Auxiliary Gauge Mediation: A New Route to Mini-Split Supersymmetry

Yoni Kahn, MIT

with Jesse Thaler and Matthew McCullough JHEP 1311 (2013) 161, 1308.3490

SUSY 2014, 7/21/14

The hidden sector paradigm

Necessitated by supertrace sum rule

. . .

Gauge mediation: successes

[Dine, Nelson, Shirman, 1995; hep-ph/9408384 and others]

[Giudice, Rattazzi, 1998; hep-ph/9706540]

$$\left(\tilde{m}_{sc} \sim \tilde{m}_{\tilde{\lambda}} \sim \frac{\alpha}{4\pi}\Lambda\right)$$

TeV

But what is the UV completion? Not trivial!

This talk: Mini-split from gauge mediation

Key: new U(1)_H generates $B_{\mu} \sim m_{H}^{2}$

Outline

The Auxiliary Group

The auxiliary group All anomaly-free* global symmetries of the MSSM in limit of vanishing Yukawas

* with respect to SM

$$G_{aux} = \mathrm{SU}(3)_F \times \mathrm{U}(1)_{B-L} \times \mathrm{U}(1)_H$$

 $W_{MSSM} = \lambda_u \mathbf{u}^c \mathbf{Q} \mathbf{H}_u - \lambda_d \mathbf{d}^c \mathbf{Q} \mathbf{H}_d - \lambda_e \mathbf{e}^c \mathbf{L} \mathbf{H}_d + \mu_H \mathbf{H}_u \mathbf{H}_d$

Global symmetries with $\lambda_u = \lambda_d = \lambda_e = 0$: U(1)_B baryon number U(3)⁵ flavor symmetry

(3 generations, 5 matter superfields)

 $\mathrm{U}(1)_L$ lepton number

 $\begin{array}{l} \mathrm{U}(1)_{H} \text{ ``Higgs symmetry''} \\ q_{H_{u}} = -q_{H_{d}} \end{array}$

 G_{aux} is the anomaly-free subgroup

• Matter charged, but not gauginos: gaugino masses only appear at 3-loops, $\tilde{m}_{\tilde{\lambda}} \ll \tilde{m}_{sc}$ • Without $U(1)_H$, no Higgs sector soft terms! Problems for EWSB and m_H

(for models that address this, see [Arvanitaki et al, 2013; 1210.0555])

Calculating soft terms or "applied Higgsed gauge mediation"

Hierarchies of scale					
two independent scales lead to interesting pheno G_{aux} breaking M_V messenger M	$\sim 10^{10} - 10^{15} \mathrm{GeV}$				
SUSY breaking F/M	$\sim 100 - 1000 \mathrm{TeV}$				
scalars gauginos	$\sim 10 - 100 \text{ TeV}$ $\sim 1 - 5 \text{ TeV}$				
weak scale Higgs	$246\mathrm{GeV}$				

(Higgsino mass depends on choice of params.)

Analytic continuation Example: single chiral superfield \mathbf{q} , charge q_q under new spontaneously broken U(1) vector-like messengers w/U(1) charges SUSY-breaking spurion $\mathbf{W} \supset \mathbf{X} \mathbf{\Phi} \mathbf{\Phi}^c, \ \langle \mathbf{X} \rangle = M + \theta^2 F$ $\mathbf{M}_{\Phi}^{2} \rightarrow \mathbf{X}^{\dagger}\mathbf{X}, \ \mathbf{M}_{V}^{2} \rightarrow M_{V}^{2} + 2g^{2}q_{a}^{2}\mathbf{q}^{\dagger}\mathbf{q}$ U(I) vector superfield mass messenger mass Ordinary gauge mediation: Higgsed gauge mediation: integrate out Φ integrate out V too [Giudice, Rattazzi, 1998; hep-ph/9706540] [Craig, McCullough, Thaler, 2012; 1201.2179, 1203.1622]

