The Decoupling Limit in The GEORGI-MACHACEK MODEL

KUNAL KUMAR

CARLETON UNIVERSITY

SUSY 2014 - JULY 22, 2014
(arXiv : 1404.2640 + ongoing work with H. E. Logan and K. Hartling)

Motivation

- SM-like Higgs and no new particles discovered so far could mean we are observing the decoupling limit of a model
- The Georgi-Machacek model adds scalar triplets in way to preserve $\rho \equiv$ $M_{W} / M_{Z} \cos \theta_{W}=1$ H. Georgi, M. Machacek [NPB 262,463]; Chanowitz, Golden, Phys.Lett. B 165, 105
- Uncommon features : doubly-charged scalar, enhancement of $h V V$ couplings close to the decoupling limit
- Has been incorporated into little Higgs and SUSY models

Cort, Garcia,
Chang, Wacker [PRD 69 035002];
S. Chang [JHEP 0312 057]

- The GM model is thus a valuable benchmark model to study Higgs properties

The Model

- Proposed in 1985 as a possible scenario for EWSB
- SM doublet + real triplet $(\mathrm{Y}=0)+$ complex triplet $(\mathrm{Y}=2)$
- Arranged in terms of Φ and X make global $S U(2)_{L} \times S U(2)_{R}$ apparent

$$
\Phi=\left(\begin{array}{cc}
\phi^{0 *} & \phi^{+} \\
-\phi^{+*} & \phi^{0}
\end{array}\right) \quad X=\left(\begin{array}{ccc}
\chi^{0 *} & \xi^{+} & \chi^{++} \\
-\chi^{+*} & \xi^{0} & \chi^{+} \\
\chi^{++*} & -\xi^{+*} & \chi^{0}
\end{array}\right)
$$

- where $S^{Q *}=(-1)^{Q} S^{-Q}$
- The scalar vevs preserve custodial $\mathrm{SU}(2)$

$$
\langle\Phi\rangle=\frac{v_{\phi}}{\sqrt{2}} \mathbb{1}_{2 \times 2} \quad\langle X\rangle=v_{\chi} \mathbb{1}_{3 \times 3}
$$

- Constrained by W and Z masses

$$
v_{\phi}^{2}+8 v_{\chi}^{2} \equiv v^{2}=\frac{4 M_{W}^{2}}{g^{2}} \approx(246 \mathrm{GeV})^{2} \quad \sin \theta_{H}=\frac{2 \sqrt{2} v_{\chi}}{v}
$$

Scalar Sector

$$
\Phi=\left(\begin{array}{cc}
\phi^{0 *} & \phi^{+} \\
-\phi^{+*} & \phi^{0}
\end{array}\right) \quad X=\left(\begin{array}{ccc}
\chi^{0 *} & \xi^{+} & \chi^{++} \\
-\chi^{+*} & \xi^{0} & \chi^{+} \\
\chi^{++*} & -\xi^{+*} & \chi^{0}
\end{array}\right)
$$

- Expanding around the minima : 3 Goldstones, 10 physical scalars
- 10 scalars arranged as custodial multiplets : 1 five-plet, 1 triplet, 2 singlets
- Masses : $m_{5}, m_{3}, m_{h}, m_{H}$ respectively
- α controls mixing between custodial singlets H_{1}^{0} and $H_{1}^{0 \prime}$

$$
\begin{aligned}
h & =\cos \alpha H_{1}^{0}-\sin \alpha H_{1}^{0 \prime}, \\
H & =\sin \alpha H_{1}^{0}+\cos \alpha H_{1}^{0 \prime} .
\end{aligned}
$$

- v_{χ} / v controls contribution of states in X to Goldstones, custodial triplets

Scalar Potential

- Most general gauge-invariant potential that preserves $\mathrm{SU}(2)_{C}$:

$$
\begin{aligned}
V(\Phi, X)= & \frac{\mu_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\mu_{3}^{2}}{2} \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2}+\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right) \\
& +\lambda_{3} \operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right)+\lambda_{4}\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}-\lambda_{5} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right) \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right) \\
& -M_{1} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right)\left(U X U^{\dagger}\right)_{a b}-M_{2} \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)\left(U X U^{\dagger}\right)_{a b} .
\end{aligned}
$$

