

#### **Dark Matter and Loop-Generated Neutrino Masses**

University College London (UCL) Wei-Chih Huang 22.07.2014 SUSY 2014 Manchester

arXiv: 1408.XXXX with Frank Deppisch



## **Motivations**

- Dark Matter (DM) and massive neutrinos can not be explained in the Standard Model (SM)
- We augment the SM gauge groups by an additional U(1)<sub>X</sub> symmetry with a Z' gauge boson and heavy neutrinos
- Both SM particles and heavy neutrinos are charged under  $U(1)_X$
- The DM (N<sub>1</sub>) stability are protected by U(1)<sub>X</sub> (Integer) charge assignment
- Light Neutrinos receive a mass from both Type-I seesaw and radiative corrections with DM running inside loop
- We explore the interplay between neutrinos and DM



## Model

- We begin with 3 heavy neutrinos with X(N<sub>1</sub>)=-1, X(N2)=X(N3)=-2 (X(H)=0 and X(L)=2). Their Majorana masses come from the vacuum expectation value of Φ<sub>1</sub> and Φ<sub>2</sub> with X(Φ<sub>1</sub>)=2 and X(Φ<sub>2</sub>)=4.
- An SU(2)<sub>L</sub> doublet scalar with  $X(\phi)$ =-1 is introduced to realize radiative neutrino masses (Ma, hep-ph/0601225)
- The light neutrino mass comes from the Type-I seesaw LHN<sub>2,3</sub> and radiative corrections with  $\phi$  and N<sub>1</sub> in loop.





## **Radiative Neutrino mass**

- In order to generate neutrino masses radiatively, one must have both lepton number violation and SU(2)<sub>L</sub> symmetry breaking
- Lepton number violation comes from the N<sub>1</sub>'s Majorana mass, i.e., from <Φ<sub>1</sub>>
- SU(2)<sub>L</sub> symmetry breaking is induced by the <H>, which lifts the mass degeneracy on the two neutral components of *φ*. In this model, the contribution comes from loop diagrams





Figure 2: Radiative contributions to  $m_{\phi_1^0}^2 - m_{\phi_2^0}^2$ .



## **Anomaly Cancellation**

- With three heavy neutrinos, the model has axial anomalies or N<sub>1</sub> becomes unstable due to one of lepton flavors has X(L)=1
- One will need one more heavy neutrino N<sub>4</sub> with X(N<sub>4</sub>)=1 opposite to N<sub>1</sub> if the model is anomaly-free and N<sub>1</sub> is stable
- > One of lepton flavors has X(L)=0 and the others with X(L)=2





### Model

- > For demonstration, we choose  $X(L_{\tau})=0$  and  $X(L_{e})=2=X(L_{\mu})$ .
- > The Lagrangian becomes:

$$\mathcal{L} \supset \sum_{\alpha=e}^{\mu} \sum_{i=2}^{3} y_{\alpha i} \left( L_{\alpha} \cdot H \right) N_{i} + \sum_{\alpha=e}^{\mu} \lambda_{\alpha} \left( L_{\alpha} \cdot \phi \right) N_{1} + \lambda_{N_{4}} \left( L_{\tau} \cdot \phi \right) N_{4} + h.c. \,.$$

| Field     | $L_{e,\mu}$ | $L_{\tau}$ | Н   | $N_1$ | $N_4$ | $N_2$ | $N_3$ | $\phi$ | $\Phi_1$ | $\Phi_2$ |
|-----------|-------------|------------|-----|-------|-------|-------|-------|--------|----------|----------|
| $SU(2)_L$ | 2           | 2          | 2   | 1     | 1     | 1     | 1     | 2      | 1        | 1        |
| $U(1)_Y$  | -1/2        | 1/2        | 1/2 | 0     | 0     | 0     | 0     | 1/2    | 0        | 0        |
| $U(1)_X$  | 2           | 0          | 0   | -1    | 1     | -2    | -2    | -1     | 2        | 4        |



### Model

> The neutrino mass matrix is, where  $f_{ij}$  are loop functions,

$$m = \begin{pmatrix} m_L & m_D \\ m_D^T & M \end{pmatrix} \qquad m_L = \begin{pmatrix} \lambda_e^2 f_{11} & \lambda_e \lambda_\mu f_{11} & \lambda_e \lambda_{N_4} f_{41} \\ \lambda_\mu \lambda_e f_{11} & \lambda_\mu^2 f_{11} & \lambda_\mu \lambda_{N_4} f_{41} \\ \lambda_{N_4} \lambda_e f_{41} & \lambda_{N_4} \lambda_\mu f_{41} & \lambda_{N_4}^2 f_{44} \end{pmatrix}$$
$$M = \begin{pmatrix} M_1 & 0 & 0 \\ 0 & M_2 & 0 \\ 0 & 0 & M_3 \end{pmatrix} \qquad m_D = v \begin{pmatrix} 0 & y_{e2} & y_{e3} \\ 0 & y_{\mu2} & y_{\mu3} \\ 0 & 0 & 0 \end{pmatrix}$$

