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Motivation

• The Georgi-Machacek model adds scalar triplets in way to preserve ⇢ ⌘
MW /MZ cos ✓W = 1

• SM-like Higgs and no new particles discovered so far could mean we are
observing the decoupling limit of a model

• Has been incorporated into little Higgs and SUSY models

• The GM model is thus a valuable benchmark model to study Higgs prop-
erties

• Uncommon features : doubly-charged scalar, enhancement of hV V cou-

plings close to the decoupling limit

Chang, Wacker [PRD 69 035002]; 
S. Chang [JHEP 0312 057]

Cort, Garcia, 
Quiros[PRD 88, 075010]

H. Georgi, M. Machacek [NPB 262,463]; 
Chanowitz, Golden, Phys.Lett. B 165, 105
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The Model

3

from the corresponding SM Higgs couplings by a relative correction of at most O(v2/M2
new).

Our most interesting result is that, depending on how the decoupling limit is taken, the deviation
of the h coupling to W or Z boson pairs can decouple as (v2/M2

new), in contrast to the situation in
two Higgs doublet models or the Minimal Supersymmetric Standard Model in which this deviation
vanishes as (v4/M4

new) [26]. Furthermore, near the decoupling limit the hWW and hZZ couplings
are always larger than their SM values, a phenomenon which cannot be achieved at tree level in
models containing only scalar doublets or singlets. A precision measurement of the Higgs coupling
to W or Z boson pairs is thus extremely interesting in the GM model, and may provide the first
evidence for scalars transforming under SU(2)L as representations larger than doublets.

This paper is organized as follows. In Sec. II we write down the most general scalar potential
and the resulting scalar mass eigenstates. In Sec. III we summarize the theoretical constraints on
the model parameters from perturbative unitarity, boundedness-from-below of the scalar potential,
and the avoidance of custodial SU(2)-breaking vacua. In Sec. IV we examine the approach to
the decoupling limit and discuss the decoupling behavior of the couplings of the SM-like Higgs
boson. We also compare the decoupling behavior to that in the two-Higgs-doublet model and scan
over the GM model parameter space in order to evaluate the allowed ranges of couplings of the
SM-like Higgs boson as a function of the masses of the heavier scalars. We conclude in Sec. V.
Feynman rules, formulas for Higgs decays to �� and Z�, and a translation table for the alternative
parameterizations of the scalar potential used in the literature are collected in the appendices.

II. THE MODEL

The scalar sector of the Georgi-Machacek model consists of the usual complex doublet (�+,�0)
with hypercharge1 Y = 1, a real triplet (⇠+, ⇠0, ⇠�) with Y = 0, and a complex triplet (�++,�+,�0)
with Y = 2. The doublet is responsible for the fermion masses as in the SM. In order to make the
global SU(2)L⇥SU(2)R symmetry explicit, we write the doublet in the form of a bi-doublet � and
combine the triplets to form a bi-triplet X:

� =

✓
�0⇤ �+

��+⇤ �0

◆
, (1)

X =

0

@
�0⇤ ⇠+ �++
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The vevs are defined by h�i = v�p
2
12⇥2 and hXi = v�13⇥3, where the W and Z boson masses

constrain

v2� + 8v2� ⌘ v2 =
4M2

W

g2
⇡ (246 GeV)2. (3)

Note that the two triplet fields �0 and ⇠0 must obtain the same vev in order to preserve custodial
SU(2). Furthermore we will decompose the neutral fields into real and imaginary parts according
to

�0 ! v�p
2
+

�0,r + i�0,i

p
2

, �0 ! v� +
�0,r + i�0,i

p
2

, ⇠0 ! v� + ⇠0, (4)

1 We use Q = T 3 + Y/2.
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• SM doublet + real triplet (Y=0) + complex triplet (Y=2)

• Proposed in 1985 as a possible scenario for EWSB

• Arranged in terms of � and X make global SU(2)L ⇥ SU(2)R apparent

• The scalar vevs preserve custodial SU(2)
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• Constrained by W and Z masses

• where SQ⇤ = (�1)QS�Q

5
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The physical fields can be organized by their transformation properties under the custodial SU(2)
symmetry into a fiveplet, a triplet, and two singlets. The fiveplet and triplet states are given by
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H0
1 = �0,r,

H00
1 =

r
1

3
⇠0 +

r
2

3
�0,r. (16)

These states mix by an angle ↵ to form the two custodial-singlet mass eigenstates h and H, defined
such that mh < mH :

h = cos↵H0
1 � sin↵H00

1 , (17)

H = sin↵H0
1 + cos↵H00

1 .

The mixing is controlled by the 2⇥ 2 mass-squared matrix
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Scalar Sector
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These states mix by an angle ↵ to form the two custodial-singlet mass eigenstates h and H, defined
such that mh < mH :

h = cos↵H0
1 � sin↵H00

1 , (17)

H = sin↵H0
1 + cos↵H00

1 .

The mixing is controlled by the 2⇥ 2 mass-squared matrix

M2 =

✓ M2
11 M2

12

M2
12 M2

22

◆
, (18)

• Masses : m5, m3, mh, mH respectively

• ↵ controls mixing between custodial singlets H0
1 and H00

1

• v�/v controls contribution of states in X to Goldstones, custodial triplets
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Scalar Potential
• Most general gauge-invariant potential that preserves SU(2)C :

V (�, X) =
µ2
2

2
Tr(�†�) +

µ3
2

2
Tr(X†X) + �1[Tr(�

†�)]2 + �2Tr(�
†�)Tr(X†X)

+�3Tr(X
†XX†X) + �4[Tr(X

†X)]2 � �5Tr(�
†⌧a�⌧ b)Tr(X†taXtb)

�M1Tr(�
†⌧a�⌧ b)(UXU †)ab �M2Tr(X

†taXtb)(UXU †)ab.

• Most literature on GM model impose Z2 symmetry for simplicity

• No M1, M2 terms in this case and all mi = �iv2

• �i bounded to be O(1) by unitarity constraints =) mi < 700 GeV

• The Z2 symmetric version does not possess a decoupling limit

• Free parameters : µ3, �2, �3, �4, �5, M1, M2.

• µ2 and �1 can be traded for v and mh respectively and hence are not free

parameters.