Hartling, KK, Logan[arXiv: 1404.2640]; Aoki, Kanemura [PRD 77,095009]; Chiang, Yagyu [JHEP 1301, 026]

- μ_{2} and λ_{1} can be traded for v and m_{h} respectively and hence are not free parameters.
- Free parameters : $\mu_{3}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, M_{1}, M_{2}$.
- Most literature on GM model impose Z_{2} symmetry for simplicity e.g. Englert, Re, Spannowsky [PRD 87, 095014]
- No M_{1}, M_{2} terms in this case and all $m_{i}=\lambda_{i} v^{2}$
- λ_{i} bounded to be $\mathcal{O}(1)$ by unitarity constraints $\Longrightarrow m_{i}<700 \mathrm{GeV}$
- The Z_{2} symmetric version does not possess a decoupling limit

Scalar Potential

$$
\begin{array}{r}
V(\Phi, X)=\frac{\mu_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\mu_{3}^{2}}{2} \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2}+\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right) \\
+\lambda_{3} \operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right)+\lambda_{4}\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}-\lambda_{5} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right) \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right) \\
-M_{1} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right)\left(U X U^{\dagger}\right)_{a b}-M_{2} \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)\left(U X U^{\dagger}\right)_{a b}
\end{array}
$$

- No Z_{2} symmetry allows us to write M_{1} and M_{2} terms
- In this scenario the GM model does have a decoupling limit!
- μ_{3} defines the mass scale for new particles

Theoretical Constraints

- λ_{i} are constrained by unitarity limits on $2 \rightarrow 2$ scalar scattering
- We also require the scalar potential to be bounded from below for all possible field values

- We ensure that our desired vacuum is the global minimum by imposing checks to avoid alternative minima

Decoupling Behaviour

- Decoupling occurs when combinations of the three dimensional parameters : μ_{3}, M_{1} and M_{2} is taken large compared to v.

$$
\lambda_{1} \approx \frac{m_{h}^{2}}{8 v^{2}}+\frac{3}{32} \frac{M_{1}^{2}}{\mu_{3}^{2}}
$$

- M_{1} can increase at most linearly with μ_{3} because λ_{1} is bounded by unitarity.

$$
\left|M_{1}\right| / \sqrt{\mu_{3}^{2}} \lesssim 3.3
$$

- M_{2} can increase at most linearly with μ_{3} because increasing M_{2} increases v_{χ} which is constrained by $8 v_{\chi}^{2}<v^{2}$

$$
\left|M_{2}\right| / \sqrt{\mu_{3}^{2}} \lesssim 1.2
$$

Decoupling Behaviour

- Case A: μ_{3} is taken large but M_{1} and M_{2} are fixed.
- Case B : μ_{3} is taken large and M_{1}, M_{2} increase linearly with μ_{3}.

Case	$\mu_{3} \equiv \sqrt{\left\|\mu_{3}^{2}\right\|}$	λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	M_{1}	M_{2}
A	$300-1000$	GeV derived 0.1	0.1	0.1	0.1	100 GeV	100 GeV	
B	$300-1000 \mathrm{GeV}$ derived 0.1	0.1	0.1	0.1	$\mu_{3} / 3$	$\mu_{3} / 3$		

- We shall derive expressions for masses, higgs couplings, vevs and custodialsinglet mixing angle (α) up to leading order in μ_{3}^{-1} (or equivalently the dimensionless quantity v / μ_{3})

