

BSM Higgs Searches (CMS)

Felix Frensch for the CMS Collaboration SUSY 2014; Manchester, England; 25th July 2014;

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

Discovery of a new particle at 125 GeV

Among many theories beyond the Standard Model **SUSY** is a favored one

Focus on results which can be interpreted in the MSSM

Outline

$H \rightarrow \tau \tau$: Cross section limits

Calculate σ^*BR limit on one process while the other is left floating freely

Expected limit is computed with a pseudo dataset including the SM Higgs boson at 125 GeV next to the nominal SM backgrounds

 $H \rightarrow \tau \tau$: comparison with models

- Search for single narrow resonance
- Likelihood scan of $gg\Phi bb\Phi m_{\Phi}$ space projected to $gg\Phi bb\Phi$ plane
 - **I** m_{Φ} from 90-1000 GeV scanned
 - Possibility to compare observation to model predictions

σ(bbφ)·B(φ→ττ) **[pb**]

Higgs Bosons in the MSSM

Model dependent interpretations: Old vs New statistical approaches

Limits on MSSM benchmarks

Invisible Higgs

Multi Higgs events X $\rightarrow h_{SM}h_{SM} \rightarrow bb\gamma\gamma$

- Higgs decaying into lighter Higgs bosons enhanced for low tanβ
 - In 2HDM (e.g. MSSM) or higher order Higgs models

HIG-13-032

Model independent limits set, tested against Warped Extra Dimension predictions

Summary

- After the discovery of a new Higgs-like particle: A lot of activity BSM Higgs boson searches in CMS.
- Broad range of possible production and decay processes covered.
- If something new hides out there and is within range of sensitivity
 we will find it.

BACKUP

Karlsruhe Institute of Technology

Compact Muon Solenoid

Length: 28.7 m

- Magnet field: 3.8 T (outside calorimeter)
- Tracker: Si ($\delta p / p = 0.5\%$ for a 10 GeV track)
- **ECAL:** PbWO₄ ($\delta E/E = 1\%$ for a

30 GeV e/γ, X₀ = 28)

HCAL: Sampling (brass scintillator,

 $\delta E / E = 10\%$ for a 100 GeV π[±], λ_i = 10)

Open questions

- Many unanswered questions:
 - The hierarchy problem
 - Gravity is not included
 - Neutrino masses are not included
 - Anomalous magnetic moment of the muon
 - Dark matter is not included
 - Dark energy is not included

The SM is not the ultimate theory.

BSM Higgs Searches in CMS

²⁰ *Results presented in this talk

Event selection (H $\rightarrow \tau \tau$)

Two well reconstructed, isolated leptons of opposite sign:

channel	ρ _τ	lηl	р _т	lηl
еμ	> 20 GeV (e/µ)	< 2.3 (e/µ)	> 10 GeV (µ/e)	< 2.3 (µ/e)
еτ	> 24 GeV (e)	< 2.1 (e)	> 20 GeV (t)	< 2.1 (t)
μμ	> 20 GeV (µ)	< 2.1 (µ)	> 10 GeV (μ)	< 2.1 (µ)
μτ	> 20 GeV (μ)	< 2.1 (µ)	> 20 GeV (τ)	< 2.3 (τ)
ττ	> 45 GeV (τ)	< 2.1 (τ)	> 45 GeV (τ)	< 2.1 (t)

- eτ, μτ: M_τ < 30 GeV</p>
- μμ: Special BDT trained for rejection of Z/γ* → μμ events

Reconstruction of Di-τ System

Determine invariant mass of di-τ system with maximum likelihood method

- Estimate of di- τ system, to be true for given value of $m_{\tau\tau}$
- Inputs: four-vector information of visible leptons, x- and y- component of E_T on event basis.
- Free Parameters: φ, $θ^*$, m_{υυ} per τ (4-6 parameters)
- Full integration of kernel to determine maximum for given m_π
 - Scan of $m_{\tau\tau}$ from m_{τ} up to 2TeV
- 10-20% resolution of the reconstructed m_π mass depending on decay mode