Hartling, KK, Logan[arXiv: 1404.2640]; Aoki, Kanemura [PRD 77,095009]; Chiang, Yagyu [JHEP 1301, 026]

e.g. Englert, Re, Spannowsky [PRD 87, 095014]
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Scalar Potential

V (�, X) =
µ2
2

2
Tr(�†�) +

µ3
2

2
Tr(X†X) + �1[Tr(�

†�)]2 + �2Tr(�
†�)Tr(X†X)

+�3Tr(X
†XX†X) + �4[Tr(X

†X)]2 � �5Tr(�
†⌧a�⌧ b)Tr(X†taXtb)

�M1Tr(�
†⌧a�⌧ b)(UXU †)ab �M2Tr(X

†taXtb)(UXU †)ab.

• No Z2 symmetry allows us to write M1 and M2 terms

• In this scenario the GM model does have a decoupling limit!

• µ3 defines the mass scale for new particles

6



Theoretical Constraints 
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FIG. 3. Constraints on the (�3,�4) plane from perturbative unitarity, as in Fig. 1, together with the
bounded-from-below (BFB) constraints �4 > � 1

3�3 and �4 > ��3.

The last two conditions for �2 must be satisfied for all values of ⇣ 2 ⇥
1
3 , 1

⇤
.

The bounded-from-below constraints in Eq. (44) reduce the maximum accessible ranges of the
scalar quartic couplings compared to those obtained from perturbative unitarity constraints in
Eqs. (25–27). The bounded-from-below constraint on �1 trivially restricts its maximum accessible
range to be

�1 2
✓
0,

1

3
⇡

◆
' (0, 1.05) . (45)

The bounded-from-below constraint on �4 restricts the maximum accessible ranges of �3 and
�4, as shown in Fig. 3. The bounded-from-below constraint excludes the regions below the dot-
dashed lines, while the unitarity constraint from |x±

1 | < 8⇡ restricts �3 and �4 to lie between the
two solid lines (we again set �2 = 0 for the least restrictive constraint on �3 and �4 from x±

1 ).
The allowed region is a triangle with vertices at (�3/⇡,�4/⇡) = (0, 0),

�� 1
2 ,

1
2

�
, and

�
3
5 ,� 1

5

�
. The

unitarity constraint from y1 becomes superfluous; however, the unitarity constraint from x±
2 can

still be important for large enough values of |�5| (in Fig. 3 we set �5 = 0 for the least restrictive
constraint on �3 and �4 from x±

2 ). The maximum accessible ranges of �3 and �4 are therefore
reduced compared to those given in Eq. (26) to read

�3 2
✓
�1

2
⇡,

3

5
⇡

◆
' (�1.57, 1.88) ,

�4 2
✓
�1

5
⇡,

1

2
⇡

◆
' (�0.628, 1.57) . (46)

Finally, the bounded-from-below constraint on �2 restricts the accessible range of �2 as follows.
The least restrictive lower bound on �2 from unitarity is obtained by taking �1 = 0 and 7�3+11�4 =

• We also require the scalar potential to be bounded from below for all

possible field values

• �i are constrained by unitarity limits on 2 ! 2 scalar scattering

• We ensure that our desired vacuum is the global minimum by imposing

checks to avoid alternative minima

7



Decoupling Behaviour

• Decoupling occurs when combinations of the three dimensional parameters

: µ3, M1 and M2 is taken large compared to v.

�1 ⇡ m2
h

8v2
+

3

32

M2
1

µ2
3

• M1 can increase at most linearly with µ3 because �1 is bounded by uni-

tarity.
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FIG. 5. The values of ⇣, �!, ��, and �⇢ as a function of ✓, in the parameterization of Eq. (55). The
vertical dotted lines correspond to the desired minima at ✓ = a and ✓ = ⇡ + a.

potential invariant, so the alternative acceptable vacuum at ✓ = ⇡ + a is always the true global
minimum when �3 and �5 are positive and M1 and M2 are negative. For all other sign combinations
of these four parameters, the depth of alternative minima must be checked numerically as described
above by scanning over ✓ and minimizing V at each point.

IV. THE DECOUPLING LIMIT

A. Decoupling behavior of masses and couplings

After fixing µ2
2 using the W boson mass constraint, the scalar potential of the GM model contains

three dimensionful parameters: µ2
3, M1, andM2. Decoupling occurs when appropriate combinations

of these parameters are taken large compared to the weak scale v. In fact, we find that decoupling
is controlled primarily by µ2

3, and the maximum allowed values of M1 and M2 scale with this
parameter. The upper bound on |M1| for large µ2

3 � �iv
2 can be derived straightforwardly as a

consequence of Eq. (22) for �1 in terms of mh and the unitarity bound on �1 given in Eq. (25).
In the limit µ2

3 � �iv
2, we find that M1 can scale at most linearly with

p
µ2
3 and that its value is

constrained by |M1|/
p

µ2
3 . 3.3. The upper bound on |M2| is less easily derived, but comes from

the requirement that there be a sensible minimum of the potential with 8v2� < v2. Numerically

we find again that M2 can scale at most linearly with
p

µ2
3 and that its value is constrained by

|M2|/
p
µ2
3 . 1.2.

We will consider the behavior of the scalar mass spectrum, the vevs, the custodial-singlet mixing
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potential invariant, so the alternative acceptable vacuum at ✓ = ⇡ + a is always the true global
minimum when �3 and �5 are positive and M1 and M2 are negative. For all other sign combinations
of these four parameters, the depth of alternative minima must be checked numerically as described
above by scanning over ✓ and minimizing V at each point.

IV. THE DECOUPLING LIMIT

A. Decoupling behavior of masses and couplings

After fixing µ2
2 using the W boson mass constraint, the scalar potential of the GM model contains

three dimensionful parameters: µ2
3, M1, andM2. Decoupling occurs when appropriate combinations

of these parameters are taken large compared to the weak scale v. In fact, we find that decoupling
is controlled primarily by µ2

3, and the maximum allowed values of M1 and M2 scale with this
parameter. The upper bound on |M1| for large µ2

3 � �iv
2 can be derived straightforwardly as a

consequence of Eq. (22) for �1 in terms of mh and the unitarity bound on �1 given in Eq. (25).
In the limit µ2

3 � �iv
2, we find that M1 can scale at most linearly with

p
µ2
3 and that its value is

constrained by |M1|/
p

µ2
3 . 3.3. The upper bound on |M2| is less easily derived, but comes from

the requirement that there be a sensible minimum of the potential with 8v2� < v2. Numerically

we find again that M2 can scale at most linearly with
p

µ2
3 and that its value is constrained by

|M2|/
p
µ2
3 . 1.2.

