The Bundle Moduli Space of Heterotic Standard Models

Andre Lukas

University of Oxford

Susy 2014, Manchester

based on: arXiv: 1404:2767, arXiv:1311.1941, arXiv:1307.4787, arXiv:1303.1832, arXiv:1106.4804, arXiv:1405:2073, arXiv:1202.1757 with Lara Anderson, Evgeny Buchbinder, Andrei Constantin, James Gray, Seung-Joo Lee and Eran Palti.

Overview

A line bundle model on the tetra-quadric $C Y$

- Exploring the bundle moduli space (focus on proton stability, Yukawa couplings and Higgs mass)
- GUT breaking with hypercharge flux in heterotic CY models
- Conclusion and outlook

A line bundle model on the tetra-quadric

(From standard model data base at:
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html)

- tetra-quadric CY: $X=\left[\begin{array}{l|l}\mathbb{P}^{1} & 2 \\ \mathbb{P}^{1} & 2 \\ \mathbb{P}^{1} & 2 \\ \mathbb{P}^{1} & 2\end{array}\right]$ with $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ symmetry
- line bundle sum: $\quad V=\bigoplus_{a=1}^{5} L_{a}$

$$
\begin{array}{lll}
L_{1}=\mathcal{O}_{X}(-1,0,0,1) & , & L_{2}=\mathcal{O}_{X}(-1,-3,2,2) \\
L_{3}=\mathcal{O}_{X}(0,1,-1,0) \\
L_{1}=\mathcal{O}_{X}(1,1,0,-2)
\end{array}, \quad, \quad L_{4}=\mathcal{O}_{X}(1,1,-1,-1)
$$

- spectrum: $\mathbf{1 0}_{2}, \mathbf{1 0}_{2}, \mathbf{1 0}_{5}, \overline{\mathbf{5}}_{2,4}, \overline{\mathbf{5}}_{4,5}, \overline{\mathbf{5}}_{4,5}, H_{2,5}, \bar{H}_{2,5}$

$$
3 \mathbf{1}_{2,1}, 3 \mathbf{1}_{5,1}, 5 \mathbf{1}_{2,3}, 3 \mathbf{1}_{2,4}, \mathbf{1}_{5,3}
$$

- superpotential: $W=\lambda_{i} \bar{H}_{2,5}\left(Q_{2}^{(i)} u_{5}+Q_{5} u_{2}^{(i)}\right)+\rho_{\alpha i} \mathbf{1}_{2,4}^{(\alpha)} L_{4,5}^{(i)} \bar{H}_{2,5}$

At Abelian locus: - $V=\bigoplus_{a=1}^{5} L_{a}$, group $S\left(U(1)^{5}\right)$

- rank2 up Yukawa matrix
- proton stable
- massless pair of Higgs doublets

$$
U_{B-L}(1)
$$

Expectation away from Abelian locus:
Non-Abelian, $\left\langle\mathbf{1}_{2,4}\right\rangle=0:-V \rightarrow \tilde{V}=U \oplus L_{4}$, group $S\left(U(4) \times U_{X}(1)\right.$

- rank 2 up Yukawa matrix
- proton remains stable
- Higgs pair remains massless

Non-Abelian, $\left\langle\mathbf{1}_{2,4}\right\rangle \neq 0$: - $V \rightarrow \tilde{V}$, group $S U(5)$

- rank 2 up Yukawa matrix
- proton still stable
- Higgs becomes massive

Schematic structure of moduli space:

massless Higgs doublets expected
Proton stable (and structure of Yukawa matrix preserved) everywhere, due to symmetry enhancement at Abelian locus.

