Effective theories and dark matter

RICHARD HILL

 CHICAGO

SUSY 2014 Manchester

25 July 2014

based on work with M. Solon, I I I I.00 I 6, I 309.4092(PRL), I40I.3339, and work to appear

Present null results of direct detection and colliders may indicate large WIMP mass scale

If WIMP mass $M \gg m w$, isolation ($M^{\prime}-M \gg m w$) becomes generic. Expand in $m w / M, m w /\left(M^{\prime}-M\right)$
This regime is a focus of future experiments in direct, indirect and collider probes

basic problem in SM physics: scattering of nucleon from $\mathrm{SU}(2) \times U(\mathrm{I})$ source

- discovery of SM-like higgs boson + necessary hadronic matrix elements: complete answer to this problem in principle, but a loopmediated, multi-scale problem
- Mwimp >> mw :WIMP phenomenology highly constrained and universal (analog of heavy quark spin-flavor symmetries). Interesting features, e.g., heavy WIMP "transparency" to nucleon scattering
- complications in addition to QED/QCD analogs: EWSB, and $\mathrm{SU}(3) \times \mathrm{SU}(2) \times U(\mathrm{I})$ vs. $\mathrm{U}(\mathrm{I})$ or $\mathrm{SU}(3)$

DM-nucleus scattering: multi-scale problem

Standard model anatomy well studied in quark flavor and EDM problems. [cf. morning talks of Buras, Lee]

Dark matter still in a relatively nascent stage. Naively subleading corrections can have large effects, e.g. determining observability of motivated candidates.

HQET

HQET, NRQCD, SCET

Very active field. Focus here on physics of direct detection above nuclear scale. Other applications of effective theories:

- Derivative suppressed single nucleon operators and nuclear responses. Lorentz invariance constraints
- Collider production via contact interactions and extensions. Relate constraints in high scale theory ($n_{f}=5$ or 6) to low scale theory ($n_{f}=3$ or 4) where direct detection and other observables are evaluated
- Annihilation, indirect detection. Large logs from SCET and consistent merging with nonperturbative enhancments [work with M. Bauer, T. Cohen and M. Solon (not this talk)] [cf.Thurs. talk of Hellmann]

$m_{W} \sim m_{h} \sim m_{t}$

- consider one or two $\operatorname{SU}(2) \times U(I)$ multiplets
$m_{b}, \quad m_{c}$
Λ_{QCD}
- expand in $m w /(m \times-m x)$
$E_{\text {nuclear }}$
- convergence may be good (cf. Λ / m_{b}) or less good (cf. $\Lambda /$ m_{c}), but a powerful handle on unknown dynamics
- hydrogen spectroscopy

$$
E_{n}(H)=-\frac{1}{2} m_{e}(Z \alpha)^{2}+\ldots \quad\left(m_{e} Z \alpha\right) \ll m_{e}
$$

- heavy meson transitions
$\underset{\text { - DM interactions }}{F^{B \rightarrow D}}\left(v^{\prime}=v\right)=1+\ldots$
$\Lambda_{\mathrm{QCD}} \ll m_{b, c}$

$$
\sigma(\chi N \rightarrow \chi N)=?
$$

$$
m_{W} \ll m_{\chi}
$$

Setup

$$
\begin{aligned}
& \begin{array}{ccccc}
& H & 1 & 2 & \frac{1}{2} \\
\text { e.g. } & \mathrm{X} & \mathbf{1} & 0 & 0 \\
& \mathrm{X} & \mathbf{1} & 3 & 0 \\
& \mathrm{X} & \mathrm{I} & 2 & \mathrm{I} / 2
\end{array}
\end{aligned}
$$

- consider I or 2 multiplets, lightest neutral component stabilized by Z_{2} symmetry (e.g., R parity, G parity)

$$
\begin{aligned}
\mathcal{L}= & \bar{h}\left[i v \cdot \partial+e Q v \cdot A+\frac{g_{2}}{c_{W}} v \cdot Z\left(T^{3}-s_{W}^{2} Q\right)\right. \\
& \left.+\frac{g_{2}}{\sqrt{2}}\left(v \cdot W^{+} T^{+}+v \cdot W^{-} T^{-}\right)-\delta M\left(v_{\mathrm{wk}}\right)-f(\phi)\right] h+\mathcal{O}(1 / M)
\end{aligned}
$$

Low energy theory

Operator basis

$$
\mathcal{L}=\mathcal{L}_{\phi_{0}}+\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\phi_{0}, \mathrm{SM}}+\ldots,
$$