Decoupling Behaviour

- Case A : M_{1} and M_{2} fixed; Case B : $M_{1}=M_{2}=\mu_{3} / 3$
- We don't consider cases where only M_{1} or M_{2} is fixed
- In the expansion formulae M_{2} always appears with M_{1}

$$
v_{\chi} \simeq \frac{M_{1} v^{2}}{4 \mu_{3}^{2}}\left[1-\left(2 \lambda_{2}-\lambda_{5}\right) \frac{v^{2}}{\mu_{3}^{2}}+\frac{M_{1}\left(3 M_{2}-M_{1}\right) v^{2}}{2 \mu_{3}^{4}}\right]
$$

- M_{1} fixed, $M_{2} \propto \mu_{3} \equiv$ Case A
- $M_{1} \propto \mu_{3}, M_{2}$ fixed \equiv Case B

Decoupling Behaviour

- Case A : M_{1} and M_{2} fixed; Case B : $M_{1}=M_{2}=\mu_{3} / 3$

$$
v_{\chi} \simeq \frac{M_{1} v^{2}}{4 \mu_{3}^{2}}\left[1-\left(2 \lambda_{2}-\lambda_{5}\right) \frac{v^{2}}{\mu_{3}^{2}}+\frac{M_{1}\left(3 M_{2}-M_{1}\right) v^{2}}{2 \mu_{3}^{4}}\right]
$$

Quantity	Case A Case B
v_{χ}	$\mu_{3}^{-2} \quad \mu_{3}^{-1}$

- In general convergence to SM is more rapid in Case A.

Decoupling Behaviour: Masses

$$
m_{3} \simeq \mu_{3}\left[1+\left(2 \lambda_{2}-\frac{\lambda_{5}}{2}\right) \frac{v^{2}}{2 \mu_{3}^{2}}+\frac{M_{1}\left(M_{1}-3 M_{2}\right) v^{2}}{4 \mu_{3}^{4}}\right]
$$

Decoupling Behaviour: Masses

$$
m_{3} \simeq \mu_{3}\left[1+\left(2 \lambda_{2}-\frac{\lambda_{5}}{2}\right) \frac{v^{2}}{2 \mu_{3}^{2}}+\frac{M_{1}\left(M_{1}-3 M_{2}\right) v^{2}}{4 \mu_{3}^{4}}\right]
$$

- Black curves correspond to expansions in μ_{3}^{-1} while colored curves are exact.

Decoupling Behaviour: vev

- triplet vev $v_{\chi} \simeq \frac{M_{1} v^{2}}{4 \mu_{3}^{2}}\left[1-\left(2 \lambda_{2}-\lambda_{5}\right) \frac{v^{2}}{\mu_{3}^{2}}+\frac{M_{1}\left(3 M_{2}-M_{1}\right) v^{2}}{2 \mu_{3}^{4}}\right]$
- $v_{\chi} \rightarrow 0$ as $\mu_{3} \rightarrow \infty$

Decoupling Behaviour: mixing angle

- custodial-singlet mixing angle

$$
\sin \alpha \simeq-\frac{\sqrt{3} M_{1} v}{2 \mu_{3}^{2}}\left[1-2\left(2 \lambda_{2}-\lambda_{5}\right) \frac{v^{2}}{\mu_{3}^{2}}+\frac{m_{h}^{2}}{\mu_{3}^{2}}+\frac{M_{1}\left(24 M_{2}-5 M_{1}\right) v^{2}}{8 \mu_{3}^{4}}\right]
$$

- $\sin \alpha \rightarrow 0$ as $\mu_{3} \rightarrow \infty$

Decoupling Behaviour: hVV, hff

κ : ratio of a coupling to its SM value

$$
\begin{aligned}
& \kappa_{V}=\cos \alpha \frac{v_{\phi}}{v}-\frac{8}{\sqrt{3}} \sin \alpha \frac{v_{\chi}}{v} \simeq 1+\frac{3}{8} \frac{M_{1}^{2} v^{2}}{\mu_{3}^{4}} \\
& \kappa_{f}=\cos \alpha \frac{v}{v_{\phi}} \simeq 1-\frac{1}{8} \frac{M_{1}^{2} v^{2}}{\mu_{3}^{4}}
\end{aligned}
$$