 $\int d^4\theta Z(\mathbf{M}_{\mathbf{\Phi}}^2) \mathbf{q}^{\dagger} \mathbf{q}$

WF renorm. for **q**

 $\int d^4\theta \, K_{2L}(\mathbf{M}_{\mathbf{\Phi}}^2, \mathbf{M}_{\mathbf{V}}^2)$

2-loop eff. Kähler potential

Scalar masses $K_{2L} = \underbrace{M_{\Phi}}_{M_{\Psi}}$

Integrate Kähler potential over superspace:

Varying δ gives different phenomenology

Soft terms in auxiliary gauge mediation

- Φ charges: $C(\Phi), p_{\Phi}, q_{\Phi}$
- Higgsing scales: $\delta_{F}, \delta_{B-L}, \delta_{H}$
- Auxiliary gauge couplings: $\alpha_{F}, \alpha_{B-L}, \alpha_{H}$
- SUSY-breaking parameter: F/M

color code: $G_{aux} = \mathrm{SU}(3)_F \times \mathrm{U}(1)_{B-L} \times \mathrm{U}(1)_H$

Soft terms in auxiliary gauge mediation

(all formulas evaluated at effective messenger scale $min\{M, M_V\}$)

$$\begin{split} & \underbrace{\left(\widetilde{m}_{q}^{2}\right)_{ij} = \left(C(\Phi)\frac{\alpha_{F}^{2}}{(2\pi)^{2}}\sum_{a}f(\delta_{F}^{a})\left(T_{q}^{a}T_{q}^{a}\right)_{\{ij\}} + \eta p_{\Phi}^{2}\frac{\alpha_{B-L}^{2}}{(2\pi)^{2}}f(\delta_{B-L})\delta_{ij}\right)\left|\frac{F}{M}\right|^{2}}{\mathbf{Stop-Higgs A-term:}}\\ & A_{h_{u}\widetilde{t}_{L}\widetilde{t}_{R}} = \frac{\lambda_{t}}{(2\pi)^{2}}\left(2C(\Phi)\alpha_{F}^{2}\sum_{a}h(\delta_{F}^{a})\left(T_{q}^{a}T_{q}^{a}\right)_{33} + q_{\Phi}^{2}\alpha_{H}^{2}h(\delta_{H}) + \frac{2}{9}p_{\Phi}^{2}\alpha_{B-L}^{2}h(\delta_{B-L})\right)\left(\frac{F}{M}\right)}\\ & \underbrace{\mathbf{Higgs sector:}}\\ & \widetilde{m}_{H_{u},H_{d}}^{2} = q_{\Phi}^{2}\frac{\alpha_{H}^{2}}{(2\pi)^{2}}f(\delta_{H})\left|\frac{F}{M}\right|^{2} \qquad B_{\mu} = 2\mu_{H}q_{\Phi}^{2}\frac{\alpha_{H}^{2}}{(2\pi)^{2}}h(\delta_{H})\frac{F}{M}\\ & \underbrace{\mathbf{Gauginos:}}\\ & \widetilde{M}_{\tilde{g}} = \frac{\alpha_{S}}{4\pi^{3}}\frac{F}{M}\left(\frac{1}{2}C(\Phi)\alpha_{F}^{2}\sum_{a}h(\delta_{F}^{a}) + \frac{1}{3}p_{\Phi}^{2}\alpha_{B-L}^{2}h(\delta_{B-L})\right),\\ & \widetilde{M}_{\tilde{W}} = \frac{\alpha_{W}}{4\pi^{3}}\frac{F}{M}\left(\frac{1}{2}C(\Phi)\alpha_{F}^{2}\sum_{a}h(\delta_{F}^{a}) + \frac{1}{2}q_{\Phi}^{2}\alpha_{H}^{2}h(\delta_{H}) + 4p_{\Phi}^{2}\alpha_{B-L}^{2}h(\delta_{B-L})\right),\\ & \widetilde{M}_{\tilde{B}} = \frac{\alpha_{Y}}{4\pi^{3}}\frac{F}{M}\left(\frac{5}{6}C(\Phi)\alpha_{F}^{2}\sum_{a}h(\delta_{F}^{a}) + \frac{1}{2}q_{\Phi}^{2}\alpha_{H}^{2}h(\delta_{H}) + \frac{23}{9}p_{\Phi}^{2}\alpha_{B-L}^{2}h(\delta_{B-L})\right) \end{split}$$

Some parametrics

Can accommodate μ_H a factor of 10 lighter than F/M and still get Higgs sector soft terms at the correct scale!