Heavy neutral scalar:

$$
\mathcal{L}_{\phi_{0}}=\phi_{v, Q=0}^{*}\left\{i v \cdot \partial-\frac{\partial_{\perp}^{2}}{2 M_{(Q=0)}}+\mathcal{O}\left(1 / m_{W}^{3}\right)\right\}_{\phi_{v, Q=0}}
$$

SM interactions: $\mathrm{CD}_{\mathrm{D}}=0$ (reality constraint)

$$
\mathcal{L}_{\phi_{0}, \mathrm{SM}}=\frac{1}{m_{W}^{3}} \phi_{v}^{*} \phi_{v}\left\{\sum_{q}\left[c_{1 q}^{(0)} O_{1 q}^{(0)}+c_{1 q}^{(2)} v_{\mu} v_{\nu} O_{1 q}^{(2) \mu \nu}\right]+c_{2}^{(0)} O_{2}^{(0)}+c_{2}^{(2)} v_{\mu} v_{\nu} O_{2}^{(2) \mu \nu}\right\}+\ldots
$$

Convenient to choose basis of definite spin

$$
\begin{aligned}
O_{1 q}^{(0)} & =m_{q} \bar{q} q, & O_{2}^{(0)} & =\left(G_{\mu \nu}^{A}\right)^{2} \\
O_{1 q}^{(2) \mu \nu} & =\bar{q}\left(\gamma^{\{\mu} i D^{\nu\}}-\frac{1}{d} g^{\mu \nu} i \not \square\right) q, & O_{2}^{(2) \mu \nu} & =-G^{A \mu \lambda} G_{\lambda}^{A \nu}+\frac{1}{d} g^{\mu \nu}\left(G_{\alpha \beta}^{A}\right)^{2}
\end{aligned}
$$

Universal mass shift induced by EWSB

$$
\begin{aligned}
& -i \Sigma_{2}(v \cdot p)=-g_{2}^{2} \int \frac{d^{d} L}{(2 \pi)^{L}} \frac{1}{v \cdot(L+p)}\left[J^{2} \frac{1}{L^{2}-m_{W}^{2}}+J_{3}^{2}\left(\frac{c_{W}^{2}}{L^{2}-m_{Z}^{2}}-\frac{1}{L^{2}-m_{W}^{2}}+\frac{s_{W}^{2}}{L^{2}}\right)\right]+\mathcal{O}(1 / M)
\end{aligned}
$$

heavy particle Feynman rules

$$
\begin{gathered}
\delta M=\Sigma(v \cdot p=0)=\alpha_{2} m_{W}\left[-\frac{1}{2} J^{2}+\sin ^{2} \frac{\theta_{W}}{2} J_{3}^{2}\right] \\
M_{(Q)}-M_{(Q=0)}=\alpha_{2} Q^{2} m_{W} \sin ^{2} \frac{\theta_{W}}{2}+\mathcal{O}(1 / M) \approx(170 \mathrm{MeV}) Q^{2}
\end{gathered}
$$

Different pole masses for each charge eigenstate in low-energy theory (residual mass terms)

Matching $(\mu \approx \mathbf{m w})$

$\mathcal{L}-\mathcal{L}_{\mathrm{SM}} \rightarrow \bar{h}\left(i v \cdot \partial-\delta M+g_{2} t^{a} v \cdot W^{a}+g_{1} Y v \cdot B-f(H)\right) h+\mathcal{O}(1 / M)$
$\mathcal{L}_{\mathrm{WIMP}-\mathrm{SM}}=\bar{h}_{0} \nu_{v}\left\{\sum_{q=u, u, s, c, b}\left[c_{1 q}^{(0)} O_{1 q}^{(0)}+c_{1 q}^{(2)} v_{\mu} v_{\nu} \mathrm{O}_{1 q}^{(2) \mu \nu}\right]+c_{2}^{(0)} \rho_{2}^{(0)}+c_{2}^{(2)} v_{\mu} v_{\nu} \nu_{2}^{(2) \mu \nu}\right\}$
M
\qquad

$$
m_{b}, \quad m_{c}
$$

quark operators

Λ_{QCD}
$E_{\text {nuclear }}$

$$
\begin{aligned}
& c_{1 D}^{(0)}\left(\mu_{t}\right)=\mathcal{C}\left[-\frac{1}{x_{h}^{2}}-\left|V_{t D}\right|^{2} \frac{x_{t}}{4\left(1+x_{t}\right)^{3}}\right] \\
& c_{1 D}^{(2)}\left(\mu_{t}\right)=\mathcal{C}\left[\frac{2}{3}-\left|V_{t D}\right|^{2} \frac{x_{t}\left(3+6 x_{t}+2 x_{t}^{2}\right)}{3\left(1+x_{t}\right)^{3}}\right],
\end{aligned}
$$

