Experimental "evidence" of new physics

Neutrino oscillations: tiny masses and flavour mixing

Baryon asymmetry of the universe: CKM is not enough to explain all the CP violation; **Dark matter;**

Dark Energy;

- Theoretical "evidence" of new physics

SM flavour structure; Hierarchy problem; Strong CP problem;

precision tests of SM \rightarrow direct and **indirect** search of new physics

Kaons at CERN - SPS

Kaons:

- Theoretical cleanliness unmatched
- The SM at E~M_K is remarkably **simple** (at least the EW part)
- Breaks of many symmetries: C, P, CP, flavour
- Extreme hard-GIM SM-suppressed FCNC decays

- Simple event topologies gives clean experimental signature
- Few decay channels
- Availability of **high intensity beams**

SPS proton beam @400 GeV/c, 1.1×10^{12} protons on beryllium target.

75 GeV/c (\pm 1%) hadron beam (6% kaons).

~750 MHz on beam spectrometer, ~10 MHz kaon decays on main detectors downstream.

60 m decay volume.

Key factors:

Reconstruction and identification of particles on both initial and final states (redundancy)

• SUSY 2014 – Manchester – England (UK)

• Kinematics rejection factor:

 $5x10^3 \text{ K}^+ \rightarrow \pi^+ \pi^0$, $1.5x10^4 \text{ K}^+ \rightarrow 75 \text{ GeV/c}$

- **Photon veto:** 10^8 on $\pi^0 \rightarrow \gamma\gamma$ (LAV, LKR, SAC, IRC).
- **Muon ID**: 10⁷ (RICH, MUV).

Goal: 10% acceptance on signal O(100) events of $K^+ \rightarrow \pi v \overline{v}$ in 2 years

LFNV in kaon decays

Process	Violates	90% C.L. limit	Experiment	Year
K⁺→π⁺μ⁺e⁻	LF	< 1.3 x 10 ⁻¹¹		2005
K⁺→π⁺μ⁻e⁺	LF	< 5.2 x 10 ⁻¹⁰	E945	2000
$K^+ \rightarrow \pi^- \mu^+ e^+$	LF , LN	< 5.0 x 10 ⁻¹⁰	LOOJ	2000
$K^+ \rightarrow \pi^- e^+ e^+$	LN	< 6.4 x 10 ⁻¹⁰		2000
$K^+ \!\!\!\! \rightarrow \!\!\!\! \pi^{\!-} \!\!\! \mu^+ \!\!\!\! \mu^+$	LN	< 1.1 x 10 ⁻⁹	NA48/2	2011
$K^+ \rightarrow \mu^- \nu e^+ e^+$	LN	< 2.0 x 10 ⁻⁸	Geneva-Saclay	1976
$\pi^0 \rightarrow \mu^- e^+$	LF	< 3.4 x 10 ⁻⁹		2000
π ⁰ →μ ⁺ e ⁻	LF	< 3.8 x 10 ⁻¹⁰	KTEV	2000
$\pi^+ \rightarrow \mu^- e^+ e^+ \nu$	LF	<1.6x10 ⁻⁶	JINR-SPEC	1991
$\overline{d} \xrightarrow{s \to d\mu e}_{\text{e.g. } K_L \to \mu^+ e^-} \mu^+ \qquad \frac{\text{Example:}}{\text{(dimension)}} $ $g_X \xrightarrow{g_X} g_X \xrightarrow{g_X} e^- \qquad \frac{\Gamma_{LFV}}{\Gamma_{LFC}} \sim 1$			• NA62 will collect: decays and ~ 2.5x1 in two years of data • Single event sensiti for K ⁺ , ~10 ⁻¹¹ for π^{0}	$\sim 10^{13}$ K $0^{12} \pi^0$ decays taking vity: $\sim 10^{-12}$

SUSY 2014 – Manchester - England (UK)

NA62

- LFV possible at tree level;
- |ΔL|=2 transition mediated by Majorana neutrino;
- Unique opportunity to study neutrino-less double beta decay in second generation;
- For some LFV SM extension the foreseen rate is close to the present experimental limit