- Expansion formulae are not a very good approximation in the case of κ_{f} for $\mu_{3} \lesssim 400$

Decoupling Behaviour: $h \gamma \gamma$

- Loop induced couplings: affected by changes to $h V V$ and $h f f$, new charged scalars in the loop

$$
\Delta \kappa_{\gamma} \simeq-\frac{1}{F_{1}\left(M_{W}\right)+\frac{4}{3} F_{1 / 2}\left(m_{t}\right)} \frac{2 v^{2}}{3 \mu_{3}^{2}}\left[6 \lambda_{2}+\lambda_{5}+\frac{M_{1}^{2}+12 M_{1} M_{2}}{4 \mu_{3}^{2}}\right]
$$

- $\Delta \kappa$: Ratio of contribution from non-SM particles in loop to SM coupling

Decoupling Behaviour: $h Z \gamma$

- $\Delta \kappa:$ Ratio of contribution from non-SM particles in loop to SM coupling

Comparison with Type-II 2HDM

Type-II 2HDM

$$
\begin{aligned}
& \kappa_{V}^{2 \mathrm{HDM}} \simeq 1-\frac{\hat{\lambda}^{2} v^{4}}{2 m_{A}^{4}}, \\
& \kappa_{f}^{2 \mathrm{HDM}} \simeq 1+\frac{\hat{\lambda} v^{2}}{m_{A}^{2}} \times \begin{cases}\cot \beta & \text { for up type fermions } \\
-\tan \beta & \text { for down type fermions },\end{cases} \\
& g_{h h h}^{2 \mathrm{HDM}} \simeq \frac{3 m_{h}^{2}}{v}\left[1-\frac{3 \hat{\lambda}^{2} v^{2}}{\lambda m_{A}^{2}}\right],
\end{aligned}
$$

Georgi-Machacek

Quantity	Case A Case B	
$\kappa_{V}-1$	μ_{3}^{-4}	μ_{3}^{-2}
$\kappa_{f}-1$	μ_{3}^{-4}	μ_{3}^{-2}
$g_{h h h} / g_{h h h}^{\mathrm{SM}}-1$	μ_{3}^{-4}	μ_{3}^{-2}

J.F. Gunion, H.E. Haber [PRD 67, 075019]

- relatively large deviations in all couplings would favor GM Case B
- relatively large deviations fermion and trilinear couplings, but SM like vector couplings favors 2 HDM
- Another distinguishing feature is the κ_{V} is enhanced in the decoupling limit of the GM model

$$
\kappa_{V}=\cos \alpha \frac{v_{\phi}}{v}-\frac{8}{\sqrt{3}} \sin \alpha \frac{v_{\chi}}{v} \simeq 1+\frac{3}{8} \frac{M_{1}^{2} v^{2}}{\mu_{3}^{4}}
$$

Numerical Scans

- Numerical scans to examine accessible range of couplings
- We allow all the free parameters to vary and impose theoretical constraints.

Numerical Scans

- All couplings can show 10% deviations even when the mass of the lightest scalar is around 800 GeV .
- The 1σ allowed regions of higgs couplings measured at the LHC can be populated fully by the GM model with scalar masses below $400-600 \mathrm{GeV}$.

Indirect Constraints

- Include constraints from : B meson mixing, $B_{s} \rightarrow \mu \mu, R_{b}, b \rightarrow s \gamma$, Oblique parameters (ongoing)
- Most stringent constraint comes from $B_{s} \rightarrow \mu \mu$