Discrimination of signal from backgrounds (H $\rightarrow \tau\tau$)

Ζ/γ^{*} → ττ: • Embedding: in $Z \rightarrow \mu\mu$, replace μ by sim. τ decay

 Normalized to Z→μµ events

ttbar:

- Shape from simulation
- Normalization from sideband

QCD:

 Normalization and shape from SS/OS or fake-rate

Di-boson/W+jets:

- Shape from simulation
- Normalization from sideband (w-jets) or from MC (Di-bosons)

 $m_{\tau\tau}$ [GeV]

Z/γ* → ee (μμ):

- From data (μμ–channel) or simulation (all other channels)
- Corrected for jet $\rightarrow \tau$, e/ $\mu \rightarrow \tau$ fake-rate

MSSM Benchmark Scenarios

scenario	Mass (GeV)	Higgs sector phenomenology
m _h ^{max}	$M_{_h} \sim 135$	stop mixing parameter: $X_t = 2 \text{ TeV}$
${f m}_{f h}^{mod+}$	$M_{h} \sim 125$	mhmax except $X_t = 1.5 \text{ TeV}$ compatible w. $(g-2)_{\mu}$
${f m}_{f h}^{f mod}$	$M_{ m h}^{} \sim 125$	mhmax except $X_t = -1.9 \text{ TeV}$ compatible w. $B(b \rightarrow s\gamma)$
light-stop	$M_{h} \sim 125$	$\label{eq:stop,1} \begin{array}{l} M_{stop,1} \sim 340 \ GeV \ \& \ suppressed \ decay \ mode \ \widetilde{t} \rightarrow t + \chi 0 \\ \hline reduced \ ggH \ rate \end{array}$
light-stau	$M_{h} \sim 125$	$M_{stau} \sim 245 \text{ GeV} \rightarrow$ enhanced $H \rightarrow \gamma \gamma$ rate
tauphobic	$M_{_h} \sim 125$	Light Higgs boson h has Reduced coupling to down-type fermions
low-m _H	$M_{_{ m H}} \sim 125$	$M_A = 110 \text{ GeV}$ Variation in tan β – μ (Higgsino mass parameter)

Invisible Higgs

Dark Matter interpretation

Upper limits on the spin-independent DMnucleon cross section in Higgs-portal models.

 Limits are shown separately for scalar, vector and fermion DM.

Lepton Flavour Violating H $\,\rightarrow\,\mu\tau$

Assume SM σ for production processes and m_H = 125 GeV

HIG-14-005

Set limits on flavor violating BR

Lepton Flavour Violating H $\,\rightarrow\,\mu\tau$

High mass search h $\rightarrow \gamma \gamma$

$H \rightarrow \gamma \gamma$: 2D limits

H $\rightarrow \gamma \gamma$: considers gg Φ and spin 0 resonance

In 2D limits limit on σ^*BR is plotted over width and mass

(UL = Upper Limit)

Higgs production in T \rightarrow tH

Links

• $H \rightarrow \tau \tau$

- http://cds.cern.ch/record/1623367?ln=en
- H → bb
 - http://arxiv.org/pdf/1302.2892.pdf
- LFV H → μτ
 - http://cds.cern.ch/record/1740976?ln=en
- X → HH → γγbb
 - http://cds.cern.ch/record/1697512?ln=en
- $\blacksquare H^+ \rightarrow cs$
 - http://cds.cern.ch/record/1728343?In=en
- High mass $H \rightarrow \gamma \gamma$
 - http://cds.cern.ch/record/1714076?ln=en
- H → invisible
 - http://arxiv.org/pdf/1404.1344.pdf

Links

T → tH

- https://cds.cern.ch/record/1706121?ln=en
- http://cds.cern.ch/record/1709129?ln=en