Pati-Salam GUT-Flavour Models with Three Higgs Generations

Florian Hartmann

in collaboration with Wolfgang Kilian and Karsten Schnitter

based on:

JHEP 1405 (2014) 064 and arXiv:1405.1901

Universität Siegen Theoretische Physik I

SUSY14 Manchester, July 24th, 2014

- Consider SUSY Pati-Salam models
 - multi-step breaking, intermediate mass scales
- include 3 generations of MSSM-Higgs doublets
 - consistent with matter-Higgs unification
- embed flavour via flavour symmetry breaking
 - theory of flavour near the Planck scale
 - single $SU(3)_F$ spontaneously broken by flavons
 - consider different flavon representations

Multi-step breaking of SUSY Pati-Salam

PS Higgs content

$PS:\;(SU(4)_C,SU(2)_L,SU(2)_R)$	<i>SO</i> (10)
Breaking to Intermediate Symmetry	
$\Sigma = (15, 1, 1) \text{ to break } SU(4)$ $T_R = (1, 1, 3) \text{ to break } SU(2)_R$ $T_L = (1, 3, 1) \text{ and } E = (6, 2, 2)$	} 45
Breaking to $SU(3)_C \times SU(2)_L \times U(1)_Y$	
$\Phi_R = (\overline{4}, 1, 2)$ and $\overline{\Phi}_R = (4, 1, 2)$ to break PS $\Phi_L = (4, 2, 1)$ and $\overline{\Phi}_L = (\overline{4}, 2, 1)$	$\left. \right\} \ 16 \oplus \mathbf{\overline{16}}$
optional MSSM Higgs	
h = (1, 2, 2): MSSM-higgs F = (6, 1, 1): possibly light triplets	} 10

Results

see-saw-like mass terms in Higgs fields

• new intermediate mass-scale: $M_{
m IND} \sim rac{\langle \Phi
angle^2}{\langle \Sigma
angle + \langle T
angle}$

construct renormalizable Higgs sector superpotential

- → light colour triplets (down to TeV-scale)
- \rightsquigarrow useful for unification

• MSSM-Higgs doublet:

 $\langle T \rangle \neq 0: \ \mu\text{-term} \sim \frac{\langle \Phi \rangle^2}{\langle T \rangle}$ $\langle T \rangle = 0: \text{ two massless doublets from } \Phi_L \text{ (at MSSM-scale)}$ $\rightarrow \text{ makes } h (1, 2, 2) \text{ optional}$ $\rightarrow SU(2)_R \text{ and } SU(2)_L \text{ breaking from same } SO(10) \text{ representation}$

5 / 17

ith 3G Higgs N

W. Kilian, J.Reuter: arXiv:hep-ph/0606277

Requirements for unification

Inputs:

- MSSM-scale: 2.5 TeV
- 4 unification-requirements
- but 4 (5) mass-scales
- $\Rightarrow\,$ scales are constrained but not fixed

- For each breaking class
 - scan all allowed field configurations
 - each field may appear 0, 1 or 3 times
- For each configuration
 - $\bullet\,$ test whether unification below $10^{19}\,{\rm GeV}$ possible
 - find allowed ranges for all mass scales

- For each breaking class
 - scan all allowed field configurations
 - each field may appear 0, 1 or 3 times
- For each configuration
 - $\bullet\,$ test whether unification below $10^{19}\,{\rm GeV}$ possible
 - find allowed ranges for all mass scales

	class B	class C	class E	class F	Σ
scanned	144	144	324	216	828
GCU	18	57	254	29	358
$M_{ m GUT} > 10^{16}{ m GeV}$	18	57	131	29	235
$M_{ m IND} < 10{ m TeV}$ and $M_{ m GUT} > 10^{16}{ m GeV}$	8	34	72	0	114
$M_{\sf LR} < 100{ m TeV}$	1	11	108	0	120
$10^{12}{ m GeV} < M_{N_R} < 10^{14}{ m GeV}$	16	42	123	3	184
$M_{ ext{IND}} \in ext{ [0.1, 10] } rac{v_{\Phi}^2}{v_{\Sigma} + v_{T}}$	14	20	203	26	263

