The Bundle Moduli Space of Heterotic Standard Models

Andre Lukas

University of Oxford

Susy 2014, Manchester

based on: arXiv: 1404:2767, arXiv:1311.1941, arXiv:1307.4787, arXiv:1303.1832, arXiv:1106.4804, arXiv:1405:2073, arXiv:1202.1757 with Lara Anderson, Evgeny Buchbinder, Andrei Constantin, James Gray, Seung-Joo Lee and Eran Palti.

<u>Overview</u>

A line bundle model on the tetra-quadric CY

Exploring the bundle moduli space (focus on proton stability, Yukawa couplings and Higgs mass)

GUT breaking with hypercharge flux in heterotic CY models

Conclusion and outlook

<u>A line bundle model on the tetra-quadric</u>

(From standard model data base at:

http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html)

• tetra-quadric CY:
$$X = \begin{bmatrix} \mathbb{P}^1 & 2 \\ \mathbb{P}^1 & 2 \\ \mathbb{P}^1 & 2 \\ \mathbb{P}^1 & 2 \end{bmatrix}$$
 with $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry

• line bundle sum:
$$V = \bigoplus_{a=1}^{5} L_a$$

 $L_1 = \mathcal{O}_X(-1, 0, 0, 1)$, $L_2 = \mathcal{O}_X(-1, -3, 2, 2)$
 $L_3 = \mathcal{O}_X(0, 1, -1, 0)$, $L_4 = \mathcal{O}_X(1, 1, -1, -1)$
 $L_1 = \mathcal{O}_X(1, 1, 0, -2)$

• spectrum: 10₂, 10₂, 10₅, $\overline{5}_{2,4}$, $\overline{5}_{4,5}$, $\overline{5}_{4,5}$, $H_{2,5}$, $\overline{H}_{2,5}$, $3\mathbf{1}_{2,1}$, $3\mathbf{1}_{5,1}$, $5\mathbf{1}_{2,3}$, $3\mathbf{1}_{2,4}$, $\mathbf{1}_{5,3}$

• superpotential: $W = \lambda_i \overline{H}_{2,5}(Q_2^{(i)}u_5 + Q_5u_2^{(i)}) + \rho_{\alpha i}\mathbf{1}_{2,4}^{(\alpha)}L_{4,5}^{(i)}\overline{H}_{2,5}$

At Abelian locus: – $V = \bigoplus_{a=1}^{5} L_a$, group $S(U(1)^5)$

- rank2 up Yukawa matrix
- proton stable
- massless pair of Higgs doublets

Expectation away from Abelian locus:

Non-Abelian, $\langle \mathbf{1}_{2,4} \rangle = 0$: - $V \to \tilde{V} = U \oplus L_4$, group $S(U(4) \times U_X(1))$ - rank 2 up Yukawa matrix

- proton remains stable
- Higgs pair remains massless

 $U_{B-L}(1)$

Non-Abelian, $\langle \mathbf{1}_{2,4} \rangle \neq 0$: – $V \rightarrow \tilde{V}$, group SU(5)

- rank 2 up Yukawa matrix
- proton still stable
- Higgs becomes massive

Schematic structure of moduli space:

Proton stable (and structure of Yukawa matrix preserved) everywhere, due to symmetry enhancement at Abelian locus.

Exploring the bundle moduli space

Check fate of Higgs by constructing non-Abelian bundle

Recall:
$$L_1 = \mathcal{O}_X(-1,0,0,1)$$
, $L_2 = \mathcal{O}_X(-1,-3,2,2)$, $L_3 = \mathcal{O}_X(0,1,-1,0)$
 $L_4 = \mathcal{O}_X(1,1,-1,-1)$, $L_5 = \mathcal{O}_X(1,1,0,-2)$

1) Extension bundles

For $V_1 = L_2 \oplus L_5, \ V_2 = L_1 \oplus L_3 \oplus L_4$ define extension

 $0 \longrightarrow V_1 \longrightarrow \tilde{V} \longrightarrow V_2 \longrightarrow 0$

Compute
$$\#\mathbf{5} = h^2(X, \wedge^2 \tilde{V}) = \begin{cases} 3 & \text{for } \langle \mathbf{1}_{2,4} \rangle = 0 \\ 0 & \text{for } \langle \mathbf{1}_{2,4} \rangle \neq 0 \end{cases}$$