We will consider the behavior of the scalar mass spectrum, the vevs, the custodial-singlet mixing

• M2 can increase at most linearly with µ3 because increasing M2 increases

v� which is constrained by 8v2� < v2

8



Decoupling Behaviour
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Case µ3 ⌘ p|µ2
3| �1 �2 �3 �4 �5 M1 M2

A 300–1000 GeV derived 0.1 0.1 0.1 0.1 100 GeV 100 GeV

B 300–1000 GeV derived 0.1 0.1 0.1 0.1 µ3/3 µ3/3

TABLE II. Values of coupling parameters for the two decoupling scenarios considered. We set mh =
125 GeV and use this to fix �1 in terms of the other parameters. µ2

2 is eliminated in terms of the known
SM Higgs vev v.

Quantity Case A Case B
mH,3,5

µ3
� 1 µ�2

3 µ�2
3

v� µ�2
3 µ�1

3

sin↵ µ�2
3 µ�1

3

V � 1 µ�4
3 µ�2

3

f � 1 µ�4
3 µ�2

3

ghhV V /gSMhhV V � 1 µ�4
3 µ�2

3

ghhh/g
SM
hhh � 1 µ�4

3 µ�2
3

�� µ�2
3 µ�2

3

�Z� µ�2
3 µ�2

3

TABLE III. The power law behavior of the heavy scalar masses, triplet vev, custodial singlet mixing angle,
and light Higgs couplings for parameter cases A and B. See text for definitions.

angle, and the couplings of the light Higgs to SM particles in the approach to decoupling. We
derive explicit expansions for each of these observables in the decoupling limit, keeping terms up
to next-to-leading order in inverse powers of µ2

3. In the expansions we treat M1 and M2 as being of
order

p
µ2
3 or smaller. As we will show, all of the low-energy observables reduce to their appropriate

SM limits as µ3 ! 1.
We also make a numerical comparison between our expansion formulas and the exact expressions

for each observable. To illustrate the approach to the decoupling limit, we consider two explicit
parameter scenarios. In the first scenario (case A) we let µ3 ⌘

p
µ2
3 become large while holding

M1 and M2 constant. In the second scenario (case B) we let µ3 become large while scaling M1 and
M2 proportionally to µ3. The specific parameter choices in each case are given in Table II. These
parameter choices satisfy all of the theoretical constraints described in Sec. III.

We do not consider cases in which only one of the Mi parameters scales with µ3 because the
overall decoupling behavior is much more strongly influenced by M1 than by M2. In the expansion
formulas that we derive below, M2 always appears multiplied by M1 in terms that are suppressed
by larger powers of µ3. As a result, in the case that M1 / µ3 while M2 is constant, the overall
decoupling behavior will be very similar to that in case B. Similarly, in the case that M2 / µ3 while
M1 is constant the decoupling behavior would resemble that of case A.

The overall power law dependence of each observable on µ3 in the decoupling limit is tabulated
in Table III. In general the convergence to the SM is more rapid in case A, where the observables
approach the decoupling limit at rates proportional to µ�2

3 or µ�4
3 . In comparison, in case B the

decoupling rates are proportional to µ�1
3 or µ�2

3 .

• Case A : µ3 is taken large but M1 and M2 are fixed.

• Case B : µ3 is taken large and M1, M2 increase linearly with µ3.

• We shall derive expressions for masses, higgs couplings, vevs and custodial-

singlet mixing angle (↵) up to leading order in µ�1
3 (or equivalently the

dimensionless quantity v/µ3)

9



Decoupling Behaviour

• Case A : M1 and M2 fixed; Case B : M1 = M2 = µ3/3

• We don’t consider cases where only M1 or M2 is fixed

• In the expansion formulae M2 always appears with M1

19

As a first step, it is relevant to examine the expansion formula for �1 near the decoupling limit,

�1 ' 1

8


m2

h

v2
+

3

4

M2
1

µ2
3

✓
1� 3(2�2 � �5)

v2

µ2
3

+
3M1M2v

2

µ4
3

+
5m2

h

3µ2
3

◆�
. (56)

The first term of this formula coincides with the value of the SM quartic coupling, �1 = m2
h/8v

2;
�1 approaches this value in the µ3 ! 1 limit in case A. In case B, however, the µ3 ! 1 limit of
�1 is (m2

h/8v
2 + 3M2

1 /32µ
2
3). This expression reminds us that M1 can scale at most linearly with

µ3 if �1 is to remain consistent with the constraint from perturbative unitarity. We also note that
�1 does not correspond directly to the SM Higgs quartic coupling; we will compute the triple-Higgs
coupling ghhh below and show that it exhibits decoupling even in case B.

In the decoupling limit, the masses of the heavy scalars are given by the following expansion
formulas,14

mH ' µ3


1 + (2�2 � �5)

v2

2µ2
3

+
3M1(M1 � 4M2)v2

8µ4
3

�
,

m3 ' µ3


1 +

✓
2�2 � �5

2

◆
v2

2µ2
3

+
M1(M1 � 3M2)v2

4µ4
3

�
,

m5 ' µ3


1 +

✓
2�2 +

�5

2

◆
v2

2µ2
3

+
3M1M2v

2

4µ4
3

�
. (58)

The fractional di↵erence between each scalar mass and µ3 scales with µ�2
3 in both case A and case B.

The behavior of the scalar masses and the di↵erence between the masses and µ3 are illustrated as
functions of µ3 in Fig. 6.15 In each case we show the exact tree-level mass values; in the lower panels
of Fig. 6 we also show the expansion formulas of Eq. (58) in black. As expected from Eq. (58), the
overall decoupling behavior is similar in cases A and B; the mass splittings are larger in case B due
to the numerical size of the term involving M1 and M2.

Expansion formulas for the decoupling behavior of the vevs v� and v� (related by v2�+8v2� = v2)
are given by,

v� ' M1v
2

4µ2
3


1� (2�2 � �5)

v2

µ2
3

+
M1(3M2 �M1)v2

2µ4
3

�
,

v� ' v

✓
1� M2

1 v
2

4µ4
3

◆
. (59)

The doublet vev v� approaches the SM value of v in the decoupling limit, as one would expect.
Likewise, the triplet vev v� goes to zero with its value falling like µ�2

3 (µ�1
3 ) in case A (case B).