Exploring the bundle moduli space

Check fate of Higgs by constructing non-Abelian bundle

Recall: $L_{1}=\mathcal{O}_{X}(-1,0,0,1) \quad, \quad L_{2}=\mathcal{O}_{X}(-1,-3,2,2) \quad, \quad L_{3}=\mathcal{O}_{X}(0,1,-1,0)$

$$
L_{4}=\mathcal{O}_{X}(1,1,-1,-1) \quad, \quad L_{5}=\mathcal{O}_{X}(1,1,0,-2)
$$

1) Extension bundles

For $V_{1}=L_{2} \oplus L_{5}, V_{2}=L_{1} \oplus L_{3} \oplus L_{4}$ define extension

$$
0 \longrightarrow V_{1} \longrightarrow \tilde{V} \longrightarrow V_{2} \longrightarrow 0
$$

Compute $\# \mathbf{5}=h^{2}\left(X, \wedge^{2} \tilde{V}\right)=\left\{\begin{array}{lll}3 & \text { for } & \left\langle\mathbf{1}_{2,4}\right\rangle=0 \\ 0 & \text { for } & \left\langle\mathbf{1}_{2,4}\right\rangle \neq 0\end{array}\right.$
2) Monads

$$
\begin{aligned}
& 0 \longrightarrow \tilde{V} \longrightarrow B \xrightarrow{f} C \longrightarrow 0 \\
& \begin{array}{c}
\boldsymbol{\sim} \sim \begin{array}{|r|rr||r|r||rr|}
\hline-1 & -1 & -1 & 0 & 1 & 1 & 1 \\
0 & -1 & -1 & 1 & 1 & 1 & 1 \\
0 & 2 & 2 & -1 & -1 & 0 & 0 \\
1 & 2 & 2 & 0 & -1 & 0 & 0 \\
\hline
\end{array} \\
L_{1} L_{2} \quad L_{3} L_{4} L_{5}
\end{array} \\
& C \sim\left[\begin{array}{rr}
-1 & 1 \\
1 & 1 \\
2 & 0 \\
2 & 2
\end{array}\right] \\
& \text { bundle splits if zero }
\end{aligned}
$$

We can show for $\left\langle\mathbf{1}_{2,4}\right\rangle=0, \tilde{V}=U \oplus L_{4}$:

- bundle \tilde{V} is supersymmetric
- $\# \mathbf{5}=h^{2}\left(X, \wedge^{2} \tilde{V}\right)=3$

Summary of the $S U(4) \times U_{X}(1)$ model:

- $U_{X}(1) \longrightarrow U_{B-L}(1)$
- μ-term forbidden
- dangerous dim. 4 terms forbidden by $U_{B-L}(1)$
- $\overline{5} 101010$ operators still absent, due to symmetry enhancement at Abelian locus

Main messages:

- "Unexpected" absences of operators can help with proton stability.
- Finding models with a massless Higgs everywhere in moduli space is non-trivial \rightarrow examples in the data base.
(Blumenhagen, Honecker, Weigand, 05 Blumenhagen, Moster, Weigand, 06)

Q: Can we construct a heterotic standard model without Wilson lines but "built-in" gauge unification?
embedding: $S U_{W}(2) \times S U_{c}(3) \times S U(6) \subset E_{8}$
bundle: $V=U_{1} \oplus \cdots \oplus U_{f}$ with structure group

$$
S\left(U\left(n_{1}\right) \times \cdots \times U\left(n_{f}\right)\right) \subset S U(6)
$$

splitting types: $\mathbf{n}=(6),(5,1),(4,2),(3,3),(4,1,1),(3,2,1),(2,2,2)$,

$$
(3,1,1,1),(2,2,1,1),(2,1,1,1,1),(1,1,1,1,1,1) .
$$

low-energy gauge group: $S U_{W}(2) \times S U_{c}(3) \times S\left(U(1)^{f}\right) \supset U_{Y}(1)$
hypercharge embedding:

$$
\mathbf{y}=\left(y_{1}, \ldots, y_{f}\right)
$$

spectrum:

$(S U(2) \times S U(3))_{\mathbf{q}}$	$(\mathbf{1}, \mathbf{1})_{\mathbf{e}_{a}-\mathbf{e}_{b}}$	$(\mathbf{1}, \mathbf{3})_{-\mathbf{e}_{a}-\mathbf{e}_{b}}$	$(\mathbf{1}, \overline{\mathbf{3}})_{\mathbf{e}_{a}+\mathbf{e}_{b}}$	$(\mathbf{2 , 3})_{\mathbf{e}_{a}}$	$(\mathbf{2}, \overline{\mathbf{3}})_{-\mathbf{e}_{a}}$	$(\mathbf{2}, \mathbf{1})_{\mathbf{e}_{a}+\mathbf{e}_{b}+\mathbf{e}_{c}}$
range	$a, b=1, \ldots, 6$	$a \leq b$	$a \leq b$	$a=1, \ldots 6$	$a=1, \ldots 6$	$a \leq b \leq c$
particle	$e_{a, b}, S_{a, b}$	$\tilde{d}_{a, b}, \tilde{u}_{a, b}$	$d_{a, b}, u_{a, b}$	Q_{a}	\tilde{Q}_{a}	$L_{a, b, c}, H_{a, b, c}, \bar{H}_{a, b, c}$
bundle	$U_{a} \otimes U_{b}^{*}$	$U_{a}^{*} \otimes U_{b}^{*}$	$U_{a} \otimes U_{b}$	U_{a}	U_{a}^{*}	$U_{a} \otimes U_{b} \otimes U_{c}$
$\wedge^{2} U_{a}^{*}$	$\wedge^{2} U_{a}$			$\wedge^{2} U_{a} \otimes U_{b}$, $U_{a} \otimes \wedge^{2} U_{b}, \wedge^{3} U_{a}$		
			$\wedge^{2} V^{*}$	$\wedge^{2} V$	V	V^{*}
contained in	$V \otimes V^{*}$	$-y_{a}-y_{b}$	$y_{a}+y_{b}$	y_{a}	$-y_{a}$	$y_{a}+y_{b}+y_{c}$
hypercharge	$y_{a}-y_{b}$	$-2 / 3,4 / 3$	$2 / 3,-4 / 3$	$1 / 3$	$-1 / 3$	$-1,-1,1$
phys. hypercharge	2,0					

unification condition:

$$
\sum_{a=1}^{f} n_{a} y_{a}^{2}=\frac{10}{3}
$$

1. step, group theory:

What are the allowed y-vectors satisfying the unification condition and giving the correct hypercharges for a family (and at least one choice of $S\left(U(1)^{f}\right)$ charges)?

Answer:

splitting type \mathbf{n}	allowed \mathbf{y} vectors
$(4,1,1)$	$(1 / 3,1 / 3, \quad 5 / 3)$
$(3,2,1)$	$(1 / 3,1 / 3, \quad 5 / 3),(-2 / 3,1 / 3,4 / 3)$
$(2,2,2)$	no solution
$(3,1,1,1)$	$(1 / 3,1 / 3,1 / 3, \quad 5 / 3),(-2 / 3,1 / 3,1 / 3,4 / 3)$
$(2,2,1,1)$	$(1 / 3,1 / 3,1 / 3,5 / 3),(1 / 3,-2 / 3,-2 / 3,4 / 3)$
$(2,1,1,1,1)$	$(1 / 3,1 / 3,1 / 3,1 / 3, \quad 5 / 3),(1 / 3,-2 / 3,-2 / 3,-2 / 3,4 / 3),(-2 / 3,-2 / 3,1 / 3,1 / 3,4 / 3)$
	$(5 / 6,-7 / 6,-2 / 3,-1 / 6,1 / 3),(-5 / 21,-17 / 21,-11 / 21,1 / 3,31 / 21)$
$(1,1,1,1,1,1)$	$(1 / 3,1 / 3, \quad 5 / 3,1 / 3,1 / 3,1 / 3),(1 / 3,4 / 3,-2 / 3,-2 / 3,-2 / 3,1 / 3)$
	$(1 / 3,5 / 6,-7 / 6,-1 / 6,-2 / 3,5 / 6),(1 / 3,7 / 12,-17 / 12,1 / 12,-5 / 12,5 / 6), \ldots$

2. step, geometry:

Can we find a CY and a bundle which leads to a standard model with hypercharge flux for one of the above y-vectors?