2) Monads

We can show for $\langle \mathbf{1}_{2,4} \rangle = 0$, $\tilde{V} = U \oplus L_4$:

• bundle \tilde{V} is supersymmetric

•
$$\#\mathbf{5} = h^2(X, \wedge^2 \tilde{V}) = 3$$

Summary of the $SU(4) \times U_X(1)$ model:

- $U_X(1) \longrightarrow U_{B-L}(1)$
- μ -term forbidden
- dangerous dim. 4 terms forbidden by $U_{B-L}(1)$
- $\overline{5}\,10\,10\,10$ operators still absent, due to symmetry enhancement at Abelian locus

Main messages:

- ``Unexpected" absences of operators can help with proton stability.
- Finding models with a massless Higgs everywhere in moduli space is non-trivial -> examples in the data base.

GUT breaking with hypercharge flux

(Blumenhagen, Honecker, Weigand, 05 Blumenhagen, Moster, Weigand, 06)

Q: Can we construct a heterotic standard model without Wilson lines but "built-in" gauge unification?

embedding: $SU_W(2) \times SU_c(3) \times SU(6) \subset E_8$

bundle: $V = U_1 \oplus \cdots \oplus U_f$ with structure group

 $S(U(n_1) \times \cdots \times U(n_f)) \subset SU(6)$

splitting types: $\mathbf{n} = (6), (5,1), (4,2), (3,3), (4,1,1), (3,2,1), (2,2,2), (3,1,1,1), (2,2,1,1), (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1).$

low-energy gauge group: $SU_W(2) \times SU_c(3) \times S(U(1)^f) \supset U_Y(1)$

hypercharge embedding: $\mathbf{y} = (y_1, \dots, y_f)$

spectrum:

$\boxed{(SU(2) \times SU(3))_{\mathbf{q}}}$	$(1,1)_{\mathbf{e}_a-\mathbf{e}_b}$	$(1,3)_{-\mathbf{e}_a-\mathbf{e}_b}$	$(1,\overline{3})_{\mathbf{e}_a+\mathbf{e}_b}$	$(2,3)_{\mathbf{e}_a}$	$(2,\overline{3})_{-\mathbf{e}_a}$	$(2,1)_{\mathbf{e}_a+\mathbf{e}_b+\mathbf{e}_c}$
range	$a, b = 1, \dots, 6$	$a \leq b$	$a \leq b$	$a=1,\ldots 6$	$a=1,\ldots 6$	$a \le b \le c$
particle	$e_{a,b}, S_{a,b}$	$\widetilde{d}_{a,b}, \ \widetilde{u}_{a,b}$	$d_{a,b}, u_{a,b}$	Q_a	$ ilde Q_a$	$L_{a,b,c}, H_{a,b,c}, \bar{H}_{a,b,c}$
bundle	$U_a \otimes U_b^*$	$U_a^* \otimes U_b^*$	$U_a \otimes U_b$	U_a	U_a^*	$U_a \otimes U_b \otimes U_c$
		$\wedge^2 U_a^*$	$\wedge^2 U_a$			$\wedge^2 U_a \otimes U_b,$
						$U_a \otimes \wedge^2 U_b, \wedge^3 U_a$
contained in	$V \otimes V^*$	$\wedge^2 V^*$	$\wedge^2 V$	V	V^*	$\wedge^{3}V$
hypercharge	$y_a - y_b$	$-y_a - y_b$	$y_a + y_b$	y_a	$-y_a$	$y_a + y_b + y_c$
phys. hypercharge	2, 0	-2/3, 4/3	2/3, -4/3	1/3	-1/3	-1, -1, 1

unification condition:

$$\sum_{a=1}^{f} n_a y_a^2 = \frac{10}{3}$$

1. step, group theory:

What are the allowed y-vectors satisfying the unification condition and giving the correct hypercharges for a family (and at least one choice of $S(U(1)^f)$ charges)?

