

SM Higgs in Boson Decay Modes at CMS

Stoyan Stoynev (Northwestern University)

On behalf of the CMS Collaboration

24 July 2014

SUSY 2014

Production and decay modes of Higgs (@LHC)

In SM:

Four main Higgs production mechanisms

Each allowing to test the Higgs properties from different perspective

The dominant Higgs production mode is ggF

Higgs production cross-section increases with collision energy (25% between 7 and 8 TeV) Bosonic decay modes cover the spectrum between low and high branching fractions

Bosonic decay modes are all well covered experimentally by featured search signatures

Thus **ZZ**, $\gamma\gamma$ and **WW** are main discovery modes and **Z** γ allows for further SM tests The complimentary $\gamma^*\gamma$ mode plays a crucial role in rare Higgs decays (by interference) A di-photon provides relatively clean final-state topology

Events from specific production mechanisms are further identified and classified by the presence of additional objects in the final state

The analysis searches for a (narrow) peak over smooth background – a simultaneous fit to the di-photon invariant mass distributions in all event classes is performed One of the two channels providing excellent precision for the Higgs mass reconstruction:

$$m_{\gamma\gamma} = \sqrt{(2E_1E_2(1-\cos\alpha))}$$

Results made public

(CMS-HIG-13-001,

less than a month ago

arXiv:1407.0558 [hep-ex]

CERN-PH-EP-2014-117)

The new final result comes with many improvements over the preliminary one:

- Final set of calibrations
- MC includes time dependent description
- Analysis chain completely re-optimized
- Exclusive channels expanded to include all production modes
- New method for modeling the background
- Considerable effort in studying the energy scale uncertainties (reduced by a factor of three for the invariant mass)

Change	Improved energy resolution (new calibration + new regression)	New event selection (re-training + re- categorization)	Background modeling
Improvement over preliminary result (PAS)	~9%	~9%	~7%

$H \rightarrow Z\gamma$ and $H \rightarrow \gamma^*\gamma$ (Dalitz decay)

Search similar to the di-photon decay mode except the experimental signature is different. Multiple categories are also introduced for Z_{γ} . Lepton Z_{γ}^* decay modes are exploited.

 $H \rightarrow ZZ$

$H \rightarrow WW$

Highest (bosonic) branching ratio but large background and harder to identify; lepton decay modes exploited Events from specific production mechanisms are further identified and classified by the presence of additional objects in the final state In 0/1-jet categories the signal is extracted by 2D shape analysis: reconstructed Higgs boson transverse mass m_T and charge di-lepton invariant mass m(ll).

A signal with significance of 4.3 σ is observed (5.8 σ expected)

Higgs mass from ZZ and di-photon decay modes

The high resolution decay channels $\gamma\gamma$ and ZZ are used to extract the Higgs mass – the best-fit value is extracted from a scan of the combined test statistics

 $m_{H} = (125.03 \pm \frac{+0.26}{-0.27} stat \pm \frac{+0.13}{-0.15} syst) GeV$

Signal strength modifiers for (ggF, ttH) $\rightarrow \gamma\gamma$, (VBF, VH) $\rightarrow \gamma\gamma$ and H \rightarrow ZZ are <u>NOT</u> fixed to SM in order to get as much as model independent mass measurement as possible

The measurements from the single channels agree at 1.6 sigma level

Higgs width from ZZ decay mode

Direct measurement of the Higgs width is limited by the detector resolution (GeV scale) – not possible to measure the predicted SM value of 4.15 MeV (at m_{μ} =125.6 GeV)

However it can be constrained by off-shell $H \rightarrow ZZ$ events with mild model dependence (same coupling on/off-shell is assumed) at few 10s of MeV

 $\sigma_{\rm gg\to H\to ZZ}^{\rm on-shell} \sim \frac{g_{\rm ggH}^2 g_{\rm HZZ}^2}{m_{\rm H} \Gamma_{\rm H}} \qquad \sigma_{\rm gg\to H\to ZZ}^{\rm off-shell} \sim \frac{g_{\rm ggH}^2 g_{\rm HZZ}^2}{(2m_Z)^2}$

(it works because $H^* \rightarrow VV$ is not negligible)

Combining charged four-lepton 4I and 2I2v decay channels provides 20% stronger limits

Events/5GeV gg+VV \rightarrow ZZ (Γ = 25× Γ_{cu} , μ = 1) $qq+VV \rightarrow ZZ$ (SM) 6 5 3 2 200 300 500 400 600 700 800 m₄ı (GeV) arXiv:1405.3455 [hep-ex] (CMS-HIG-14-002, CERN-PH-EP-2014-078) In 2l2v (off-shell): After selecting an isolated lepton pair and MET in the event > 80 GeV