The decoupling behavior of v� is plotted for cases A and B in the top panels of Fig. (7).

14 Note that these are consistent with the mass spectrum in the limit that M1 = M2 = 0. If M1 = M2 = 0 and
µ2
3 + (2�2 � �5)v2 > 0, the scalar potential possesses an unbroken Z2 symmetry under which the triplet scalars

are odd. In this case v� = 0 (so that sH = 0), H0
1 and H00

1 do not mix, and the lightest triplet state is stable. The
triplet masses are given by

m2
H00

1
= µ2

3 + (2�2 � �5) v
2,

m2
3 = µ2

3 +

✓
2�2 �

�5

2

◆
v2,

m2
5 = µ2

3 +

✓
2�2 +

�5

2

◆
v2, (57)

while the mass of the physical scalar from the doublet is m2
H0

1
= 8�1v2. The triplets a↵ect the couplings of the

SM-like Higgs H0
1 only through their loop contributions (e.g., in H0

1 ! ��, Z�); their loop e↵ects decouple as µ2
3 is

taken large. This case is analogous to the Inert Doublet Model [28]. We will not consider it further in this paper.
15 In our numerical calculations we use v = 246 GeV, mt = 172 GeV, MW = 80.399 GeV, MZ = 91.1876 GeV, and

cW = MW /MZ .

• M1 fixed, M2 / µ3 ⌘ Case A

• M1 / µ3, M2 fixed ⌘ Case B

10



Decoupling Behaviour

• In general convergence to SM is more rapid in Case A.

19
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2;
�1 approaches this value in the µ3 ! 1 limit in case A. In case B, however, the µ3 ! 1 limit of
�1 is (m2

h/8v
2 + 3M2

1 /32µ
2
3). This expression reminds us that M1 can scale at most linearly with

µ3 if �1 is to remain consistent with the constraint from perturbative unitarity. We also note that
�1 does not correspond directly to the SM Higgs quartic coupling; we will compute the triple-Higgs
coupling ghhh below and show that it exhibits decoupling even in case B.
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formulas,14
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v2

2µ2
3

+
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m3 ' µ3


1 +

✓
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◆
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2µ2
3

+
M1(M1 � 3M2)v2
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
1 +
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◆
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+
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�
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of Fig. 6 we also show the expansion formulas of Eq. (58) in black. As expected from Eq. (58), the
overall decoupling behavior is similar in cases A and B; the mass splittings are larger in case B due
to the numerical size of the term involving M1 and M2.

Expansion formulas for the decoupling behavior of the vevs v� and v� (related by v2�+8v2� = v2)
are given by,
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+
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The doublet vev v� approaches the SM value of v in the decoupling limit, as one would expect.
Likewise, the triplet vev v� goes to zero with its value falling like µ�2

3 (µ�1
3 ) in case A (case B).

The decoupling behavior of v� is plotted for cases A and B in the top panels of Fig. (7).

14 Note that these are consistent with the mass spectrum in the limit that M1 = M2 = 0. If M1 = M2 = 0 and
µ2
3 + (2�2 � �5)v2 > 0, the scalar potential possesses an unbroken Z2 symmetry under which the triplet scalars

are odd. In this case v� = 0 (so that sH = 0), H0
1 and H00

1 do not mix, and the lightest triplet state is stable. The
triplet masses are given by

m2
H00

1
= µ2

3 + (2�2 � �5) v
2,

m2
3 = µ2

3 +

✓
2�2 �

�5

2

◆
v2,

m2
5 = µ2

3 +

✓
2�2 +

�5

2

◆
v2, (57)

while the mass of the physical scalar from the doublet is m2
H0

1
= 8�1v2. The triplets a↵ect the couplings of the

SM-like Higgs H0
1 only through their loop contributions (e.g., in H0

1 ! ��, Z�); their loop e↵ects decouple as µ2
3 is

taken large. This case is analogous to the Inert Doublet Model [28]. We will not consider it further in this paper.
15 In our numerical calculations we use v = 246 GeV, mt = 172 GeV, MW = 80.399 GeV, MZ = 91.1876 GeV, and

cW = MW /MZ .
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Case µ3 ⌘ p|µ2
3| �1 �2 �3 �4 �5 M1 M2

A 300–1000 GeV derived 0.1 0.1 0.1 0.1 100 GeV 100 GeV

B 300–1000 GeV derived 0.1 0.1 0.1 0.1 µ3/3 µ3/3

TABLE II. Values of coupling parameters for the two decoupling scenarios considered. We set mh =
125 GeV and use this to fix �1 in terms of the other parameters. µ2

2 is eliminated in terms of the known
SM Higgs vev v.

Quantity Case A Case B
mH,3,5

µ3
� 1 µ�2

3 µ�2
3

v� µ�2
3 µ�1

3

sin↵ µ�2
3 µ�1

3

V � 1 µ�4
3 µ�2

3

f � 1 µ�4
3 µ�2

3

ghhV V /gSMhhV V � 1 µ�4
3 µ�2

3

ghhh/g
SM
hhh � 1 µ�4

3 µ�2
3

�� µ�2
3 µ�2

3

�Z� µ�2
3 µ�2

3

TABLE III. The power law behavior of the heavy scalar masses, triplet vev, custodial singlet mixing angle,
and light Higgs couplings for parameter cases A and B. See text for definitions.

angle, and the couplings of the light Higgs to SM particles in the approach to decoupling. We
derive explicit expansions for each of these observables in the decoupling limit, keeping terms up
to next-to-leading order in inverse powers of µ2

3. In the expansions we treat M1 and M2 as being of
order

p
µ2
3 or smaller. As we will show, all of the low-energy observables reduce to their appropriate

SM limits as µ3 ! 1.
We also make a numerical comparison between our expansion formulas and the exact expressions

for each observable. To illustrate the approach to the decoupling limit, we consider two explicit
parameter scenarios. In the first scenario (case A) we let µ3 ⌘

p
µ2
3 become large while holding

M1 and M2 constant. In the second scenario (case B) we let µ3 become large while scaling M1 and
M2 proportionally to µ3. The specific parameter choices in each case are given in Table II. These
parameter choices satisfy all of the theoretical constraints described in Sec. III.