Class B: $\langle \Phi \rangle \ll \langle T \rangle \ll \langle \Sigma \rangle$

Field Content								
	DC	h	F (6 1 1)	$\Phi_{L/R}$	$\overline{\Phi}_{L/R}$	Σ	E	$T_{L/R}$
	РЗ #	3	(0, 1, 1) 3	$(4, 2, 1)_{L/R}$ 1	$(4, 2, 1)_{L/R}$ 1	(15, 1, 3	1) (0,2,2) 0	$(1, 5, 1)_{L/R}$ 1
α^{-}	1						$M_{\rm IND} = 10^4 {\rm G}$ $M_{\rm GUT} = 10^{18} {\rm G}$	GeV ^{3.2} GeV
80 60							green band [$7 \cdot 10^{11} \leq M$	GeV]: $M_{ m MSSM} \leq 1\cdot 10^{12}$
40							red band [Ge $2 \cdot 10^{13} \leq M$	V]: $I_{R} \leq 2 \cdot 10^{14}$
20	_							
0		· · · · · · · · · · · · · · · · · · ·				$M_{\rm GUT}$	blue band [G	eV]:
10	0	105	10 ⁸ 1	10^{11} 10^{14}	1017	[GeV]	$3 \cdot 10^{15} \leq M$	$_{\rm PS} \leq 4 \cdot 10^{15}$

8 / 17

Class C: $\langle \Phi \rangle \ll \langle \Sigma \rangle \ll \langle T \rangle$

Field Content								
	PS #	h (1,2,2) 1	F (6,1,1) 3	$\begin{array}{c} \Phi_{L/R} \\ (4,2,1)_{L/R} \\ 1 \end{array}$	$\overline{\Phi}_{L/R}$ $(\overline{4},2,1)_{L/L}$ 1	Σ _R (15, 1, 1	E 1) (6,2,2) 3	$T_{L/R}$ (1, 3, 1) _{L/R} 1
α^{-}	-1						$M_{\rm IND} = 10^4 { m G}$ $M_{\rm GUT} = 10^{18}$	${ m GeV}^{ m S.2}{ m GeV}$
80 60							green band [$5 \cdot 10^{10} \leq M$	GeV]: $_{ m MSSM} \leq 6 \cdot 10^{13}$
40							red band [Ge $1\cdot 10^{15} \leq M$	V]: $_{\sf QL} \leq 5\cdot 10^{16}$
20								
٥						$M_{\rm GUT}$	blue band [G	eV]:
Ĭ0	0	10^{5}	10^8 1	10^{11} 10^{14}	10^{17}	[GeV]	$2\cdot 10^{16} \leq M$	$_{\sf PS} \leq 6 \cdot 10^{16}$

Field Content

	h	F	$\Phi_{L/R}$	$\overline{\Phi}_{L/R}$	Σ	Е	$T_{L/R}$
PS	(1, 2, 2)	(6, 1, 1)	$(4, 2, 1)_{L/R}$	$(\overline{4},2,1)_{L/R}$	(15, 1, 1)	(6, 2, 2)	$(1, 3, 1)_{L/R}$
#	0	0	1	1	1	0	0

Field Content

	h	F	$\Phi_{L/R}$	$\overline{\Phi}_{L/R}$	Σ	Е	$T_{L/R}$
PS	(1, 2, 2)	(6, 1, 1)	$(4, 2, 1)_{L/R}$	$(\overline{4},2,1)_{L/R}$	(15, 1, 1)	(6, 2, 2)	$(1, 3, 1)_{L/R}$
#	1	3	3	3	3	1	1

Flavour symmetry broken by flavons ϕ_k

$$\begin{aligned} \mathscr{L}_{\mathsf{Yuk}} &= -\frac{c}{M^n} \, \Phi_{ij} h \, \Psi_i^L \, \Psi_j^{cR} \qquad > M \sim M_{\mathsf{Planck}} \\ &\to -\frac{c}{M^n} \langle \Phi_{ij} \rangle \, h \, \Psi_i^L \, \Psi_j^{cR} \qquad < M \end{aligned}$$

with the SM-Yukawa-coupling $y_{ij} = -\frac{c}{M^n} \langle \Phi_{ij} \rangle$ and $\Phi_{ij} = \prod_k^n \phi_k$