Answer:

splitting type n	allowed \mathbf{y} vectors
(4, 1, 1)	(1/3, 1/3, -5/3)
(3,2,1)	(1/3, 1/3, -5/3), (-2/3, 1/3, 4/3)
(2,2,2)	no solution
(3,1,1,1)	$\left(\frac{1/3, 1/3, 1/3, -5/3}{5/3}, (-2/3, 1/3, 1/3, 4/3)\right)$
$\fbox{(2,2,1,1)}$	(1/3, 1/3, 1/3, -5/3), (1/3, -2/3, -2/3, 4/3)
(2, 1, 1, 1, 1)	$\left \begin{array}{c} (1/3, 1/3, 1/3, 1/3, -5/3), (1/3, -2/3, -2/3, -2/3, 4/3), (-2/3, -2/3, 1/3, 1/3, 4/3) \end{array} \right $
	(5/6, -7/6, -2/3, -1/6, 1/3), (-5/21, -17/21, -11/21, 1/3, 31/21)
(1, 1, 1, 1, 1, 1)	(1/3, 1/3, -5/3, 1/3, 1/3, 1/3), (1/3, 4/3, -2/3, -2/3, -2/3, -2/3, 1/3)
	$(1/3, 5/6, -7/6, -1/6, -2/3, 5/6), (1/3, 7/12, -17/12, 1/12, -5/12, 5/6), \dots$

2. step, geometry:

Can we find a CY and a bundle which leads to a standard model with hypercharge flux for one of the above y-vectors?

No!

(Large computer scan for Abelian case finds no viable model.)

No-go theorem schematically, for Abelian case:

- choose y-vector from above classification
- write indices in terms of $X_{abc} = c_1(L_a)c_1(L_b)c_1(L_c)$ and $Z_a = c_1(L_a)c_2(TX)$, e.g. $ind(L_a) = \frac{1}{6}X_{aaa} + \frac{1}{12}Z_a$
- impose physical constraints on indices, e.g. $\sum_{a:y_a=1/3} \operatorname{ind}(L_a) = -3$
- eliminate two $c_1(L_a)$ using $\sum_a c_1(L_a) = 0$ and $\sum_a y_a c_1(L_a) = 0$ (hypercharge massless).
- Solve the resulting linear system for X_{abc} , Z_a

This linear system has no solution for any y - vector above!

What about approximate unification so that $\sum_{a=1}^{f} n_a y_a^2 \simeq \frac{10}{3}$ within 5% ?

More embeddings allowed but only one cannot be excluded by the no-go theorem:

$$\mathbf{y} = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, -\frac{5}{3}, \alpha, \frac{2}{3} - \alpha\right)$$

with a very specific pattern of indices

$$ind(L_{1}) = ind(L_{2}) = ind(L_{3}) = -1 \quad \rightarrow \quad Q_{1}, Q_{2}, Q_{3}$$
$$ind(L_{1} \otimes L_{4}) = ind(L_{2} \otimes L_{4}) = ind(L_{3} \otimes L_{4}) = -1 \quad \rightarrow \quad u_{1,4}, u_{2,4}, u_{3,4}$$
$$ind(L_{5} \otimes L_{6}) = -3 \qquad \rightarrow \quad 3 d_{5,6}$$
$$ind(L_{4} \otimes L_{5} \otimes L_{6}) = -ind(L_{1} \otimes L_{2} \otimes L_{3}) = -3 \quad \rightarrow \quad 3 L_{4,5,6}$$
$$ind(L_{1} \otimes L_{4}^{*}) = ind(L_{2} \otimes L_{4}^{*}) = ind(L_{3} \otimes L_{4}^{*}) = -1 \quad \rightarrow \quad e_{1,4}, e_{2,4}, e_{3,4}$$

We do not know if explicit models for this case can be found.

<u>Conclusions and outlook</u>

- We can continue line bundle models into the non-Abelian part of the moduli space, both by continuation along flat directions in the 4d theory and by explicit bundle constructions.
- Keeping a light Higgs pair everywhere in moduli space is non-trivial but we now have examples with this feature.
 Symmetry enhancement helps to control the mu-term.
- Additional symmetries at the Abelian locus can lead to "unexpected" absences of operators and stabilize the proton.
- Heterotic CY models with hypercharge flux are over-constrained: Geometries with the right properties do not exist.

• GUTs are good.

Thanks