Recent accelerator long baseline neutrino oscillation results

Peter Ratoff

Lancaster University

& the T2K Collaboration

- 1. Introduction
- 2. Recent T2K & MINOS results
- 3. Prospects for the next few years
- 4. Longer term future (10⁺ years)

Neutrino physics – a constant source of surprise & mystery!

Compared with the quarks and charged leptons, why are neutrino masses so small?

Neutrino mixing angles are generally much larger than quark mixing angles; large CP violation effects are **allowed** in the neutrino sector

massless v

21/07/2014

Agarwal, Feldman 2010

Can neutrinos explain the matterantimatter asymmetry of the Universe? e.g. via CP violation and Leptogenesis

The 3 Neutrino Flavour Paradigm§

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix

Oscillation phenomena have been convincingly observed using solar, atmospheric, reactor and accelerator neutrinos, establishing the 3 neutrino flavour SM paradigm

(§ ignoring Majorana phases)

21/07/2014

Neutrino Properties

Known:

- have mass
- oscillate between flavours
- measured values for
 - θ₁₂, θ₂₃, θ₁₃
 - Δm_{21}^2 , $|\Delta m_{32}^2|$

Neutrino Mass Hierarchy

Neutrino Oscillation Measurements at Accelerators

Muon neutrino disappearance

(in the absence of matter effects)

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - 4\cos^{2}(\theta_{13})\sin^{2}(\theta_{23})[1 - \cos^{2}(\theta_{13})$$

Survival probability $\times \sin^{2}(\theta_{23})]\sin^{2}\frac{\Delta m_{31}^{2}L}{4E}$

Electron neutrino appearance

$$P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E}$$

- $\frac{\sin 2\theta_{12} \sin 2\theta_{23}}{2 \sin \theta_{13}} \sin \frac{\Delta m_{21}^{2} L}{4E} \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E} \sin \delta_{CP}$
+ (CP even term, solar term, matter effect term)

Disappearance channel : sensitivity to θ_{23} and (subleading) to the octant

Appearance channel : sensitivity to θ_{13} and (subleading) to the CP phase

T2K experiment

T2K= Tokai to Kamioka

Primary proton beam: 30 GeV/c, 235 kW (RUN4) 6.57 10²⁰ Proton On Target (8% of the final design exposure)

SK: 22.5 kt fiducial mass. ~100% livetime

Far

The T2K Off-Axis Beam

T2K Muon Neutrino (v_{μ}) Disappearance Measurement

21/07/2014

T2K Electron Neutrino (v_e) Appearance Observation

21/07/2014

T2K Joint v_e + v_{μ} Analysis : Constraints on δ_{CP}

 $\Delta \chi^2$

PRELIMINARY

- Combined likelihood ratio fit to the ν_e and ν_u CCQE samples
- Using PDG 2013 θ_{13} value,T2K finds a (slight) preference for $\delta_{CP} = -\pi/2$ and the Normal mass hierarchy
- Similar results from an independent T2K analysis using Markov chain MC producing Bayesian credible intervals

If Nature has chosen $\delta_{CP} \approx -\pi/2$, this will be very helpful experimentally AND this solution satisfies the leptogenesis bound with no additional CP violation

> $|\sin \theta_{13} \sin \delta_{CP}| \ge 0.11$ Pascoli, Petcov, Riotta 2007

Future Sensitivity to CPV using T2K

T2K studies indicate our best sensitivity will be for 50% v/50% anti-v running. Anti-nu running also opens a large new physics program.

High energy on-axis beam

MINOS = Main Injector Neutrino Oscillation Search

MINOS

MINOS 3 Flavor Oscillation Analysis

- Analysis combines:
 - Full MINOS v_{μ} -CC and \bar{v}_{μ} -CC disappearance sample PRL **112**, 191801 (2014)
 - Full v_e-CC, \bar{v}_{e} -CC appearance sample, described in *PRL* **110** 171801 (2013)
 - Full MINOS and new MINOS+ atmospheric neutrino samples

- Sensitive to θ_{13} , θ_{23} octant, mass hierarchy, and δ_{CPI} from v_{eI} sample
- Sensitivity enhanced by atmospherics:
 - Matter effects in multi-GeV, upwardgoing events
 - Effect seen in neutrinos or antineutrinos, depending on hierarchy

 MINOS first to probe effect with event-by-event charge separation

MINOS 3 Flavor Oscillation Analysis

Most precise measurement of $|\Delta m_{32}^2|$ - consistent with Maximal Mixing

Comparison of T2K with MINOS Disappearance/Atmospheric Results

NOvA

High energy off-axis beam

NOvA = NuMI Off-Axis v_e Appearance

Acc. LB Nu Osc. - Peter Ratoff - SUSY2014

First Neutrino Interactions Observed in NOvA!

Acc. LB Nu Osc. - Peter Ratoff - SUSY2014

LBN(E/F) What next (mid-2020's)?