CMS simulation (unpublished)

7

Build the transverse mass (>180 GeV)

$$m_{\rm T}^2 = \left[\sqrt{p_{\rm T,2\ell}^2 + m_{2\ell}^2} + \sqrt{E_{\rm T}^{\rm miss}^2 + m_{2\ell}^2}\right]^2 - \left[\vec{p}_{\rm T,2\ell} + \vec{E}_{\rm T}^{\rm miss}\right]$$

It enters the likelihood fit

9

In 4I (off-shell):

• Build kinematic discriminant D_{gg} for $gg \rightarrow ZZ$ production using matrix element likelihood approach (MELA)

$$\mathcal{D}_{gg} = \frac{\mathcal{P}_{tot}^{gg}}{\mathcal{P}_{tot}^{gg} + \mathcal{P}_{bkg}^{q\overline{q}}} = \left[1 + \frac{\mathcal{P}_{bkg}^{q\overline{q}}}{a \times \mathcal{P}_{sig}^{gg} + \sqrt{a} \times \mathcal{P}_{int}^{gg} + \mathcal{P}_{bkg}^{gg}}\right]$$

- Build 4I invariant mass (> 220 GeV)
- Perform likelihood fit with two-dimensional pdfs

 $^{-1}$

Higgs width from ZZ decay mode (2)

Higgs Spin and Parity (highlights)

The Higgs bosonic decays are the ones used to tests the spin statistics and parity

ZZ is the richest and well defined state and is the main player; WW has larger statistics but Higgs is partially reconstructable; $\gamma \gamma$ can give additional information by precise differential cross-section measurements

All hypothesis tests (by likelihood fits) are consistent with the new state being a scalar particle (no anomalous couplings observed)

0.9

 $|\cos(\theta^*)|$

Summary

Chanel	Data (fb ⁻¹)	Specialty	Significance Obs. (exp.),	Mass (GeV)	Signal strength	J ^P = 0⁺	Higgs width Obs. (exp.)
Н→уу	4.9 + 19.7	Mass, discovery, couplings	5.7 (5.2)	124.70 ±0.31 ±0.15	1.14 + 0.26 - 0.23	N	<2.4 (3.1) GeV @95% CL
H→ZZ	5.1 + 19.7	Mass, width, discovery, couplings	6.8 (6.7)	125.6 ±0.4 ±0.2	0.93 + 0.29 - 0.25	yes	< 22 (33) MeV (off-shell/on-shell measurements)
H→WW	4.9 + 19.4	Cross- section, couplings	4.3 (5.8)	125.5 +3.6 -3.8	0.72 + 0.20 - 0.18	yes	-

 The observed significance of the Higgs-boson like particle at ~ 125 GeV mass in the main bosonic channels establishes the new state

The signal strengths are compatible with the SM cross-section

Bosonic channels also provide very precise mass measurement of the new state

• The width of the new particle is tightly constraint and also consistent with SM Higgs

Spin/parity tests of the new particle suggests it is a scalar

All clues point strongly to SM Higgs boson

The rates of the rare decay modes Z_{γ} and $\gamma^* \gamma$ were constrained and analyses established

$H \rightarrow \gamma \gamma$

Source of uncertainty	Uncertainty
Source of uncertainty	in μ
Production cross sect. and branching frac.	0.11
Shower shape modelling (Section 9)	0.06
Energy scale and resolution	0.02
Other	0.04
All syst. uncert. in the signal model	0.13
Statistical	0.21
Total	0.25

Source of uncortainty	Uncertainty in	
Source of uncertainty	\widehat{m}_{H} (GeV)	
Imperfect simulation of electron-photon differences	0.10	
Linearity of the energy scale	0.10	
Energy scale calibration and resolution	0.05	
Other	0.04	
All systematic uncertainties in the signal model	0.15	
Statistical	0.31	
Total	0.35	

Table 2: Definition of the four untagged event classes and the dijet-tagged event class, the fraction of selected events for a signal with $m_{\rm H} = 125 \,\text{GeV}$ produced by gluon-gluon fusion at $\sqrt{s} = 8 \,\text{TeV}$, and data in a narrow bin centered at 125 GeV. The bin width is equal to two times the effective standard deviation ($\sigma_{\rm eff}$). The expected full width at half maximum (FWHM) for the signal is also listed.