$c_{1 U}^{(0)}\left(\mu_{t}\right)=\mathcal{C}\left[-\frac{1}{x_{h}^{2}}\right]$

E.g. full theory:

$$
\begin{aligned}
i \mathcal{M}=-g_{2}^{2} \int(d L)\left[\frac{1}{-v \cdot L+i 0}+\right. & \left.\frac{1}{v \cdot L+i 0}\right] \frac{1}{\left(L^{2}-m_{W}^{2}+i 0\right)^{2}} v_{\mu} v_{\nu} \Pi^{\mu \nu}(L) \\
& \quad \text { electroweak polarizability/ensor } \\
& \text { in background gluon field }
\end{aligned}
$$

Electroweak gauge invariance is immediate:

$$
v^{\mu}\left[g_{\mu \mu^{\prime}}-(1-\xi) \frac{L_{\mu} L_{\mu^{\prime}}}{L^{2}-\xi m_{W}^{2}}\right]=v_{\mu^{\prime}}+\mathcal{O}(v \cdot L)
$$

crossed and uncrossed diagrams cancel
Background gluon and Fock-Schwinger gauge ($\mathrm{x} . \mathrm{A}=0$):

$$
\begin{aligned}
i S(p)= & \frac{i}{p-m}+g \int(d q) \frac{i}{p-m} i \not A(q) \frac{i}{p-\not q-m} \quad \not A(q)=t^{a} \gamma^{\alpha}\left[\frac{-i}{2} \frac{\partial}{\partial q_{\rho}} G_{\rho \alpha}^{a}(0)(2 \pi)^{d} \delta^{d}(q)+\ldots\right] \\
& +g^{2} \int\left(d q_{1}\right)\left(d q_{2}\right) \frac{i}{p-m} i \not A\left(q_{1}\right) \frac{i}{p-\not q_{1}-m} i \not A\left(q_{2}\right) \frac{i}{p-\not q_{1}-\not q_{2}-m}+\ldots
\end{aligned}
$$

QCD evolution and threshold matching

M

- large effects of QCD renormalization and threshold matching

$$
m_{W} \sim m_{h} \sim m_{t} \ldots \ldots . . .
$$

Λ_{QCD}
$E_{\text {nuclear }}$

- nontrivial mapping from high-scale coefficients to hadronic amplitudes

12

Solution to RG equations

$$
\begin{array}{ll}
O_{1 q}^{(0)}=m_{q} \bar{q} q, & O_{2}^{(0)}=\left(G_{\mu \nu}^{A}\right)^{2}, \\
O_{1 q}^{(2) \mu \nu}=\bar{q}\left(\gamma^{\{\mu} i D^{\nu\}}-\frac{1}{d} g^{\mu \nu} i \not D\right) q, & O_{2}^{(2) \mu \nu}=-G^{A \mu \lambda} G^{A \nu}{ }_{\lambda}+\frac{1}{d} g^{\mu \nu}\left(G_{\alpha \beta}^{A}\right)^{2}, \\
\frac{d}{d \log \mu} O_{i}^{(S)}=-\sum_{j} \gamma_{i j}^{(S)} O_{j} & \frac{d}{d \log \mu} c_{i}^{(S)}=\sum_{j} \gamma_{j i}^{(S)} c_{j}^{(S)} \\
0: \quad c_{2}^{(0)}(\mu)=c_{2}^{(0)}\left(\mu_{t}\right) \frac{\frac{\beta}{g}\left[\alpha_{s}(\mu)\right]}{\frac{\beta}{g}\left[\alpha_{s}\left(\mu_{t}\right)\right]} & \\
\quad c_{1}^{(0)}(\mu)=c_{1}^{(0)}\left(\mu_{t}\right)-2\left[\gamma_{m}(\mu)-\gamma_{m}\left(\mu_{t}\right)\right] \frac{c_{2}^{(0)}\left(\mu_{t}\right)}{\frac{\beta}{g}\left[\alpha_{s}\left(\mu_{t}\right)\right]}
\end{array}
$$

Spin 0:

Spin 2:

Diagonalize anomalous dimension matrix (familiar from PDF analysis)