[Phys. Lett. B 491 (2000) 285]

Upper limit before NA48/2 (E867): Br(K⁺ $\rightarrow \pi^{-}\mu^{+}\mu^{+}) < 3.0 \times 10^{-9}$ (90%C.L.) [*Phys. Rev. Lett. 85 (2000) 2877*]

$K^+ \rightarrow \pi^- \mu^+ \mu^+ \text{ in NA48/2}$

- Three tracks trigger based on charged hodoscope;
- Signal $(K^+ \rightarrow \pi^- \mu^+ \mu^+)$ and normalization $(K^+ \rightarrow \pi^+ \pi^+ \pi^-)$ selected concurrently with similar cuts to equalize the acceptance;
- Kinematical cuts studied on right sign $(K^+ \rightarrow \pi^+ \mu^+ \mu^-)$ analysis
- 52 candidates in signal region with respect to an expected background of 52.6±19.8

BR ($K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$) < 1.1×10⁻⁹ @ 90% CL [*Phys. Lett. B* 697(2011)107]

$K^+ \rightarrow \pi^- \mu^+ \mu^+ \text{ in NA62}$

- In NA48/2 the main background was due to π→µν decay in flight in the spectrometer;
- The mass resolution on πµµ was 2.6 MeV/c²;
- In NA62 negligible background is expected in the signal region, defined by a smaller invariant mass resolution (1.1 MeV/c²);
- A factor of x100 or x1000 improvement could be achieved in NA62.

NA62

R_K in the SM

The ratio of kaon leptonic modes is extremely well predicted in the SM

- Helicity suppression;
- Hadronic uncertainties cancel in R_K ratio;
- Radiative correction are included in the RK definition and well computed in SM;

$$R_{K} = \frac{\Gamma(K^{+} \to e^{+}\nu)}{\Gamma(K^{+} \to \mu^{+}\nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} \left(1 + \delta R_{K}^{rad.corr.}\right)$$

 $R_{K} = (2.477 \pm 0.001) \times 10^{-5}$ [V.Cirigliano, I.Rosell, Phys. Rev. Lett. 99 (2007) 231801]

A precise measurement of R_K is a stringent test of the SM!

NA6

w⁺

S

u

R_K beyond the SM

In several SM extensions the presence of LFV terms enhance the decay rate with sizeable effect:

$$R_{K}^{\ LFV} = \frac{\Gamma_{SM}(K \to e\nu_{e}) + \Gamma_{LFV}(K \to e\nu_{\tau})}{\Gamma_{SM}(K \to \mu\nu_{\mu})}$$

In model with 2 Higgs doublets (e.g. 2HDM-II MSSM) and LFV sources, for large tanβ contribution at the level of % is expected (one loop level):

$$R_{K}^{LFV} \approx R_{K}^{SM} \left[1 + \left(\frac{m_{K}^{4}}{m_{H^{\pm}}^{4}} \right) \left(\frac{m_{\tau}^{2}}{m_{e}^{2}} \right) |\Delta_{13}|^{2} tan^{6} \beta \right]$$

[Masiero et al., PRD 74 (2006) 011701] [Masiero et al., JHEP 0811 (2008) 042] [Girrbach, Nierste, arXiv:1202.4906]

U

K_{e2} and $k_{\mu 2}$ selection

- $K \rightarrow \mu \nu (\mathbf{K}_{\mu 2})$ and $K \rightarrow e \nu (\mathbf{K}_{e 2})$ are collected simultaneously:
 - 1 track in the spectrometer and in the acceptance of the electromagnetic calorimeter and muon counter;
 - **Decay vertex** well reconstructed in the decay region;
 - Forward **photon veto** using the electromagnetic calorimeter;
 - Track momentum: 13<p<65 GeV/c.
- $K_{\mu 2}$ and K_{e2} are separated by:
 - Different E/p:
 - ✓ electron if (**0.9 to 0.95**)<**E**/**p**<**1.1**,
 - ✓ muon if **E/p<0.85**;
 - Missing mass:
 - $M^2_{miss} = (P_K P_i)^2$ with i=e or μ
- The analysis is done in **10 momentum bins**:
 - The selection criteria are tuned in each bin
 SUSY 2014 Manchester England (UK)