We do not consider cases in which only one of the Mi parameters scales with µ3 because the
overall decoupling behavior is much more strongly influenced by M1 than by M2. In the expansion
formulas that we derive below, M2 always appears multiplied by M1 in terms that are suppressed
by larger powers of µ3. As a result, in the case that M1 / µ3 while M2 is constant, the overall
decoupling behavior will be very similar to that in case B. Similarly, in the case that M2 / µ3 while
M1 is constant the decoupling behavior would resemble that of case A.

The overall power law dependence of each observable on µ3 in the decoupling limit is tabulated
in Table III. In general the convergence to the SM is more rapid in case A, where the observables
approach the decoupling limit at rates proportional to µ�2

3 or µ�4
3 . In comparison, in case B the

decoupling rates are proportional to µ�1
3 or µ�2

3 .

18

Case µ3 ⌘ p|µ2
3| �1 �2 �3 �4 �5 M1 M2

A 300–1000 GeV derived 0.1 0.1 0.1 0.1 100 GeV 100 GeV

B 300–1000 GeV derived 0.1 0.1 0.1 0.1 µ3/3 µ3/3

TABLE II. Values of coupling parameters for the two decoupling scenarios considered. We set mh =
125 GeV and use this to fix �1 in terms of the other parameters. µ2

2 is eliminated in terms of the known
SM Higgs vev v.

Quantity Case A Case B
mH,3,5

µ3
� 1 µ�2

3 µ�2
3

v� µ�2
3 µ�1

3

sin↵ µ�2
3 µ�1

3

V � 1 µ�4
3 µ�2

3

f � 1 µ�4
3 µ�2

3

ghhV V /gSMhhV V � 1 µ�4
3 µ�2

3

ghhh/g
SM
hhh � 1 µ�4

3 µ�2
3

�� µ�2
3 µ�2

3

�Z� µ�2
3 µ�2

3

TABLE III. The power law behavior of the heavy scalar masses, triplet vev, custodial singlet mixing angle,
and light Higgs couplings for parameter cases A and B. See text for definitions.

angle, and the couplings of the light Higgs to SM particles in the approach to decoupling. We
derive explicit expansions for each of these observables in the decoupling limit, keeping terms up
to next-to-leading order in inverse powers of µ2

3. In the expansions we treat M1 and M2 as being of
order

p
µ2
3 or smaller. As we will show, all of the low-energy observables reduce to their appropriate

SM limits as µ3 ! 1.
We also make a numerical comparison between our expansion formulas and the exact expressions

for each observable. To illustrate the approach to the decoupling limit, we consider two explicit
parameter scenarios. In the first scenario (case A) we let µ3 ⌘

p
µ2
3 become large while holding

M1 and M2 constant. In the second scenario (case B) we let µ3 become large while scaling M1 and
M2 proportionally to µ3. The specific parameter choices in each case are given in Table II. These
parameter choices satisfy all of the theoretical constraints described in Sec. III.

We do not consider cases in which only one of the Mi parameters scales with µ3 because the
overall decoupling behavior is much more strongly influenced by M1 than by M2. In the expansion
formulas that we derive below, M2 always appears multiplied by M1 in terms that are suppressed
by larger powers of µ3. As a result, in the case that M1 / µ3 while M2 is constant, the overall
decoupling behavior will be very similar to that in case B. Similarly, in the case that M2 / µ3 while
M1 is constant the decoupling behavior would resemble that of case A.

The overall power law dependence of each observable on µ3 in the decoupling limit is tabulated
in Table III. In general the convergence to the SM is more rapid in case A, where the observables
approach the decoupling limit at rates proportional to µ�2

3 or µ�4
3 . In comparison, in case B the

decoupling rates are proportional to µ�1
3 or µ�2

3 .
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Case µ3 ⌘ p|µ2
3| �1 �2 �3 �4 �5 M1 M2

A 300–1000 GeV derived 0.1 0.1 0.1 0.1 100 GeV 100 GeV

B 300–1000 GeV derived 0.1 0.1 0.1 0.1 µ3/3 µ3/3

TABLE II. Values of coupling parameters for the two decoupling scenarios considered. We set mh =
125 GeV and use this to fix �1 in terms of the other parameters. µ2

2 is eliminated in terms of the known
SM Higgs vev v.

Quantity Case A Case B
mH,3,5

µ3
� 1 µ�2

3 µ�2
3

v� µ�2
3 µ�1

3

sin↵ µ�2
3 µ�1

3

V � 1 µ�4
3 µ�2

3

f � 1 µ�4
3 µ�2

3

ghhV V /gSMhhV V � 1 µ�4
3 µ�2

3

ghhh/g
SM
hhh � 1 µ�4

3 µ�2
3

�� µ�2
3 µ�2

3

�Z� µ�2
3 µ�2

3

TABLE III. The power law behavior of the heavy scalar masses, triplet vev, custodial singlet mixing angle,
and light Higgs couplings for parameter cases A and B. See text for definitions.

angle, and the couplings of the light Higgs to SM particles in the approach to decoupling. We
derive explicit expansions for each of these observables in the decoupling limit, keeping terms up
to next-to-leading order in inverse powers of µ2

3. In the expansions we treat M1 and M2 as being of
order

p
µ2
3 or smaller. As we will show, all of the low-energy observables reduce to their appropriate

SM limits as µ3 ! 1.
We also make a numerical comparison between our expansion formulas and the exact expressions

for each observable. To illustrate the approach to the decoupling limit, we consider two explicit
parameter scenarios. In the first scenario (case A) we let µ3 ⌘

p
µ2
3 become large while holding

M1 and M2 constant. In the second scenario (case B) we let µ3 become large while scaling M1 and
M2 proportionally to µ3. The specific parameter choices in each case are given in Table II. These
parameter choices satisfy all of the theoretical constraints described in Sec. III.

We do not consider cases in which only one of the Mi parameters scales with µ3 because the
overall decoupling behavior is much more strongly influenced by M1 than by M2. In the expansion
formulas that we derive below, M2 always appears multiplied by M1 in terms that are suppressed
by larger powers of µ3. As a result, in the case that M1 / µ3 while M2 is constant, the overall
decoupling behavior will be very similar to that in case B. Similarly, in the case that M2 / µ3 while
M1 is constant the decoupling behavior would resemble that of case A.

The overall power law dependence of each observable on µ3 in the decoupling limit is tabulated
in Table III. In general the convergence to the SM is more rapid in case A, where the observables
approach the decoupling limit at rates proportional to µ�2

3 or µ�4
3 . In comparison, in case B the

decoupling rates are proportional to µ�1
3 or µ�2

3 .