As check, can evaluated spin-2 matrix elements at high

$$
\hat{\gamma}^{(2)}=\frac{\alpha_{s}}{4 \pi}\left(\begin{array}{ccc|c}
\frac{64}{9} & & & -\frac{4}{3} \\
& \ddots & & \vdots \\
& & \frac{64}{9} & -\frac{4}{3} \\
\hline-\frac{64}{9} & \cdots & -\frac{64}{9} & \frac{4 n_{f}}{3}
\end{array}\right)+.
$$ scale (spin-0 and spin-2 decoupled)

Integrate out heavy quarks

$$
\begin{aligned}
& c_{2}^{(0)}\left(\mu_{b}\right)=\tilde{c}_{2}^{(0)}\left(\mu_{b}\right)\left(1+\frac{4 \tilde{a}}{3} \log \frac{m_{b}}{\mu_{b}}\right)-\frac{\tilde{a}}{3} \tilde{c}_{1 b}^{(0)}\left(\mu_{b}\right)\left[1+\tilde{a}\left(11+\frac{4}{3} \log \frac{m_{b}}{\mu_{b}}\right)\right]+\mathcal{O}\left(\tilde{a}^{3}\right) \\
& c_{1 q}^{(0)}\left(\mu_{b}\right)=\tilde{c}_{1 q}^{(0)}\left(\mu_{b}\right)+\mathcal{O}\left(\tilde{a}^{2}\right), \\
& c_{2}^{(2)}\left(\mu_{b}\right)=\tilde{c}_{2}^{(2)}\left(\mu_{b}\right)-\frac{4 \tilde{a}}{3} \log \frac{m_{b}}{\mu_{b}} \tilde{c}_{1 b}^{(2)}\left(\mu_{b}\right)+\mathcal{O}\left(\tilde{a}^{2}\right), \\
& c_{1 q}^{(2)}\left(\mu_{b}\right)=\tilde{c}_{1 q}^{(2)}\left(\mu_{b}\right)+\mathcal{O}(\tilde{a}),
\end{aligned}
$$

Contribution to gluon operators familiar from $\mathrm{h} \rightarrow \mathrm{gg}$
Heavy quark mass scheme enters at higher order
Charm quark treated similarly (after running to m_{c})

Nucleon matrix elements

- having evolved to 3-flavor QCD, appeal to lattice QCD or $\operatorname{SU}(3)$ chiral perturbation theory for matrix elements

$$
m_{W} \sim m_{h} \sim m_{t} \ldots \ldots
$$

\qquad
$m_{N}=\left(1-\gamma_{m}\right) \sum_{q}\langle N| m_{q} \bar{q} q|N\rangle+\frac{\beta}{2 g}\langle N|\left(G_{\mu \nu}^{a}\right)^{2}|N\rangle$

$$
\begin{array}{cc}
\Sigma_{\pi N}=\frac{m_{u}+m_{d}}{2}\langle p|(\bar{u} u+\bar{d} d)|p\rangle & \Sigma_{0}=\frac{m_{u}+m_{d}}{2}\langle p|(\bar{u} u+\bar{d} d-2 \bar{s} s)|p\rangle \\
m_{N}\left(f_{u, N}^{(0)}+f_{d, N}^{(0)}\right) \approx \Sigma_{\pi N} & m_{N} f_{s, N}^{(0)}=\frac{m_{s}}{m_{u}+m_{d}}\left(\Sigma_{\pi N}-\Sigma_{0}\right)=\Sigma_{s}
\end{array}
$$

$$
\begin{array}{rlr}
\langle N| O_{1 q}^{(2) \mu \nu}(\mu)|N\rangle & \equiv \frac{1}{m_{N}}\left(k^{\mu} k^{\nu}-\frac{g^{\mu \nu}}{4} m_{N}^{2}\right) f_{q, N}^{(2)}(\mu) . & f_{q, p}^{(2)}(\mu)=\int_{0}^{1} d x x[q(x, \mu)+\bar{q}(x, \mu)] \\
\langle N| O_{2}^{(2) \mu \nu}(\mu)|N\rangle & \equiv \frac{1}{m_{N}}\left(k^{\mu} k^{\nu}-\frac{g^{\mu \nu}}{4} m_{N}^{2}\right) f_{G, N}^{(2)}(\mu) &
\end{array}
$$