Preliminary Result

Indirect Constraints

- At one-loop level $\rho \neq 1$ and we require a counterterm to cancel the singularities in the T parameter Gunion, Vega, Wudka [PRD 43, 2322]
- We could approach the constraint from oblique parameters in the following ways:
- Apply the constraint only from the S parameter
- Perform the one-loop calculations with the required counterterm
- Minimize χ^{2} with respect to T and use $T_{\text {min }}$ to obtain the constraint

$$
\begin{gathered}
\chi^{2}=\frac{1}{\left(1-\rho_{S T}^{2}\right)}\left[\frac{\left(S-S_{\exp }\right)^{2}}{\left(\Delta S_{\exp }\right)^{2}}+\frac{\left(T-T_{\exp }\right)^{2}}{\left(\Delta T_{\exp }\right)^{2}}-\frac{2\left(S-S_{\exp }\right)\left(T-T_{\exp }\right)}{\Delta S_{\exp } \Delta T_{\exp }}\right] \\
T_{\min }=T_{\exp }+\left(S-S_{\exp }\right) \frac{\Delta T_{\exp }}{\Delta S_{\exp }}
\end{gathered}
$$

Conclusions

- GM model with most general gauge-invariant and $S U(2)_{C}$ preserving potential does possess a decoupling limit
- Approach to the SM is in general faster when M_{1} and M_{2} are fixed as compared to $M_{1}=M_{2}=\mu_{3} / 3$
- Numerical scans show that 10% coupling deviations are possible for new scalars even as heavy as 800 GeV
- GM model can fully populate the allowed 1σ ranges of Higgs couplings when the new scalars are lighter than $400-600 \mathrm{GeV}$.
- Improved measurements of higgs couplings can help distinguish GM model from other extensions such as the 2 HDM .

Future Work

- Including exclusion due to oblique parameters.

BACKUP SLIDES

Theoretical Constraints : Unitarity

| Q | Y | Basis states |
| :--- | :--- | :--- |\quad Eigenvalues

Theoretical Constraints : BFB

$$
\begin{aligned}
r & \equiv \sqrt{\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\operatorname{Tr}\left(X^{\dagger} X\right)} \\
r^{2} \cos ^{2} \gamma & \equiv \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \\
r^{2} \sin ^{2} \gamma & \equiv \operatorname{Tr}\left(X^{\dagger} X\right) \\
\zeta & \equiv \frac{\operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right)}{\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}} \\
\omega & \equiv \frac{\operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right) \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)}{\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right)}
\end{aligned}
$$

$$
\left[a+b y^{2}+c y^{4}\right] \quad a>0, \quad c>0, \quad \text { and } \quad b+2 \sqrt{a c}>0 .
$$

quartic terms in the potential

$$
\begin{aligned}
& r \in[0, \infty), \quad \gamma \in\left[0, \frac{\pi}{2}\right] \\
& \zeta \in\left[\frac{1}{3}, 1\right] \quad \text { and } \quad \omega \in\left[-\frac{1}{4}, \frac{1}{2}\right]
\end{aligned}
$$

$$
V^{(4)}(r, \tan \gamma, \zeta, \omega)=\frac{r^{4}}{\left(1+\tan ^{2} \gamma\right)^{2}}\left[\lambda_{1}+\left(\lambda_{2}-\omega \lambda_{5}\right) \tan ^{2} \gamma+\left(\zeta \lambda_{3}+\lambda_{4}\right) \tan ^{4} \gamma\right]
$$

bounded-from-below conditions

$$
\lambda_{1}>0, \quad \zeta \lambda_{3}+\lambda_{4}>0, \quad \text { and } \quad \lambda_{2}-\omega \lambda_{5}+2 \sqrt{\lambda_{1}\left(\zeta \lambda_{3}+\lambda_{4}\right)}>0 .
$$

Theoretical Constraints

- Maximum Ranges :

$$
\begin{array}{ll}
\lambda_{1} \in\left(0, \frac{1}{3} \pi\right) \simeq(0,1.05) & \lambda_{4} \in\left(-\frac{1}{5} \pi, \frac{1}{2} \pi\right) \simeq(-0.628,1.57) \\
\lambda_{2} \in\left(-\frac{2}{3} \pi, \frac{2}{3} \pi\right) \simeq(-2.09,2.09) & \lambda_{5} \in\left(-\frac{8}{3} \pi, \frac{8}{3} \pi\right) \simeq(-8.38,8.38) \\
\lambda_{3} \in\left(-\frac{1}{2} \pi, \frac{3}{5} \pi\right) \simeq(-1.57,1.88) &
\end{array}
$$