> We take into account the  $N_1$ - $N_4$  mixing since  $m_{14}N_1N_4$  can exist

$$\begin{pmatrix} N_4 \\ N_1 \end{pmatrix}_f = U_{41} \begin{pmatrix} N_4 \\ N_1 \end{pmatrix}_m = \begin{pmatrix} \cos \theta_{41} & -\sin \theta_{41} e^{i\alpha_{41}} \\ \sin \theta_{41} & \cos \theta_{41} e^{i\alpha_{41}} \end{pmatrix} \begin{pmatrix} N_4 \\ N_1 \end{pmatrix}_m$$



#### **Observables**

- > The PMNS mixing matrix and  $\Delta m_{\nu}^2$  (PDG Phys. Rev. D86, 010001 (2012))
- The DM relic abundance (Planck 1303.5076)

|           | $\sin^2 2\theta_{12}$ | $\sin^2 2\theta_{23}$ | $\sin^2 2\theta_{13}$ | $\Delta m^2_{sol} \; (\mathrm{eV^2})$ | $ \Delta m_{atm}^2 $ (eV <sup>2</sup> ) | $\Omega_{ m DM} h^2$ |
|-----------|-----------------------|-----------------------|-----------------------|---------------------------------------|-----------------------------------------|----------------------|
| best-fit  | 0.857                 | 1                     | 0.095                 | $7.50 \times 10^{-5}$                 | $2.32\times10^{-3}$                     | 0.120                |
| $1\sigma$ | 0.024                 | 0.301                 | 0.01                  | $2 \times 10^{-6}$                    | $1 \times 10^{-4}$                      | $3.1 \times 10^{-3}$ |

 The lepton flavor violation constrains, for example: Br(τ-> e γ)< 3.3\*10<sup>-8</sup> (PDG Phys. Rev. D86, 010001 (2012)) Br(μ -> e γ)< 5.7\*10<sup>-13</sup> (MEG Nucl.Phys.Proc.Suppl. 248-250 (2014) 29-34)



#### **Lepton Flavor Violation**

- >  $N_1$  and  $\phi$  can also induce lepton flavor violation radiatively
- > To avoid stringent bounds on  $\mu$ -> e  $\gamma$  and simplify computation, we simply set  $\chi_{\mu}=0 =>$  the vanishing (2,3) element in the mass matrix



# **DM Relic Density**

- N<sub>1</sub> (also N<sub>4</sub>) can (co-)annihilate into SM particles via the Z' or *φ* exchange
- > We investigate the  $\phi$  exchange processes only to see the connection between DM and the neutrino sector
- The observed DM density is used as a lower bound since including Z' interactions can only decrease the DM density





## **Preliminary Results**

- We check if one can reproduce the PMNS matrix with the previous neutrino mass matrix with the vanishing (2,3) element
- > We include cosmological constraints:  $\sum m_{\nu} \leq 0.5 \text{ eV}^{-m_{\nu}} =$











## **Preliminary Results**

#### > For the NH case, we choose zero Majorana phases with benchmark

| masses | $m_{ u_1}$      | $\delta_{CP}$ | $m_{\phi}$       | $m_{N_1}$        | $m_{N_4}$        | $m_{N_2}$        | $m_{N_3}$       |
|--------|-----------------|---------------|------------------|------------------|------------------|------------------|-----------------|
|        | $0.15~{\rm eV}$ | $\pi/2$       | $1200~{\rm GeV}$ | $1000~{\rm GeV}$ | $1010~{\rm GeV}$ | $2000~{\rm GeV}$ | $3000 { m GeV}$ |



Left panel: perturbativity  $(\lambda < 4\pi)$  and  $Br(\tau \to e\gamma)$ Right panel: perturbativity,  $Br(\tau \to e\gamma)$  and the DM relic abundace



## **Preliminary Results**

 $e^{-}$ 

With a different charge assignment: X(L<sub>μ</sub>)=0 and X(L<sub>e</sub>)=2=X(L<sub>τ</sub>),
 We show how Br(μ-> e γ) and the DM abundance depends on
 the difference between m<sub>N<sub>4</sub></sub> and m<sub>N<sub>4</sub></sub>

| $	heta_{41}$     | $lpha_{41}$      | $\lambda_{	au}$  | $m_{ u_1}$       | $\delta_{CP}$ |
|------------------|------------------|------------------|------------------|---------------|
| 0.15             | 2.25             | 0                | $0.15~{\rm eV}$  | $\pi/2$       |
| $m_{\phi}$       | $m_{N_4}$        | $m_{N_2}$        | $m_{N_3}$        |               |
| $1200~{\rm GeV}$ | $1000~{\rm GeV}$ | $2000~{\rm GeV}$ | $3000~{\rm GeV}$ |               |

 $N_{1,4}^{m}$ 

 $\lambda_e^*$ 

 $\phi^{-}$ 

 $\lambda_{\mu}(\lambda_{N_4})$ 

 $\mu^{-}(\tau^{-})$ 





## Conclusions

- We propose a hybrid neutrino mass model: type-I seesaw with four heavy neutrinos plus radiative contributions in the context of U(1)<sub>x</sub>
- One of heavy neutrinos as the DM candidate is stable due to charge assignment with odd U(1)<sub>x</sub>
- DM annihilations and lepton flavor violation are controlled by the same couplings constant => interplay between DM and neutrinos
- The model can reproduce the neutrino mixing matrix, mass spectrum and the correct DM abundance with considerably large lepton flavor violation, that could be tested in the near feature.