$$
\begin{array}{c|cccc}
\mu(\mathrm{GeV}) & f_{u, p}^{(2)}(\mu) & f_{d, p}^{(2)}(\mu) & f_{s, p}^{(2)}(\mu) & f_{G, p}^{(2)}(\mu) \\
\hline 1.0 & 0.404(6) & 0.217(4) & 0.024(3) & 0.36(1) \\
1.2 & 0.383(6) & 0.208(4) & 0.027(2) & 0.38(1) \\
1.4 & 0.370(5) & 0.202(4) & 0.030(2) & 0.40(1)
\end{array} \quad \begin{gathered}
\quad f_{u, n}^{(2)}=f_{d, p}^{(2)}, \quad f_{d, n}^{(2)}=f_{u, p}^{(2)}, \quad f_{s, n}^{(2)}=f_{s, p}^{(2)}, \quad . \quad
\end{gathered}
$$

- strange quark scalar matrix element overestimated (central value) by $\mathrm{SU}(3)$ ch.p.t.
\qquad

$$
m_{W} \sim m_{h} \sim m_{t} \ldots \ldots \ldots .
$$

- important impact on cross sections

- lattice still converging, but indicate small value

summary plot: Junnarkar and Walker-Loud, I 30I.I I | 4
- new frontier: charm scalar matrix element

$m_{b}, \quad m_{c}$
Λ_{QCD}
$E_{\text {nuclear }}$

Freeman et al [MILC] I204.3866
Gong et al. I 304.1194

- upper-bound \leftrightarrow prediction for some cross sections

Some results

(benchmark zero-velocity, heavy particle limit of single-nucleon cross section)

Triplet (e.g., wino)

$$
\sigma_{\mathrm{SI}}^{T}=1.3_{-0.5-0.3}^{+1.2+0.4} \times 10^{-47} \mathrm{~cm}^{2}
$$

perturbative uncertainty

hadronic uncertainty
cf. dimensional estimate: $\quad \sigma_{\mathrm{SI}} \sim \frac{\alpha_{2}^{4} m_{N}^{4}}{m_{W}^{2}}\left(\frac{1}{m_{W}^{2}}, \frac{1}{m_{h}^{2}}\right)^{2} \sim 10^{-45} \mathrm{~cm}^{2}$

By heavy WIMP spin symmetry, same result for self-conjugate fermion (wino) as real scalar (e.g. weakly interacting stable pion)

Doublet (e.g. higgsino)

$$
\sigma_{\mathrm{SI}}^{D} \lesssim 10^{-48} \mathrm{~cm}^{2} \quad(95 \% \text { C.L. })
$$

By heavy WIMP spin symmetry, same result for fermion (higgsino) as scalar (e.g."inert higgs")

Mixed cases

With the scale separation $M \gg m w$,"pure states" are generic: effects of higher states suppressed by $\mathrm{mw} /\left(\mathrm{M}^{\prime}-\mathrm{M}\right)$

Intricate interplay of $m w /\left(M^{\prime}-M\right)$ suppressed higgs exchange versus pure-state loop corrections

Again, analyze in the $M, M^{\prime} \gg m w$ limit.

Inclusion of additional multiplets allows nontrivial residual mass and direct Higgs coupling

$$
\begin{aligned}
& \mathcal{L}=\bar{h}_{v}[i v \cdot D-\delta m-f(H)] h_{v}+\mathcal{O}(1 / M)
\end{aligned}
$$

Tree level mass diagonalization

$$
\delta m\left(v_{\mathrm{wk}}\right)=\delta m+v_{\mathrm{wk}}\left(\begin{array}{ccc}
0 & a_{1}(0,1) & a_{2}(0,1) \\
a_{1}\left(\begin{array}{l}
0 \\
1 \\
(
\end{array}\right) & 0_{2} & 0_{2} \\
a_{2}\left(\begin{array}{l}
\\
1
\end{array}\right) & 0_{2} & 0_{2}
\end{array}\right)
$$

mass eigenstate basis:

$$
h=\left(\begin{array}{c}
h_{0}^{(0)} \\
h_{0}^{(+)} \\
h_{0}^{(-)} \\
h_{+} \\
h_{-}
\end{array}\right)
$$

$\delta m=\operatorname{diag}\left(a v \tan \frac{\rho}{2}, a v \frac{2}{\sin \rho}, 0, a v \tan \frac{\rho}{2}, a v \tan \frac{\rho}{2}\right)$