Benchmark spectra

Flavored benchmark

lavored

SuperWIMP benchmark

Benchmark	superWIMP
$M_{\rm eff} \ [{\rm GeV}]$	6×10^{12}
F/M [GeV]	1×10^6
$\sqrt{C(\mathbf{\Phi})} \alpha_F$	0.6
δ_F	0.1
$p_{\Phi} \alpha_{B-L}$	0.8
δ_{B-L}	0.1
$q_{\Phi} \alpha_H$	0.6
δ_H	0.0125
aneta	3.95
$\mu_H \; [\text{TeV}]$	45.8
$\sqrt{B_{\mu}}$ [TeV]	67.3
$m_{3/2} \; [\text{GeV}]$	1.9

avored

lavored

- Use all three factors of auxiliary group
- Bino NSLP has correct
 Mass to decay after
 freeze-out to gravitino
 L^hSP, which is dark matter
 (superWIMP paradigm)
- Preferred parameter space in Feng et al. easily accomodated

SuperWIMPS: [Feng, Rajaraman, Takayama, 2003; hep-ph/0302215 hep-ph/0306024] In gauge mediation: [Feng, Smith, Takayama, 2008; 0709.0297] With 125 GeV Higgs: [Feng, Surujon, Yu, 2012; 1205.6480]

Summary

Outlook

- If supersymmetry is realized, LHC seems to be pointing us toward mini-split. Need explicit, concrete models!
- Auxiliary gauge mediation is a good place to start. Some interesting and unusual phenomenology (can even get acceptable spectrum with a single U(1)!)
- Along the way, applied useful techniques, including Higgsed gauge mediation and another way to generate B-terms at messenger scale (contrary to lore)

Backup slides

Note: G_{aux} now spontaneously broken. In particular,

$$\mathrm{SU}(3)_F \to \mathrm{SU}(2)_F \to \emptyset$$

large 3rd-gen. heavy flavor bosons suppressed 3rd-gen. Yukawa

First two generations stay heavy and degenerate (U(3) not anomaly-free)(Original motivation of [Craig, McCullough, Thaler, 2012; 1203.1622]: natural SUSY spectrum)

Field content and reps

Do loop integral, isolate coefficient of $|{f q}|^2$:

$$K_{2L} \supset -q_{\Phi}^2 q_q^2 \frac{\alpha^2}{(2\pi)^2} \left(h(\boldsymbol{\delta}) \left(\frac{F}{M} \theta^2 + \frac{F^{\dagger}}{M^{\dagger}} \overline{\theta}^2 \right) + f(\boldsymbol{\delta}) \left| \frac{F}{M} \right|^2 \theta^2 \overline{\theta}^2 \right) |\mathbf{q}|^2$$
$$\underbrace{\boldsymbol{\delta} = M_V^2 / M^2}_{\boldsymbol{V}} \text{ parameterizes Higgsing scale}$$

Note: analytic continuation gives only lowest order result in F/M

Gaugino masses

Simple and predictive framework: all soft terms given to lowest order by two functions, $f(\delta)$ and $h(\delta)$. For gauginos, 3-loop result from 2-loop effective potential

Aside: A- and B-terms in ordinary gauge mediation

Higgsed GMSB in the unbroken limit

Higgsed gauge mediation:
$$\left[A_q = q_q^2 q_\Phi^2 \left(\frac{\alpha}{2\pi}\right)^2 \frac{F}{M}h(\delta)\right]$$

Standard lore: "A-terms vanish at the messenger scale"

Not quite!
$$\lim_{\delta \to 0} h(\delta) = 1 - \log \delta$$

Higgsed GMSB in the
unbroken limitIm
$$h(\delta) = 1 - \log \delta$$
 $\delta = M_V^2/M^2$

