SM Higgs in Fermion Decay modes in ATLAS

SUSY 2014 conference, Manchester July 22, 2014

Higgs discovery made with boson decays

Fermion decays : crucial item for Higgs coupling studies

- Universality of Higgs coupling
- Linear dependence on fermion mass
- Constraint to total Higgs width
- ⇒ Explore as many channels as possible
- ⇒ But low S/B channels

	Gluon fusion	VBF	Associated VH	Associated ttH		
	A COLUMN I	a Allander H a	W.Z. And Market and Andrews Z	ar Casallan II		
$H \to \mu^+ \mu^-$ (0.022%)	CERN-PH-EP-2014-131, submitted to Physics Letters B					
$H \rightarrow \tau^+ \tau^-$ (6.3%)	ATLAS-CONF	-2013-108	-	-		
<i>H</i> → <i>bb</i> ̄ (58%)	_	-	ATLAS-CONF-2013-079	ATLAS-CONF-2014-011		

A very clean signature

- Two high-p_T(25/15 GeV), isolated, opposite-sign muons
- No E^{miss}_T (80 GeV)
- ⇒ Acceptance × efficiency ~ 55%
- ⇒ Excellent resolution: 2–3 GeV

Backgrounds

- Drell-Yan: 96%
- 📕 tī: 3%
- Smooth background shape

Statistical analysis setup

- Analytical description of background and signal shapes
- Analysis divided in categories of different S/\sqrt{B}
 - VBF category with jets
 - Categories with $|\eta^{\mu}|$ and $p_{\tau}^{\mu\mu}$

Results

- Observed (expected) 95% CLs limit at 125.5 GeV: 7.0 (7.2)
- Uncertainty: mostly statistics
- Main systematics: theory ~15% (QCD scales, PDF, Branching ratio)
- Experimental systematics: subleading $\sim 4\%$

Analysis divided into 3 channels

$\tau_{\text{lep}} \tau_{\text{lep}}$ (BR: 12%)

- 2 opposite-sign e/μ
- τ_{had} veto
- Drell-Yan veto $m_{\tau\tau}^{\rm vis}$
- $E_{T}^{miss} > 20(40) \, GeV$

Further selections

- b-jet veto
- VBF category
 - 2 well-separated (|Δη| > 2) high-p_T (40, 30 GeV) jets
- Boosted category
 - p_T^H>100 GeV

 $\tau_{\text{lep}}\tau_{\text{had}}$ (BR: 46%)

- $1 e/\mu + 1$ opposite-sign τ_{had}
- $m_T^{\ell, E_T^{\text{miss}}} \text{ cut against} \\ W+\text{jets}$

$\tau_{\rm had} \tau_{\rm had}$ (BR: 42%)

- 2 opposite-sign high-p_T τ_{had} (35/25 GeV)
- e/μ veto
- ΔR / Δη kinematic cuts
- Alignment of E^{miss}_T with τ_{had}s

Use of boosted decision trees

- Trained in each channel and category
- 6 to 9 kinematic variables

Choice of variables

- **H** resonance: $m_{\tau\tau}^{\text{MMC}}$, $\Delta R(\tau\tau)$
- VBF-specific: $m(j_1, j_2)$, $|\Delta \eta(j_1, j_2)|$
- Boosted-specific: p_T of objects, E_T^{miss} alignment

- Mass obtained by solving for missing neutrinos
- Most discriminant variable

Most backgrounds are estimated from data or are normalized in dedicated control regions

Main $Z \rightarrow \tau \tau$ background

Estimated from $Z \rightarrow \mu\mu$ events in data with τ embedding

$t\bar{t}$, single top

Normalized using control region with tagged jets

Events with fake τ

$au_{\text{lep}} au_{\text{lep}}$

- Invert isolation of one of the leptons
- Normalize with p_T^{l2}

$au_{\mathsf{lep}} au_{\mathsf{had}}$

- Fake factors in control regions for gluon jets and quark jets
- Applied in region with loosened τ-ID

$au_{\mathsf{had}} au_{\mathsf{had}}$

- Use region with not-opposite-sign τ
- Simultaneous fit of multijet and $Z \rightarrow \tau \tau$ on $\Delta \eta(\tau, \tau)$

N. Morange (U. of Iowa)

SM Higgs in fermion decays at ATLAS

7/19

Backgrounds

- Normalizations left mostly free in the profile likelihood fit
- Add control regions in the fit to estimate the rates
- Shape systematics from varying control regions
- ⇒ Main source of systematics

Experimental systematics

- Jet energy scale: significant impact on VBF topology
- τ identification efficiency and τ energy scale