• Case A : M1 and M2 fixed; Case B : M1 = M2 = µ3/3
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As a first step, it is relevant to examine the expansion formula for �1 near the decoupling limit,

�1 ' 1

8


m2

h

v2
+

3

4

M2
1

µ2
3

✓
1� 3(2�2 � �5)

v2

µ2
3

+
3M1M2v

2

µ4
3

+
5m2

h

3µ2
3

◆�
. (56)

The first term of this formula coincides with the value of the SM quartic coupling, �1 = m2
h/8v

2;
�1 approaches this value in the µ3 ! 1 limit in case A. In case B, however, the µ3 ! 1 limit of
�1 is (m2

h/8v
2 + 3M2

1 /32µ
2
3). This expression reminds us that M1 can scale at most linearly with

µ3 if �1 is to remain consistent with the constraint from perturbative unitarity. We also note that
�1 does not correspond directly to the SM Higgs quartic coupling; we will compute the triple-Higgs
coupling ghhh below and show that it exhibits decoupling even in case B.

In the decoupling limit, the masses of the heavy scalars are given by the following expansion
formulas,14

mH ' µ3


1 + (2�2 � �5)

v2

2µ2
3

+
3M1(M1 � 4M2)v2

8µ4
3

�
,

m3 ' µ3


1 +

✓
2�2 � �5

2

◆
v2

2µ2
3

+
M1(M1 � 3M2)v2

4µ4
3

�
,

m5 ' µ3


1 +

✓
2�2 +

�5

2

◆
v2

2µ2
3

+
3M1M2v

2

4µ4
3

�
. (58)

The fractional di↵erence between each scalar mass and µ3 scales with µ�2
3 in both case A and case B.

The behavior of the scalar masses and the di↵erence between the masses and µ3 are illustrated as
functions of µ3 in Fig. 6.15 In each case we show the exact tree-level mass values; in the lower panels
of Fig. 6 we also show the expansion formulas of Eq. (58) in black. As expected from Eq. (58), the
overall decoupling behavior is similar in cases A and B; the mass splittings are larger in case B due
to the numerical size of the term involving M1 and M2.

Expansion formulas for the decoupling behavior of the vevs v� and v� (related by v2�+8v2� = v2)
are given by,

v� ' M1v
2

4µ2
3


1� (2�2 � �5)

v2

µ2
3

+
M1(3M2 �M1)v2

2µ4
3

�
,

v� ' v

✓
1� M2

1 v
2

4µ4
3

◆
. (59)

The doublet vev v� approaches the SM value of v in the decoupling limit, as one would expect.
Likewise, the triplet vev v� goes to zero with its value falling like µ�2

3 (µ�1
3 ) in case A (case B).

The decoupling behavior of v� is plotted for cases A and B in the top panels of Fig. (7).

14 Note that these are consistent with the mass spectrum in the limit that M1 = M2 = 0. If M1 = M2 = 0 and
µ2
3 + (2�2 � �5)v2 > 0, the scalar potential possesses an unbroken Z2 symmetry under which the triplet scalars

are odd. In this case v� = 0 (so that sH = 0), H0
1 and H00

1 do not mix, and the lightest triplet state is stable. The
triplet masses are given by

m2
H00

1
= µ2

3 + (2�2 � �5) v
2,

m2
3 = µ2

3 +

✓
2�2 �

�5

2

◆
v2,

m2
5 = µ2

3 +

✓
2�2 +

�5

2

◆
v2, (57)

while the mass of the physical scalar from the doublet is m2
H0

1
= 8�1v2. The triplets a↵ect the couplings of the

SM-like Higgs H0
1 only through their loop contributions (e.g., in H0

1 ! ��, Z�); their loop e↵ects decouple as µ2
3 is

taken large. This case is analogous to the Inert Doublet Model [28]. We will not consider it further in this paper.
15 In our numerical calculations we use v = 246 GeV, mt = 172 GeV, MW = 80.399 GeV, MZ = 91.1876 GeV, and

cW = MW /MZ .
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FIG. 6. Top: The mass spectrum of the model as a function of
p

µ2
3 for cases A (left) and B (right).

Bottom: The mass splittings mi �
p

µ2
3 for the heavy scalars as a function of µ3 for cases A (left) and

B (right). In the bottom plots the colored (light) curves show the exact tree-level masses while the black
curves are the associated expansion formulas from Eq. (58). For m3 and m5, the expansion formula curves
are almost identical to the exact curves.

The decoupling behavior of the mixing angle ↵ is given by the expansion formula

sin↵ ' �
p
3M1v

2µ2
3


1� 2(2�2 � �5)

v2

µ2
3

+
m2

h

µ2
3

+
M1(24M2 � 5M1)v2

8µ4
3

�
. (60)

We can see that sin↵ approaches zero as µ3 ! 1. This is to be expected, as sin↵ controls the
amount of triplet in the mass eigenstate h, and sin↵ = 0 corresponds to a SM-like Higgs boson h
composed entirely of the SU(2)L doublet [recall Eq. (18)]. The rate of the decoupling is proportional
to µ�2

3 in case A and µ�1
3 in case B, similar to the decoupling pattern for v�; we note that sin↵

and v� are the only quantities that may decouple as slowly as µ�1
3 , and all others decouple at a

rate of µ�2
3 or faster. The exact expression for sin↵ is plotted along with the expansion formula in

the bottom panels of Fig. 7.
We now consider the decoupling behavior of the couplings of the light Higgs boson h to SM

12
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• Black curves correspond to expansions in µ�1
3 while colored curves are

exact.

19

As a first step, it is relevant to examine the expansion formula for �1 near the decoupling limit,

�1 ' 1

8


m2

h

v2
+

3

4

M2
1

µ2
3

✓
1� 3(2�2 � �5)

v2

µ2
3

+
3M1M2v

2

µ4
3

+
5m2

h

3µ2
3

◆�
. (56)

The first term of this formula coincides with the value of the SM quartic coupling, �1 = m2
h/8v

2;
�1 approaches this value in the µ3 ! 1 limit in case A. In case B, however, the µ3 ! 1 limit of
�1 is (m2

h/8v
2 + 3M2

1 /32µ
2
3). This expression reminds us that M1 can scale at most linearly with

µ3 if �1 is to remain consistent with the constraint from perturbative unitarity. We also note that
�1 does not correspond directly to the SM Higgs quartic coupling; we will compute the triple-Higgs
coupling ghhh below and show that it exhibits decoupling even in case B.