Lead, SD Series North Dakota Minnessota Lead, SD Series North Raka 1300 km Nebraska Ibreak

Comprehensive CP Violation, Mass Hierarchy, Non-Standard Interactions and Matter Effects Need Longer Baseline and High Intensity Broadband Neutrino/Anti-Neutrino Beam

Sensitivity of δ

5σ

Зσ

0

50

Normal mass hierarchy

100

150

 $\boldsymbol{\delta}_{\boldsymbol{CP}}$

10

2

-150

-100

Hyper-K

LBNE (34kt LAr, 1.2MW 6yrs)

 $\sigma = \sqrt{\chi^2}$

Summary & Conclusions

- During the last 1.5 decades the study of neutrino interactions has revealed many unexpected discoveries, establishing the 3 neutrino flavour mixing paradigm (PMNS) which implies new physics beyond the Standard Model.
- The field is entering the few % precision era due to dedicated experimental efforts on 4 continents.
- The experiments are becoming sensitive to CPV effects via the interplay of reactor and accelerator observables.
- Major efforts are ongoing towards answering the remaining open questions and providing precise tests of the current model.

Back-up Slides

Neutrino Oscillations

In a simplified 2 flavour model...

$$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{pmatrix}$$

If neutrino **flavour eigenstates** are different to neutrino **mass eigenstates**, propagation over a baseline L of a neutrino of given flavour induces a phase shift, with the possibility of the appearance of the other neutrino flavour

The T2K Experiment Overview

Uses the J-PARC accelerator complex for the beam.

On and off-axis hybrid **near detectors** at 280m

Use information from hadron production experiment NA61

Far detector: Super-K at 295 km.

T2K Near Detector Constraint

Flux and cross-section systematic uncertainty on N $_{_{\rm SK}}$ significantly reduced to ~7%

$\nu_{\rm e}$ event selection

T2K has made improvements in background and error reduction.

- Fully-contained fiducial volume (FCFV) event
- Single-ring e-like event
- E_{visible} > 100 MeV
- # of decay electron = 0
- $0 < E_v^{rec} < 1250 \text{ MeV}$
- π^0 cut

T2K Let's think about these regions!

- Comparing with the external reactor constraint the best overlap is for the normal hierarchy with $\delta_{cp} = -\pi/2$.
- This is a lucky point!
- You also need to increase the θ₂₃ mixing angle to account for the number of observed events.

T2K Joint v_{μ} + v_e Bayesian Analysis

<u>New Result:</u> Use a Markov Chain Monte Carlo (MCMC) with both T2K-SK $v_{\mu} + v_{e}$ and ND280 samples.

Note: Marginalized over hierarchy.

Can compare the probabilities for each MH and θ_{23} octant combination in the posterior probabilities.

Long Baseline ν Oscillations

8	NI	С	
	IN		
			3

Decay channel	Expected signal $\Delta m_{23}^2 = 2.32 \text{ meV}^2$	Total background	Observed
τ→h	0.4 ± 0.08	0.033 ± 0.006	2
τ→3h	0.57 ± 0.11	0.155 ± 0.03	1
τ→μ	0.52 ± 0.1	0.018 ± 0.007	1
τ→e	0.61 ± 0.12	0.027 ± 0.005	0
Total	2.1 ± 0.42	0.23 ± 0.04	4

no oscillation excluded at 4.2 σ CL

 The evolution of the actual dE/dx from a single track to an e.m. shower for the electron shower is clearly apparent from individual wires.

Nuclear Physics B 774 (2007) 1-52

Leptogenesis and low energy CP-violation in neutrino physics

S. Pascoli^{a,*}, S.T. Petcov^{b,1}, A. Riotto^{c,d}

^a IPPP, Department of Physics, Durham University, DH1 3LE, UK
 ^b SISSA and INFN-Sezione di Trieste, Trieste 1-34014, Italy
 ^c CERN Theory Division, Geneve 23, CH-1211, Switzerland
 ^d INFN, Sezione di Padova, Via Marzolo 8, Padova I-35131, Italy

Received 24 January 2007; accepted 12 February 2007

$$|Y_B| \cong 2.8 \times 10^{-13} |\sin \delta| \left(\frac{s_{13}}{0.2}\right) \left(\frac{M_1}{10^9 \text{GeV}}\right).$$
 (91)

The asymmetry of interest is predominantly in the lepton number $L_e + L_{\mu}$. Thus, in order to reproduce the observed baryon asymmetry, taken to lie in the interval $8.0 \times 10^{-11} \leq |Y_B| \leq 9.2 \times 10^{-11}$, $s_{13} |\sin \delta|$ and M_1 , in the case analyzed, should satisfy

$$2.9 \lesssim |\sin \delta| \left(\frac{s_{13}}{0.2}\right) \left(\frac{M_1}{10^{11} \text{ GeV}}\right) \lesssim 3.3.$$
(92)

Given that $s_{13}|\sin \delta| \leq 0.2$, the lower bound in this inequality can be satisfied only for $M_1 \gtrsim 2.9 \times 10^{11}$ GeV. Recalling that the flavor effects in leptogenesis of interest are fully developed for $M_1 \leq 5 \times 10^{11}$ GeV, we obtain a *lower bound on the values of* $|s_{13} \sin \delta|$ and s_{13} for which we can have successful leptogenesis in the case considered:

 $|\sin\theta_{13}\sin\delta| \gtrsim 0.11, \quad \sin\theta_{13} \gtrsim 0.11. \tag{93}$