Theory systematics

- Modelling of p_T^H
- QCD scales, PDF

Direct evidence of Higgs decay to fermions

- Significance: 4.1σ at 125 GeV
 - 3.2σ expected
- Signal strength $\mu = 1.5^{+0.5}_{-0.4}$
 - Results compatible between channels

$t\bar{t}H \rightarrow b\bar{b}$: presentation

A complex final state

- 2 channels: semi-leptonic / dileptonic tt decays
- High jet multiplicity
- High b-jets multiplicity
- Main irreducible background *t*t
 t+*b*b
 is poorly known

Analysis categorized in number of jets and *b*-tags

Selection single-lepton

- 1 high-p_T (25 GeV) isolated lepton
- At least 4 jets p_T > 25 GeV
- At least 2 of them b-tagged (70% efficiency)

Selection dilepton

- 2 high-p_T (25 GeV, 15 GeV) isolated leptons
- Z mass veto (ee, $\mu\mu$), H_T cut (e μ)
- At least 2 jets p_T > 25 GeV
- At least 2 of them b-tagged

$t\bar{t}H \rightarrow b\bar{b}$: Analysis method

Neural Network in Signal regions

- 10 kinematic variables per region
- Trained in each region

${\it H}_{\rm T}$ (scalar sums of $p_{\rm T}$) in control regions

 Used in profile likelihood fit to constrain backgrounds

ATLAS Preliminary Simulation

Total background

tīH (m., = 125 GeV)

vs = 8 TeV

≥6j,≥4b

0.08

0.04

-0.8

Single lepton

$t\bar{t}H \rightarrow b\bar{b}$: Systematic uncertainties

Main challenge: control of $t\bar{t}$ +jets

- Large normalization uncertainties
 - 6% on tt normalization
 - **50%** on $t\bar{t}+b\bar{b}$ and $t\bar{t}+c\bar{c}$
- High statistics control regions constrain normalizations
 - Unc on $t\bar{t}+b\bar{b}$ ($t\bar{t}+c\bar{c}$) reduced to 15% (29%)
- Additional shape uncertainties from:
 - MC generators, parton showers, PDF
 - unfolded ATLAS tt measurements (arXiv:1407.0371 [hep-ex])

Other systematics

- Small impact from other backgrounds and signal modelling, except tt+Z cross-section
- Major influence of b-tagging systematics
 - Especially light jets mistag efficiency (large uncertainty)
- Significant role of Jet energy scale systematics

THE IIII UNIVERSITY OF IOWA

$t\bar{t}H \rightarrow b\bar{b}$: **Results**

Results

- Observed signal strength $\hat{\mu} = 1.7 \pm 1.4$, compatible between single-lepton and dilepton channels
- 95% CLs limits: 4.1 observed, for expected 3.4 if µ = 1

ATLAS Preliminary

Single lepton

≥6i.≥4b

L dt = 20.3 fb⁻¹, s = 8 TeV

Data

l tt+light

tť+cč tť+bb tť+V non-tť

//// Total unc.

ttH (125) norm

Events / 0.

Data / Pred

 $VH \rightarrow b\bar{b}$: **Presentation**

UNIVERSITY Analysis divided into 3 channels

0 lepton

- High $E_{T}^{miss}(> 120 GeV)$
- Anti-MJ cuts: E_T^{miss} and p_T^{miss}

1 lepton

- 1 high-p_T (25 GeV) isolated lepton
- Anti-MJ cuts: m_T^W and E_T^{miss}

2 leptons

- 2 opposite-sign high-p_T (25, 10 GeV) leptons
- Anti-top cuts: Z mass window 8 GeV, E_T^{miss} < 60 GeV

Common selections

- 2 or 3 high-p_T jets (45, 20 GeV)
- of which 2 b-tagged (70% efficiency)
- Specific improvements to b-jet resolution
- $\Delta R(b\bar{b})$ cuts for background rejection

IVERSITY OF IOWA Analysis divided into numerous categories

- **\rho_T^V** categorization: improvement of S/B
- Signal Regions (SR): $m_{b\bar{b}}$ used as discriminant variable
- Control Regions (CR): total yields only

Channel	Nb $p_{\mathrm{T}}^{\mathrm{V}}$ bins	2jets, 1tag	3jets, 1tag	2jets, 2tags	3jets, 2tags	<i>e-µ</i> CR
0-lepton	3	CR	CR	SR	SR	-
1-lepton	5	CR	CR	SR	SR	-
2-lepton	5	CR	CR	SR	SR	CR