- Within these ranges the following conditions need to be satisfied :

$$
\begin{aligned}
& \lambda_{4}> \begin{cases}-\frac{1}{3} \lambda_{3} \text { for } \lambda_{3} \geq 0, \\
-\lambda_{3} & \text { for } \lambda_{3}<0,\end{cases} \\
& \lambda_{2}> \begin{cases}\frac{1}{2} \lambda_{5}-2 \sqrt{\lambda_{1}\left(\frac{1}{3} \lambda_{3}+\lambda_{4}\right)} & \text { for } \lambda_{5} \geq 0 \text { and } \lambda_{3} \geq 0 \\
\omega_{+}(\zeta) \lambda_{5}-2 \sqrt{\lambda_{1}\left(\zeta \lambda_{3}+\lambda_{4}\right)} & \text { for } \lambda_{5} \geq 0 \text { and } \lambda_{3}<0, \\
\omega_{-}(\zeta) \lambda_{5}-2 \sqrt{\lambda_{1}\left(\zeta \lambda_{3}+\lambda_{4}\right)} & \text { for } \lambda_{5}<0\end{cases}
\end{aligned}
$$

Theoretical Constraints : Alternative Minima

$$
\begin{aligned}
V= & \frac{r^{2}}{\left(1+\tan ^{2} \gamma\right)} \frac{1}{2}\left[\mu_{2}^{2}+\mu_{3}^{2} \tan ^{2} \gamma\right] \\
& +\frac{r^{4}}{\left(1+\tan ^{2} \gamma\right)^{2}}\left[\lambda_{1}+\left(\lambda_{2}-\omega \lambda_{5}\right) \tan ^{2} \gamma+\left(\zeta \lambda_{3}+\lambda_{4}\right) \tan ^{4} \gamma\right] \\
& +\frac{r^{3}}{\left(1+\tan ^{2} \gamma\right)^{3 / 2}} \tan \gamma\left[-\sigma M_{1}-\rho M_{2} \tan ^{2} \gamma\right]
\end{aligned}
$$

$$
\begin{aligned}
\sigma & \equiv \frac{\operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right)\left(U X U^{\dagger}\right)_{a b}}{\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{1 / 2}} \\
\rho & \equiv \frac{\operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)\left(U X U^{\dagger}\right)_{a b}}{\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{3 / 2}}
\end{aligned}
$$

Decoupling Behaviour

Case	$\mu_{3} \equiv \sqrt{\left\|\mu_{3}^{2}\right\|}$	λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	M_{1}	M_{2}
A	$300-1000 \mathrm{GeV}$ derived 0.1	0.1	0.1	0.1	100 GeV	100 GeV		
B	$300-1000 \mathrm{GeV}$ derived 0.1	0.1	0.1	0.1	$\mu_{3} / 3$	$\mu_{3} / 3$		

Quantity	Case A Case B	
$\frac{m_{H, 3,5}}{\mu_{3}}-1$	μ_{3}^{-2}	μ_{3}^{-2}
v_{χ}	μ_{3}^{-2}	μ_{3}^{-1}
$\sin \alpha$	μ_{3}^{-2}	μ_{3}^{-1}
$\kappa_{V}-1$	μ_{3}^{-4}	μ_{3}^{-2}
$\kappa_{f}-1$	μ_{3}^{-4}	μ_{3}^{-2}
$g_{h h V V} / g_{h h V V}^{\mathrm{SM}}-1$	μ_{3}^{-4}	μ_{3}^{-2}
$g_{h h h} / g_{h h h}^{\mathrm{SM}}-1$	μ_{3}^{-4}	μ_{3}^{-2}
$\Delta \kappa_{\gamma}$	μ_{3}^{-2}	μ_{3}^{-2}
$\Delta \kappa_{Z \gamma}$	μ_{3}^{-2}	μ_{3}^{-2}