Data set

10⁵

10⁴

10³

10²

-0.06

145958 events selected (more than a factor 10 with respect to the best previous measurement)

Background sources (in %):

 Κ_{μ2} 	5.64±0.20
 K_{μ2} (μ decay) 	0.26±0.03
 K_{e2γ} (SD+) 	2.60±0.11
Beam halo	2.11±0.09
• K _{e3}	0.18±0.09
 Κ_{2π} 	0.12±0.06
Wrong sign K	0.04±0.02

Total

10.95±0.27

K_{μ2}:

K_{e2}:

42.817 M events (with pre-scaled trigger) Main background: beam halo muons $(0.50\pm0.01)\%$

12

Final result

 $R_{\rm K} = (2.488 \pm 0.007_{\rm stat} \pm 0.007_{\rm syst}) \times 10^{-5}$ $=(2.488\pm0.010)x10^{-5}$

NA62

[Phys. Lett. B 719 (2013) 326]

Source

- Analysis in 10 momentum bin and 4 data sub-samples ;
- Fit over 40 measurements: $\chi^2 = 47/39$; •
- **0.4%** precision reached; •
- Theoretical error still one order of magnitude better. .

[our own average]

Precision of 0.4%. In agreement with SM expectation within 1.2 σ

Exotic and forbidden decays

 NA62 will collect an unprecedented amount of K⁺ decays giving the possibility to re-measure rare decays properties and look for forbidden and exotic decays

NA5

• The NA62 trigger system is flexible and fully reconfigurable (based on FPGA)

	B865	E787	E949	NA62
Energy p	25.5 GeV	25.5 GeV	25.5 GeV	400 GeV
Protons ø	10 ¹³ in 2.8s/5.1s	~10 ¹³ /1.6s	$\sim 10^{13}$ /2.2 s	~10 ¹² in 4.6s/16.8s
Energy K	6 GeV	700 MeV (stopped)	710 MeV (stopped)	75 GeV
Beam	71 MHz K, 1.4 GHz π, 0.7 GHz p	(2.5-4) MHz K with $\pi/K = 0.25$	6 MHz K with K/ π ~3	45 MHz K, 525 MHz π, 173 MHz protons
Decay region	5 m (6% kaon decay)	Stopped (20% kaon decay)	Stopped (20% kaon decay)	60 m (10% kaon decay)

NA62 decay list

List (not complete) of forbidden and exotic decays:

Process	motivation	90% C.L. limit	Experiment	Year
$K^+ \rightarrow \pi^+ X^0$	New particle	< 5.9 x 10 ⁻¹¹ m _{x0} =0	E787, E949	2002
$K^+ \rightarrow \pi^+ \chi \chi$	New particles	(several)	Example: E949	2008
<i>π</i> ⁰ →ee(γ)	Dark force	(several)	(several)	
$\pi^0 \rightarrow eeee$	T viol. in SI and EI	C=-0.77+-0.53	Samios et. al.	1962
$\pi^0 \rightarrow \gamma \gamma \gamma$	C violation	< 3.1 x 10 ⁻⁸	Crystal Box	1988
$\pi^0 \rightarrow \gamma \gamma \gamma \gamma$	light scalar	< 2 x 10 ⁻⁸	Crystal Box	1988
$\pi^0 \rightarrow \nu \overline{\nu}$	RH neutrino	<2.7x10 ⁻⁷	E949	2005
sgoldstino	New particle	< 9 x 10 ⁻⁶	Hyper-CP, ISTRA+	
$K^+ \rightarrow \pi^+ \pi^+ e^- \nu$	ΔS!=ΔQ	< 1.2 x 10 ⁻⁸	Geneva-Saclay	1976
$K^+ \rightarrow \pi^+ \pi^+ \mu^- \nu$	$\Delta S!=\Delta Q$	< 3.0 x 10 ⁻⁶	Birge et al.	1965
$K^{+} \rightarrow \pi^{+} \gamma$	Angular momentum	< 2.3 x 10 ⁻⁹	E949	2005