 $e-\mu$ CR: 1 electron, 1 muon, $m_{\ell\ell} > 40$ GeV

$VH \rightarrow b\bar{b}$: Background modelling

UNIVERSITY VH analysis: low S/B and diverse background sources

V+jets

- Correction of ΔΦ(jj) improves modelling for Z+jets and W+jets
- Systematics on most important variables: $\Delta \Phi$, $m_{b\bar{b}}$, flavour composition
 - from MC generators and data studies

tī

- Correction of top p_T from unfolded measurement
- Large tt phase space probed in the analysis
 - Modelling systematics allow sufficient flexibility

Multijet

- Estimated with data-driven methods
- Significant only in 1 lepton channel

Single-top, diboson

Estimated from Monte Carlo

Check of the profile likelihood

- Very good check of validity of modelling and fit
- WZ+ZZ as signal
- Higgs at 125 GeV treated as background
- Measure $\mu_{VZ} = 0.9 \pm 0.1(\text{stat}) \pm 0.2(\text{syst})$
- Significance 4.8σ (5.1σ expected)

Main systematics on Higgs fit

- tt̄ modelling
- b and c-tagging efficiencies
- Signal modelling
- Overall background uncertainty ~ 3% after profiling

$VH \rightarrow b\bar{b}$: **Results**

Combined results

- No excess observed
- $\mu_H = 0.2 \pm 0.5(\text{stat}) \pm 0.4(\text{syst})$
- Compatible with both signal and background hypotheses
- Observed (exp) limit at 125 GeV: 1.4 σ_{SM} (1.3)

Extrapolation of the analysis to high luminosities (ATL-PHYS-PUB-2014-011)

Evidence at 3.9 σ expected from 1 and 2 lepton channels with 300 fb⁻¹, $\sqrt{s} = 14 TeV$

Conclusions

THE UNIVERSITY OF IOWA

Very rich results on Higgs fermion decays in ATLAS Run1 data

- Evidence at 4.1 σ of $H \rightarrow \tau^+ \tau^-$ decay mode
- Limits set in H → µ⁺µ[−] mode (7.0 SM): no strong deviation in lepton couplings
- No signal observed in $t\bar{t}H$ and $VH \rightarrow b\bar{b}$ modes, but results compatible with SM Higgs: $\hat{\mu} = 1.7 \pm 1.4$ and 0.2 ± 0.7 respectively

Combined evidence for fermion decays (ATLAS-CONF-2014-009)

- $H \rightarrow \tau^+ \tau^-$ and $VH \rightarrow b\bar{b}$ combined excess of 3.7 σ
- Result compatible with SM expectation:

$$\hat{\mu} = 1.09^{+0.36}_{-0.32}$$

Updates of some analyses are expected: stay tuned for further results !

Additional material

N. Morange (U. of Iowa)

SM Higgs in fermion decays at ATLAS

SUSY 2014, 22/07/14

2/4

7 categories in the $H \rightarrow \mu^+ \mu^-$ analysis

Central muons,	Non-central muons	VBF	
$p_{\mathrm{T}}^{\mu\mu}$ < 15 GeV	$p_{\mathrm{T}}^{\mu\mu}$ < 15 GeV	≥2 jets	
Central muons,	Non-central muons	<i>m_{jj}</i> > 500 GeV	
$15 < p_{\rm T}^{\mu\mu} < 50~{ m GeV}$	$15 < p_{\rm T}^{\mu\mu} < 50 { m ~GeV}$	$\Delta \eta_{jj} > 3$	
Central muons,	Non-central muons	$\eta_{j1} \times \eta_{j2} < 0$	
$p_{\mathrm{T}}^{\mu\mu}$ > 50 GeV	$p_{\mathrm{T}}^{\mu\mu}$ > 50 GeV		

$VH \rightarrow b\bar{b}$: High lumi analysis

- Truth studies based on current $VH \rightarrow b\bar{b}$ analysis
- 1 and 2 lepton channels
- Smearing functions, pile-up dependent
- Validation with 8 TeV analysis
- Lumi: $\sqrt{s} = 14 \text{ TeV}$, 300 fb^{-1} , $<\mu>=60$, and 3000 fb^{-1} , $<\mu>=140$

Scenarios

- Systematics estimated for high pile-up
- 2 scenarios for JES (main syst 1 lepton)
- Additional scenario for analysis improvements

Results

- **300** fb⁻¹, $<\mu>=60$:
 - With improvements: 4.1σ (25% precision on μ)
- 3000 fb⁻¹, $<\mu>=140$:
 - With improvements: 9.6σ (13% precision on μ)

m_{bb} [GeV]