In the decoupling limit, the masses of the heavy scalars are given by the following expansion
formulas,14

mH ' µ3


1 + (2�2 � �5)

v2

2µ2
3

+
3M1(M1 � 4M2)v2

8µ4
3

�
,

m3 ' µ3


1 +

✓
2�2 � �5

2

◆
v2

2µ2
3

+
M1(M1 � 3M2)v2

4µ4
3

�
,

m5 ' µ3
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1 +

✓
2�2 +

�5

2

◆
v2

2µ2
3

+
3M1M2v

2

4µ4
3

�
. (58)

The fractional di↵erence between each scalar mass and µ3 scales with µ�2
3 in both case A and case B.

The behavior of the scalar masses and the di↵erence between the masses and µ3 are illustrated as
functions of µ3 in Fig. 6.15 In each case we show the exact tree-level mass values; in the lower panels
of Fig. 6 we also show the expansion formulas of Eq. (58) in black. As expected from Eq. (58), the
overall decoupling behavior is similar in cases A and B; the mass splittings are larger in case B due
to the numerical size of the term involving M1 and M2.

Expansion formulas for the decoupling behavior of the vevs v� and v� (related by v2�+8v2� = v2)
are given by,

v� ' M1v
2

4µ2
3


1� (2�2 � �5)

v2

µ2
3

+
M1(3M2 �M1)v2

2µ4
3

�
,

v� ' v

✓
1� M2

1 v
2

4µ4
3

◆
. (59)

The doublet vev v� approaches the SM value of v in the decoupling limit, as one would expect.
Likewise, the triplet vev v� goes to zero with its value falling like µ�2

3 (µ�1
3 ) in case A (case B).

The decoupling behavior of v� is plotted for cases A and B in the top panels of Fig. (7).

14 Note that these are consistent with the mass spectrum in the limit that M1 = M2 = 0. If M1 = M2 = 0 and
µ2
3 + (2�2 � �5)v2 > 0, the scalar potential possesses an unbroken Z2 symmetry under which the triplet scalars

are odd. In this case v� = 0 (so that sH = 0), H0
1 and H00

1 do not mix, and the lightest triplet state is stable. The
triplet masses are given by

m2
H00

1
= µ2

3 + (2�2 � �5) v
2,

m2
3 = µ2

3 +

✓
2�2 �

�5

2

◆
v2,

m2
5 = µ2

3 +

✓
2�2 +

�5

2

◆
v2, (57)

while the mass of the physical scalar from the doublet is m2
H0

1
= 8�1v2. The triplets a↵ect the couplings of the

SM-like Higgs H0
1 only through their loop contributions (e.g., in H0

1 ! ��, Z�); their loop e↵ects decouple as µ2
3 is

taken large. This case is analogous to the Inert Doublet Model [28]. We will not consider it further in this paper.
15 In our numerical calculations we use v = 246 GeV, mt = 172 GeV, MW = 80.399 GeV, MZ = 91.1876 GeV, and

cW = MW /MZ .
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FIG. 6. Top: The mass spectrum of the model as a function of
p

µ2
3 for cases A (left) and B (right).

Bottom: The mass splittings mi �
p

µ2
3 for the heavy scalars as a function of µ3 for cases A (left) and

B (right). In the bottom plots the colored (light) curves show the exact tree-level masses while the black
curves are the associated expansion formulas from Eq. (58). For m3 and m5, the expansion formula curves
are almost identical to the exact curves.

The decoupling behavior of the mixing angle ↵ is given by the expansion formula

sin↵ ' �
p
3M1v

2µ2
3


1� 2(2�2 � �5)

v2

µ2
3

+
m2

h

µ2
3

+
M1(24M2 � 5M1)v2

8µ4
3

�
. (60)

We can see that sin↵ approaches zero as µ3 ! 1. This is to be expected, as sin↵ controls the
amount of triplet in the mass eigenstate h, and sin↵ = 0 corresponds to a SM-like Higgs boson h
composed entirely of the SU(2)L doublet [recall Eq. (18)]. The rate of the decoupling is proportional
to µ�2

3 in case A and µ�1
3 in case B, similar to the decoupling pattern for v�; we note that sin↵

and v� are the only quantities that may decouple as slowly as µ�1
3 , and all others decouple at a

rate of µ�2
3 or faster. The exact expression for sin↵ is plotted along with the expansion formula in

the bottom panels of Fig. 7.
We now consider the decoupling behavior of the couplings of the light Higgs boson h to SM

⇣
v
µ3

⌘2
⇣

v
µ3

⌘2
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FIG. 7. Top: The dependence of the triplet vev v� (shown normalized to v = 246 GeV) as a function of
µ3 in cases A (left) and B (right). Bottom: The mixing angle sin↵ that controls the composition of the
light Higgs boson h = �0,r cos↵ �H00

1 sin↵, shown as a function of µ3 in cases A (left) and B (right). In
all plots the solid red (light) line is the exact curve, while the dashed black (dark) line is the corresponding
expansion formula from Eqs. (59) and (60).

particles. The relevant tree-level couplings of h to vector bosons and fermions, as well as the

• triplet vev

⇣
v
µ3

⌘2
v
µ3
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As a first step, it is relevant to examine the expansion formula for �1 near the decoupling limit,

�1 ' 1

8


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1
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3
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v2
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3
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2
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h

3µ2
3

◆�
. (56)

The first term of this formula coincides with the value of the SM quartic coupling, �1 = m2
h/8v

2;
�1 approaches this value in the µ3 ! 1 limit in case A. In case B, however, the µ3 ! 1 limit of
�1 is (m2

h/8v
2 + 3M2

1 /32µ
2
3). This expression reminds us that M1 can scale at most linearly with

µ3 if �1 is to remain consistent with the constraint from perturbative unitarity. We also note that
�1 does not correspond directly to the SM Higgs quartic coupling; we will compute the triple-Higgs
coupling ghhh below and show that it exhibits decoupling even in case B.