For an unbroken gauge group, $M_V \to 0$, $\delta \to \overline{\mu}^2/M^2$

Log captures familiar RG running, but there remains a finite 2-loop piece even for $\overline{\mu}=M$

Same result w/component-field Feynman diagram calculation and 2-loop \overline{DR}

Threshold effects

[Giudice, Rattazzi, 1998;
hep-ph/9706540]
$$A(\overline{\mu}) = \frac{\partial \ln \mathbf{Z}_{\mathbf{q}}(\mathbf{X}, \mathbf{X}^{\dagger}, \overline{\mu})}{\partial \ln \mathbf{X}} \Big|_{\mathbf{X}=M} \frac{F}{M}$$

Arkani-Hamed, Giudice, Luty, Rattazzi, 1998; $\ln \mathbf{Z}_{\mathbf{q}} = \int_{\mu_0}^{\mu_X} \frac{d\mu'}{\mu'} \gamma'_{\mathbf{q}}(\mu') + \int_{\mu_X}^{\overline{\mu}} \frac{d\mu'}{\mu'} \gamma_{\mathbf{q}}(\mu') + \mathcal{O}\left(\frac{\alpha(\mathbf{X})^2}{16\pi^2}\right)$ hep-ph/9803290] NNLO for scalars, but LO for A-terms!

Formalism of Higgsed gauge mediation contains 2-loop threshold effects in ordinary GMSB!

Benchmark spectra: overview

Higgsinos can be heavy or light, B-L charges push sleptons heavier

Low/high scale benchmarks

- Small δ_F means flavor $\tilde{s}_{I,2}^{\tilde{q}_{1,2}}$ splitting almost entirely \tilde{H} due to RG running \tilde{W}
- All scalars out of LHC
 A, H, H[±]
 reach
- Heavy Higgsinos, need smallish $\tan\beta$ for correct Higgs mass
- Generic mini-split collider signatures:

 $\widetilde{g} \to \widetilde{q}^* q \to \cdots \to \widetilde{G} + SM$

B-L benchmark

superWIMP

- $\tilde{l}_{1,2}$ $\tilde{\tau}, \tilde{\nu}_{\tau}$
- $\tilde{q}_{1,2}$ • Turn off SU(3)_F, mediate with U(I)_H and U(I)_{B-L} atone
- $S_{l}^{A,H,H^{\pm}}$ ~3 times heavier than squarks from B-L charge
- Unconventional gaugino hierarchy

$U(1)_{X \equiv B-L+kH} \subset U(1)_{B-L} \times U(1)_{H}$

Take k = 1/3:

		GeV	
		105	$-\tilde{l}_{1,2}$
Benchmark	Minimal Model		$ ilde{ au}, ilde{ u}_{ au}$ (just a coincidence,
$M_{\rm eff} \ [{\rm GeV}]$	10^{10}		- $\tilde{q}_{1,2}$ not generic)
F/M [GeV]	7×10^5	10^{4}	+,0
$q_{\Phi} \alpha_X$	3.0		-H
δ_X	0.04		-G
aneta	3.045	1000-	$\sim W$
$\mu_H \; [\text{TeV}]$	51.5	1000	$ \cdots B $
$\sqrt{B_{\mu}}$ [TeV]	88.3		$ A, H, H^+$
$m_{3/2} [{\rm GeV}]$	5.3×10^{-3}	100	h ··· h

Mini-split spectrum through a single U(I)!