No!

(Large computer scan for Abelian case finds no viable model.)

No-go theorem schematically, for Abelian case:

- choose y-vector from above classification
- write indices in terms of $X_{a b c}=c_{1}\left(L_{a}\right) c_{1}\left(L_{b}\right) c_{1}\left(L_{c}\right)$ and $Z_{a}=c_{1}\left(L_{a}\right) c_{2}(T X)$, e.g. $\operatorname{ind}\left(L_{a}\right)=\frac{1}{6} X_{a a a}+\frac{1}{12} Z_{a}$
- impose physical constraints on indices, e.g. $\sum_{a: y_{a}=1 / 3} \operatorname{ind}\left(L_{a}\right)=-3$
- eliminate two $c_{1}\left(L_{a}\right)$ using $\sum_{a} c_{1}\left(L_{a}\right)=0$ and $\sum_{a} y_{a} c_{1}\left(L_{a}\right)=0$ (hypercharge massless).
- Solve the resulting linear system for $X_{a b c}, Z_{a}$

This linear system has no solution for any \mathbf{y} - vector above!

What about approximate unification so that $\sum_{a=1}^{f} n_{a} y_{a}^{2} \simeq \frac{10}{3}$ within 5\%?

More embeddings allowed but only one cannot be excluded by the no-go theorem:

$$
\mathbf{y}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3},-\frac{5}{3}, \alpha, \frac{2}{3}-\alpha\right)
$$

with a very specific pattern of indices

$$
\begin{array}{rlll}
\operatorname{ind}\left(L_{1}\right)=\operatorname{ind}\left(L_{2}\right)=\operatorname{ind}\left(L_{3}\right)=-1 & \rightarrow & Q_{1}, Q_{2}, Q_{3} \\
\operatorname{ind}\left(L_{1} \otimes L_{4}\right)=\operatorname{ind}\left(L_{2} \otimes L_{4}\right)=\operatorname{ind}\left(L_{3} \otimes L_{4}\right)=-1 & \rightarrow & u_{1,4}, u_{2,4}, u_{3,4} \\
\operatorname{ind}\left(L_{5} \otimes L_{6}\right)=-3 & & \rightarrow 3 d_{5,6} \\
\operatorname{ind}\left(L_{4} \otimes L_{5} \otimes L_{6}\right)=-\operatorname{ind}\left(L_{1} \otimes L_{2} \otimes L_{3}\right)=-3 & \rightarrow & 3 L_{4,5,6} \\
\operatorname{ind}\left(L_{1} \otimes L_{4}^{*}\right)=\operatorname{ind}\left(L_{2} \otimes L_{4}^{*}\right)=\operatorname{ind}\left(L_{3} \otimes L_{4}^{*}\right)=-1 & \rightarrow & e_{1,4}, e_{2,4}, e_{3,4}
\end{array}
$$

We do not know if explicit models for this case can be found.

Conclusions and outlook

- We can continue line bundle models into the non-Abelian part of the moduli space, both by continuation along flat directions in the 4d theory and by explicit bundle constructions.
- Keeping a light Higgs pair everywhere in moduli space is non-trivial but we now have examples with this feature. Symmetry enhancement helps to control the mu-term.
- Additional symmetries at the Abelian locus can lead to "unexpected" absences of operators and stabilize the proton.
- Heterotic CY models with hypercharge flux are over-constrained: Geometries with the right properties do not exist.
- GUTs are good.