Requirements:

(1) following form fits quark-data quite well

$$Y_{u/d} \approx \begin{pmatrix} 0 & O(\epsilon^3) & O(\epsilon^3) \\ O(\epsilon^3) & O(\epsilon^2) & O(\epsilon^2) \\ O(\epsilon^3) & O(\epsilon^2) & O(1) \end{pmatrix}$$

with $\epsilon_u \approx 0.05$ and $\epsilon_d \approx 0.15$

Roberts, Romanino, Ross, Velasco-Sevilla: arXiv:hep-ph/0104088

(2) neutrino-data also described in case of Sequential Right-Handed Neutrino Dominance (SRHND) King: arXiv:hep-ph/0310204

Florian Hartmann (Universität Siegen)

PS-GUT Models with 3G Higgs

- consider flavour- $SU(3)_F$ in Pati-Salam GUT
- consider Higgs as flavour-triplet
- \Rightarrow consistent with matter-higgs-unification:

 $\rightsquigarrow \Psi = (\mathbf{27}, \mathbf{3}) \ (E_6$ -unification)

Caution: new trivial invariant $\varepsilon^{ijk} \Psi_i^L \Psi_i^R h_k$

- \rightsquigarrow large off-diagonal Yukawa matrix entries
- \Rightarrow additional discrete symmetry needed

Considered flavon representations Model 1: $\phi_i \rightarrow \mathbf{3} / \overline{\mathbf{3}}$ Model 2: $\phi_i \rightarrow \overline{\mathbf{10}} = (\overline{\mathbf{3}} \otimes \overline{\mathbf{3}} \otimes \overline{\mathbf{3}})_s$

Ansatz

- consider SU(3) ⊗ PS-model with flavour triplet Higgs (for singlet Higgs similar to existing models) King, Ross: arXiv:hep-ph/0307190
- Flavons are flavour triplets $\Rightarrow \langle \phi_3 \rangle = \langle \overline{\phi}_3 \rangle = (0, 0, \sqrt[3]{\epsilon}) M$; $\langle \phi_{23} \rangle = \langle \overline{\phi}_{23} \rangle = (0, \epsilon, \epsilon) M$
- additional symmetry: $U(1)\otimes Z_3$

Results:

- leading contribution from dim 6 term $(\Psi_L \overline{\phi}_3)(\Psi_R \overline{\phi}_3)(h \overline{\phi}_3)$
- dim 6 generates Yukawa 2-3 block ($\phi_3 \rightarrow \phi_{23}$)
- NLO leads to large corrections to Yukawa matrix
- only possible to forbid field-configurations (not invariants) \rightarrow fine tuning
- possible, but need to eliminate formally leading terms

Model 2: decuplet flavons

Field	$SU(3)_F$	PS	Z_4	Z_2^R
Ψ_L	3	(4, 2, 1)	1	_
Ψ_R	3	$(\bar{4}, 1, 2)$	1	_
h	3	(1, 2, 2)	1	+
ϕ_3	10	(1, 1, 1)	1	+
ϕ_2	10	(1, 1, 1)	1	+
$\overline{\phi}_{3}$	10	(1, 1, 1)	3	+
$\overline{\phi}_2$	10	(1, 1, 1)	0	+
Φ_R	3	(4, 1, 2)	1	+

$$\begin{split} \langle \phi_3 \rangle_{333} &= \langle \overline{\phi}_3 \rangle_{333} \sim \epsilon \\ \langle \phi_2 \rangle_{ijk} &= \langle \overline{\phi}_2 \rangle_{ijk} \sim \epsilon^3 \ (i.j.k \ge 2) \\ \langle h \rangle &= (1,1,1) \ v_{\text{MSSM}} \\ \langle \Phi_R \rangle &= (0,0,1) \ v_{\Phi} \end{split}$$

