Prospects for Lepton Number Violation with SuperNEMO and future ονββ experiments

Pawel Guzowski

The University of Manchester

Outline

- Lepton number violating (LNV) mechanisms for $ov\beta\beta$
- Techniques for experimental determination of mechanisms
- Current and future experiments with potential mechanism sensitivity
 - SuperNEMO, DCBA, (n)EXO, NEXT, KamLAND-Zen
 - See Carla Macolino's talk for other experiments

LNV MECHANISMS

P Guzowski

Right handed weak currents

- λ mode: W_R coupling to heavy v_R state $-\lambda = (M_I/M_R)^2 \Sigma U_{ei}U'_{ei}$
- η mode: as λ but with W_L - W_R mixing (angle ξ)

Majoron emission

- Emission of 1 or 2 neutral scalar bosons
 - e.g. Goldstone boson of new Higgs-like field giving neutrinos mass
- Characterised by spectral index n
- Distortion on top of $2\nu\beta\beta$ spectrum (n=5)

PRL B 99:411 (1981); NPB 193:297 (1981); PLB 98:265 (1981); PLB 291:99 (1992); NPB 449:25 (1995)

S Herrin

SUSY, H⁻⁻

• Squark – gluino coupling

Doubly-charged Higgs

Decoupling the mechanisms

- Two-electron angular correlations and energy differences are model dependent
- Comparing isotopes also allows some decoupling
 - Will require much more precise NME calculations than currently available
- ονββ experiments with kinematic information are vital!

SUPERNEMO

P Guzowski

SuperNEMO

- Source independent from detector
 - Choice of isotopes
- Tracking + calorimeter
- Full event kinematics & particle PID
 - Background reduction

SuperNEMO status

- Demonstrator module currently being constructed
 - Run from late 2015
 - 7kg ⁸²Se
 - $\begin{array}{c} 6.6 \times 10^{24} \, y \, T_{1/2} \\ sensitivity \end{array}$
- 20 modules in all for full experiment

 ~100kg of isotope
 ~10²⁶ y T_{1/2} sensitivity

Reconstruction

- Detector acceptance
 - collinear tracks unresolved as two separate tracks
 - low energy β do not reach calorimeter
- Asymmetry $-(N_+-N_-)/(N_++N_-)$
 - splitting at
 - $\cos\theta = 0$
 - $\Delta E = Q/2$

Mechanism sensitivity

- $\Gamma = a < m_v >^2 + b\lambda^2 + \dots$
 - Only a hypersphere in parameter space can be resolved traditionally
 - Use kinematics to tighten constraints

OTHER EXPERIMENTS

P Guzowski

DCBA

• Similar to SuperNEMO, without calorimetry

2011 DCBA-T2.5

2017 MTD (tentative name)

- 6 mm pitch wires (xy + xz)
- ¹⁰⁰Mo source (natural Mo 30g)
- 0.8 kG magnetic field
- super-conducting magnet:
 24h nonstop operation
- 3 mm pitch wires (xy + xz)*8
- ¹⁵⁰Nd (5.6% in natural Nd₂O₃)

P Guzowski

- B=3 kG at the maximum
- ⁸²Se ¹⁵⁰Nd(enriched) several 10 kg

Hidekazu Kakuno

SUSY 2014

EXO

- 200kg liquid xenon TPC
- 80% ¹³⁶Xe enriched
- Measures ionisation and scintillation

Nature 510, 229 (2014)

nEXO

- 5 tonne Liquid Xenon TPC
- 'as similar to EXO-200 as possible'
- 4 tonnes ¹³⁶Xe (80% enrichment)
- 1.4% energy resolution

NEXT

- High pressure gaseous argon TPC
- Currently 10kg
- 100 kg (2016-2020)
- 1t (2020-?)
 - 20 meV sensitivity

J.J. Gómez Cadenas

NEXT

- ββ event with tens of cm length, energy 'blobs' at each end
- Easily distinguishable from background

P Guzowski

MANCHESTER 1824 The University of Manchester

KamLAND-Zen

Liquid scintillator doped with ¹³⁶Xe

P Guzowski

LS + Cherenkov

- Aberle *et al*arXiv:1307.5813
- Use Cherenkov light to provide kinematic information
- Current problems
 - Low number of photons compared to scintillation
 - Absorption of short wavelengths by scintillator
 - Poor timing resolution

Summary

- No 1 priority: discovery of $ov\beta\beta$
- Disentangle mechanisms:
 - Angular correlations
 - Energy differences
 - Comparing isotopes
- Not mutually exclusive goals kinematics also excellent for background reduction