$\xlongequal[\sum_{\sum}^{h_{\lambda_{ \pm}}{ }^{h_{\lambda_{0}^{(+)}}}}{ }_{\sum^{\mp}}= \pm \frac{i g_{2} a_{ \pm}}{2 a}\left|\sin \frac{\beta}{2}\right| v^{\mu}]{ }$

$$
\Delta \equiv \frac{M_{S}-M_{D}}{2}, \quad a \equiv \sqrt{a_{1}^{2}+a_{2}^{2}} \quad \sin \rho \equiv \frac{a v}{\sqrt{(a v)^{2}+\Delta^{2}}}, \quad \cos \beta \equiv \frac{\Delta}{\sqrt{(a v)^{2}+\Delta^{2}}}
$$

Onshell renormalization

$$
\left.\begin{array}{rl}
\mathcal{L} & =\bar{h}^{\text {bare }}\left[i v \cdot D-\mu^{\text {bare }}-f^{\text {bare }}(H)\right] h^{\text {bare }} \\
& =\bar{h}[i v \cdot D-\mu-f(H)] h+\bar{h}\left[\delta Z_{h} i v \cdot D-\delta \mu-\delta f(H)\right] h \\
& \mu^{\text {bare }}=\operatorname{diag}\left(\mu_{S}^{\text {bare }}, \mu_{D}^{\text {bare }}, \mu_{D}^{\text {bare }}, \mu_{D}^{\text {bare }}, \mu_{D}^{\text {bare }}\right), \\
& f^{\text {bare }}=\frac{b_{1}^{\text {bare }}}{\sqrt{2}}\left(\begin{array}{cc}
0 & H^{\dagger}+H^{T} \\
H+H^{*} & O_{2} \\
i\left(H-H^{T}-H^{\dagger}\right) \\
i\left(H^{\dagger}\right) & 0_{2}
\end{array} 0_{2}\right.
\end{array}\right)
$$

Compute loop corrections $\Sigma_{2}($ v.k $)$

$$
\left.\left.\left.\begin{array}{rl}
{[\delta \mu]_{22}+\operatorname{Re}\left[\Sigma_{2}\left(\delta m(v)_{0}^{(+)}\right)\right]_{22}-\delta m(v)_{0}^{(+)}\left[\delta Z_{h}\right]_{22}} & =0 \\
{[\delta \mu]_{33}+\operatorname{Re}\left[\Sigma_{2}(0)\right]_{33}} & =0 \\
{[\delta \mu]_{11}+\operatorname{Re}\left[\Sigma_{2}\left(\delta m(v)_{ \pm}\right)\right]_{11}-\delta m(v)_{0}^{(0)}\left[\delta Z_{h}\right]_{11}=0}
\end{array}\right\} \begin{array}{c}
\text { renormalized lagrangian } \\
\text { parameters }=\text { physical } \\
\text { masses }
\end{array}\right] \begin{array}{c}
{[\delta M]_{13}+\operatorname{Re}\left[\Sigma_{2}(0)\right]_{13}=0} \\
{[\delta M]_{23}+\operatorname{Re}\left[\Sigma_{2}(0)\right]_{23}=0}
\end{array}\right\} \begin{gathered}
\text { lightest state remains } \\
\text { eigenstate }
\end{gathered}
$$

Additional states in the dark sector
singlet-doublet (e.g., bino-higgsino)

triplet-doublet (e.g., wino-higgsino)
Δ : mass splitting of multiplets, in units where tree/ loop crossover occurs at ~ 1
interplay of mass-suppressed (tree level) and loop suppressed contributions

Additional states in the Higgs sector

can the amplitude cancellation be avoided ?

phenomenologically allowed
coupling of h to $\mathrm{W}, \mathrm{Z}, \mathrm{u}, \mathrm{c}, \mathrm{t}: 1+\mathcal{O}\left(1 / t_{\beta}^{2}\right)$
coupling of h to $\mathrm{d}, \mathrm{s}, \mathrm{b}: 1-\eta+\mathcal{O}\left(1 / t_{\beta}^{2}\right)$
$\eta \equiv t_{\beta} \cos (\beta-\alpha):$ departure from "alignment" limit

Summary

- Indications of $M_{\text {New Physics }} \gg$ mw imply constrained but challenging WIMP phenomenology
- Heavy WIMP effective theory used to give first complete matching onto full basis of operators at the weak scale at leading order in perturbation theory: application to SM extensions consisting of I and 2 electroweak multiplets
- Systematic treatment of QCD perturbation theory and scale uncertainties (significant residual perturbative uncertainty)
- Important inputs from lattice (strange scalar matrix element), and potential impact of charm scalar matrix element
- Much work to do: power corrections, detailed nuclear modeling, interface with indirect detection