$$Y_{4\&5}^f \sim \begin{pmatrix} 0 & \epsilon^3 & \epsilon^3 \\ \epsilon^3 & \epsilon^2 & \epsilon^2 \\ \epsilon^3 & \epsilon^2 & 1 \end{pmatrix}$$

$$W_{\text{lead}} \sim \frac{1}{M} \left[\phi_3 \Psi_L \Psi_R h + \phi_2 \Psi_L \Psi_R h \right]$$
$$W_{\text{dim5}} \sim \frac{1}{M^2} \left[h \phi_3 \overline{\phi}_2 \Psi_L \Psi_R + h \phi_2 \overline{\phi}_2 \Psi_L \Psi_R \right]$$

$$egin{aligned} \mathcal{W}_{\mathsf{Maj}} &\sim rac{1}{\mathcal{M}'} \left(\Psi_R \, \Phi_R
ight)^2 \left[1 + rac{1}{\mathcal{M}'^2} \left(\phi_3 \, \overline{\phi}_3 + \phi_2 \, \overline{\phi}_3 + \overline{\phi}_2 \, \overline{\phi}_2
ight) \ &+ rac{1}{\mathcal{M}'^3} \left(\phi_3 \, \overline{\phi}_2 \, \overline{\phi}_3 + \phi_2 \, \overline{\phi}_3 \overline{\phi}_2
ight)
ight] \end{aligned}$$

$$M_{\text{Maj}} \sim \begin{pmatrix} \epsilon_{\nu}^{6} & \epsilon_{\nu}^{7} & \epsilon_{\nu}^{5} \\ \epsilon_{\nu}^{7} & \epsilon_{\nu}^{4} & \epsilon_{\nu}^{4} \\ \epsilon_{\nu}^{5} & \epsilon_{\nu}^{4} & 1 \end{pmatrix} \frac{\langle \phi_{R} \rangle^{2}}{M'}$$

- Eigenvalues of order: $\left(\epsilon_{
 u}^{6}\ :\ \epsilon_{
 u}^{4}\ :\ 1
 ight)$
- \rightsquigarrow sequential dominance
 - different expansion parameter $\epsilon_{\nu} < \epsilon_{u}$
- $\rightsquigarrow \mathsf{PMNS}\text{-like lepton mixing}$

Multi-step breaking of SUSY-Pati-Salam

- unification of gauge-couplings possible
- introduction of intermediate scale
 - \rightsquigarrow intermediate neutrino scale
- mass scales can vary over quite large mass-ranges

Flavour triplet Pati-Salam Higgs models

- models with $SU(3)_F$ and flavour triplet Higgs are possible
- decuplet flavons reproduce flavour structure
- triplet flavons are challenging but possible

17 / 17

Backup slides

Single right handed neutrino dominance

King: arXiv:hep-ph/0310204

2-D Example

$$M_{RR} = \left(\begin{array}{cc} Y & 0 \\ 0 & X \end{array} \right)$$
 and $M_{LR} = \left(\begin{array}{cc} e & b \\ f & c \end{array} \right)$

with: $X \gg Y$

and see-saw
$$M_{LL} = M_{LR} \cdot M_{RR}^{-1} \cdot M_{LR}$$

 $\Rightarrow M_{LL} = \begin{pmatrix} \frac{e^2}{Y} + \frac{b^2}{X} & \frac{ef}{Y} + \frac{bc}{X} \\ \frac{ef}{Y} + \frac{bc}{X} & \frac{f^2}{Y} + \frac{c^2}{X} \end{pmatrix} \approx \begin{pmatrix} \frac{e^2}{Y} & \frac{ef}{Y} \\ \frac{ef}{Y} & \frac{f^2}{Y} \end{pmatrix}$
 $\Rightarrow m_1 \approx 0$ and $m_2 \approx \frac{e^2 + f^2}{Y}$

 $\Rightarrow \tan(\theta_{23}) \approx \frac{e}{f}$

17 / 17