Aux. breaking in detail

- Φ has charges $C(\Phi)(\mathrm{SU}(3)_F), p_{\Phi}(\mathrm{U}(1)_{B-L}), q_{\Phi}(\mathrm{U}(1)_H)$
- Independent Higgsing scale for each factor: δ_F , δ_{B-L} , δ_H
 - need to choose breaking pattern for $SU(3)_F$
 - rotate $SU(3)_F$ generators T_{ij}^a to mass eigenstate basis: sum over generators involves δ_F^a , a = 1, 2, ..., 8and gives a generation-dependent suppression factor

RGE's for 3rd gen. and Higgs

Assuming small flavor splitting, RGE entirely controlled by

Analytic solution ignoring running of A-term and Yukawa:

$$\widetilde{m}_{H_u}^2(\overline{\mu}) = \widetilde{m}_{H_u}^2(M) - \frac{3}{8\pi^2} X_t(M) \log \frac{M}{\overline{\mu}},$$
$$\widetilde{m}_{\widetilde{t}_R}^2(\overline{\mu}) = \widetilde{m}_{\widetilde{t}}^2(M) - \frac{2}{8\pi^2} X_t(M) \log \frac{M}{\overline{\mu}}$$
$$\widetilde{m}_{\widetilde{t}_L}^2(\overline{\mu}) = \widetilde{m}_{\widetilde{t}}^2(M) - \frac{1}{8\pi^2} X_t(M) \log \frac{M}{\overline{\mu}}$$

To ensure $\widetilde{m}_{H_u}^2 < 0$ and $\widetilde{m}_{t_{L,R}}^2 > 0$ at weak scale, need $\widetilde{m}_{H_u}^2(M) \lesssim \frac{3}{2} \widetilde{m}_t^2(M)$

Flavor structures

Suppose SU(3)_F breaking generates SM Yukawas:

$$\langle \mathbf{S}_{\mathbf{u}} \rangle = \begin{pmatrix} v_{u1} & 0 & 0 \\ 0 & v_{u2} & 0 \\ 0 & 0 & v_{u3} \end{pmatrix}, \ \langle \mathbf{S}_{\mathbf{d}} \rangle = V_{\text{CKM}} \begin{pmatrix} v_{d1} & 0 & 0 \\ 0 & v_{d2} & 0 \\ 0 & 0 & v_{u3} \end{pmatrix} V_{\text{CKM}}^{T}$$

 $(v_{u3}/v_{u2} = m_t/m_c, etc.)$

Breaking pattern is $SU(3)_F \stackrel{v_{u3}}{\to} SU(2)_F \to \emptyset$: $M_V^2 [\sim SU(3)_F / SU(2)_F] \approx 4\pi \alpha_F v_{u3}^2 \{2.67, 1.02, 1.00, 1.00, 0.99\}$ $M_V^2 [\sim SU(2)_F] \approx 4\pi \alpha_F v_{u3}^2 \{11.0, 5.60, 5.55\} \times 10^{-5}$

Original motivation of gauging SU(3)_F ("flavor mediation", 1201.2179 and 1203.1622) was to generate natural SUSY spectrum, with light stops: here just an added feature

Benchmark parameters

	Benchmark	Low Scale	High Scale	Flavored	B-L	superWIMP	_
	$M_{\rm eff} \ [{\rm GeV}]$	10 ¹⁰	10^{15}	10^{10}	10^{10}	6×10^{12}	-
	F/M [GeV]	2×10^5	4×10^5	1×10^5	4×10^5	1×10^6	_
	$\sqrt{C(\mathbf{\Phi})} \alpha_F$	0.9	0.9	2.5		0.6	-
	δ_F	0.1	0.1	260		0.1	_
	$p_{\Phi} \alpha_{B-L}$				3.0	0.8	
	δ_{B-L}				0.1	0.1	_
	$q_{\Phi} lpha_H$	0.9	0.9	0.4	0.6	0.6	
	δ_H	0.1	0.1	0.1	0.02	0.0125	
	$\operatorname{tan}\beta$	4.469	4.396	20.05	4.552	3.95 > s	ingle fine-tuning
sama scalat	$\int \mu_H [\text{TeV}]$	11.9	36.9	0.8	34.7	45.8	
same scale!	$\sqrt{B_{\mu}}$ [TeV]	18.3	45.6	1.5	35.4	67.3	_
	$m_{3/2} [{\rm GeV}]$	1.5×10^{-3}	300	7.6×10^{-4}	6.8×10^{-3}	1.9	_