Sterile neutrinos

Adding three right handed sterile Majorana neutrinos to SM it is possible to explain some of the open questions in particle physics:

- Matter-antimatter asymmetry (leptogenesis induces baryogenesis)
- Neutrino mixing
- Dark matter

In the Asaka-Shaposhnikov model vMSM [Phys. Lett. B 620 (2005) 17]

- N_1 is the lighter $O(keV) \rightarrow$ dark matter candidate
- N_2 , N_3 are nearly degenerate (100 MeV to few GeV) to tune CPV-phases as extra-CKM sources of baryon asymmetry. $N_{2,3}$ produce standard neutrino masses through seesaw with a Yukawa coupling of the order of 10^{-8}

Sterile neutrinos in K

- The meson factories are an ideal place to produce and study heavy neutrinos (N_{2,3});
- In principle several LFV decay modes accessible;
- The neutrinos mass accessible in kaon decays is limited by M_K

NA62

Sterile neutrino analysis

- The ongoing analysis in NA62-R_K is done assuming long lived heavy neutrinos → Missing mass analysis
- In NA62 higher statistics, better resolution on the invariant mass, better photon veto to control $K_{\mu3}$ and $K_{2\pi}$ backgrounds, will increase significantly the sensitivity;
- The kaons will help to cover the full parameters space in the regions allowed by general constraints. Fixed BR($K^+ \rightarrow \mu^+ N$) = 10⁻⁴

NA5

Dark photons

The search for the U boson (aka dark photon) is becoming interesting as possible explanation of several *SM anomalies*:

- PAMELA e⁺ excess
- Dama/Libra dark matter signals [*R. Bernabei et al., Eur. Phys. J. C56, 333 (2008)*]
- 3.6 σ anomalies in (g-2)_µ

- Search in $\pi^0 \rightarrow U\gamma$ decays (with $U \rightarrow e^+e^-$)
 - NA62 will collect $10^8 \pi^0 \rightarrow e^+e^-\gamma$ decays/year
 - \circ M_{ee} resolution of 1 MeV
 - $_{\circ}$ Sensitive to $M_{U}{<}100$ MeV with $\epsilon^{2}{\sim}10^{-6}$
- Analysis on the NA48/2 data ongoing
- NA62 will improve the NA48/2 upper limit.

Conclusions

- The Kaons have written several chapters in particle physics:
 - ✓ Strangeness
 - ✓ Parity violation
 - \checkmark Oscillation and regeneration
 - ✓ CP violation (indirect and direct!)
 - ✓ GIM mechanism
- The Kaons have still arrows in their quiver:
 - ✓ The $K \rightarrow \pi v \overline{v}$ is an unique laboratory to test new physics scenarios;
 - ✓ Other LFV, forbidden and exotics decays may shed new light on some obscure point of the SM;
 - ✓ NA62 will profit from high intensity hadron beam, flexible trigger configuration and ~10% acceptance on several decays; data taking will start next autumn

"It is important to cast as wide an experimental net as possible" (*M. Pospelov* @ *this conference*)

We are part of this net and data taking will start in October 2014 !

SPARES

SUSY 2014 – Manchester – England (UK)

25/07/2014 • 22

Main background to K_{e2}

- The main background is given by $K_{\mu 2}$ in the K_{e2} sample
- ✓ μ catastrophic energy loss in LKr: $P_{\mu e}$ =3·10⁻⁶
- ✓ Direct measurement of $P_{\mu e}$ selecting a pure μ sample
- ✓ Lead plate in front of LKr (9.2X₀, 20% of total area)
- ✓ Uncertainty on the evaluated $K_{\mu 2}$ background 3 times smaller with respect to MC only