In the decoupling limit, the masses of the heavy scalars are given by the following expansion
formulas,14

mH ' µ3
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8µ4
3

�
,

m3 ' µ3


1 +

✓
2�2 � �5

2

◆
v2

2µ2
3

+
M1(M1 � 3M2)v2

4µ4
3

�
,

m5 ' µ3


1 +

✓
2�2 +

�5

2

◆
v2

2µ2
3

+
3M1M2v

2

4µ4
3

�
. (58)

The fractional di↵erence between each scalar mass and µ3 scales with µ�2
3 in both case A and case B.

The behavior of the scalar masses and the di↵erence between the masses and µ3 are illustrated as
functions of µ3 in Fig. 6.15 In each case we show the exact tree-level mass values; in the lower panels
of Fig. 6 we also show the expansion formulas of Eq. (58) in black. As expected from Eq. (58), the
overall decoupling behavior is similar in cases A and B; the mass splittings are larger in case B due
to the numerical size of the term involving M1 and M2.

Expansion formulas for the decoupling behavior of the vevs v� and v� (related by v2�+8v2� = v2)
are given by,

v� ' M1v
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. (59)

The doublet vev v� approaches the SM value of v in the decoupling limit, as one would expect.
Likewise, the triplet vev v� goes to zero with its value falling like µ�2

3 (µ�1
3 ) in case A (case B).

The decoupling behavior of v� is plotted for cases A and B in the top panels of Fig. (7).

14 Note that these are consistent with the mass spectrum in the limit that M1 = M2 = 0. If M1 = M2 = 0 and
µ2
3 + (2�2 � �5)v2 > 0, the scalar potential possesses an unbroken Z2 symmetry under which the triplet scalars

are odd. In this case v� = 0 (so that sH = 0), H0
1 and H00

1 do not mix, and the lightest triplet state is stable. The
triplet masses are given by
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v2, (57)

while the mass of the physical scalar from the doublet is m2
H0

1
= 8�1v2. The triplets a↵ect the couplings of the

SM-like Higgs H0
1 only through their loop contributions (e.g., in H0

1 ! ��, Z�); their loop e↵ects decouple as µ2
3 is

taken large. This case is analogous to the Inert Doublet Model [28]. We will not consider it further in this paper.
15 In our numerical calculations we use v = 246 GeV, mt = 172 GeV, MW = 80.399 GeV, MZ = 91.1876 GeV, and

cW = MW /MZ .

• v� ! 0 as µ3 ! 1
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FIG. 7. Top: The dependence of the triplet vev v� (shown normalized to v = 246 GeV) as a function of
µ3 in cases A (left) and B (right). Bottom: The mixing angle sin↵ that controls the composition of the
light Higgs boson h = �0,r cos↵ �H00

1 sin↵, shown as a function of µ3 in cases A (left) and B (right). In
all plots the solid red (light) line is the exact curve, while the dashed black (dark) line is the corresponding
expansion formula from Eqs. (59) and (60).
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FIG. 6. Top: The mass spectrum of the model as a function of
p

µ2
3 for cases A (left) and B (right).

Bottom: The mass splittings mi �
p

µ2
3 for the heavy scalars as a function of µ3 for cases A (left) and

B (right). In the bottom plots the colored (light) curves show the exact tree-level masses while the black
curves are the associated expansion formulas from Eq. (58). For m3 and m5, the expansion formula curves
are almost identical to the exact curves.

The decoupling behavior of the mixing angle ↵ is given by the expansion formula
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. (60)

We can see that sin↵ approaches zero as µ3 ! 1. This is to be expected, as sin↵ controls the
amount of triplet in the mass eigenstate h, and sin↵ = 0 corresponds to a SM-like Higgs boson h
composed entirely of the SU(2)L doublet [recall Eq. (18)]. The rate of the decoupling is proportional
to µ�2

3 in case A and µ�1
3 in case B, similar to the decoupling pattern for v�; we note that sin↵

and v� are the only quantities that may decouple as slowly as µ�1
3 , and all others decouple at a

rate of µ�2
3 or faster. The exact expression for sin↵ is plotted along with the expansion formula in

the bottom panels of Fig. 7.
We now consider the decoupling behavior of the couplings of the light Higgs boson h to SM

• sin↵ ! 0 as µ3 ! 1

15



Decoupling Behaviour:  hVV, hff

22

0.96

0.98

1

1.02

1.04

400 600 800 1000



p
µ2
3 [GeV]

Case A

V
f

0.96

0.98

1

1.02

1.04

400 600 800 1000



p
µ2
3 [GeV]

Case B

V
f
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while the black (dark) curves show the corresponding expansion formulas as in Eq. (61).
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where V and f are defined as the ratios of the couplings ghV V and ghff̄ to those of the SM
Higgs boson as in Ref. [29], and MV is the appropriate massive gauge boson mass. Each of these
couplings becomes equal to the corresponding coupling of the SM Higgs boson in the limit µ3 ! 1.
Furthermore, each of these tree-level couplings of h decouples at a rate proportional to µ�4

3 (µ�2
3 )

in case A (case B). We also notice that, near the decoupling limit, V > 1 and f < 1, and that
|V � 1| = 3|f � 1|.

The decoupling behavior of V and f is illustrated in Fig. 8. We see that the expansion formula
for V provides a very good approximation to the exact result, but the expansion formula for
f deviates significantly from the exact result for small values of µ3 . 400 GeV, indicating that
subleading terms become numerically relevant for these relatively low µ3 values.

We finally consider the decoupling behavior of the loop-induced couplings of h to �� and Z�.17

Modifications to these couplings come from two sources: (i) the modifications of the fermion and

16 The exact tree-level formula for the triple-h coupling is given in Eq. (A1) in Appendix A.
17 The loop-induced coupling of h to gg is modified by the same factor f that controls the h couplings to SM

fermions.

• Expansion formulae are not a very good approximation in the case of f

for µ3 . 400
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curves) as a function of µ3, for cases A (left) and B (right). The colored (light) curves are the exact results
while the black (dark) curves show the corresponding expansion formulas as in Eq. (61).
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|V � 1| = 3|f � 1|.

The decoupling behavior of V and f is illustrated in Fig. 8. We see that the expansion formula
for V provides a very good approximation to the exact result, but the expansion formula for
f deviates significantly from the exact result for small values of µ3 . 400 GeV, indicating that
subleading terms become numerically relevant for these relatively low µ3 values.

We finally consider the decoupling behavior of the loop-induced couplings of h to �� and Z�.17

Modifications to these couplings come from two sources: (i) the modifications of the fermion and

16 The exact tree-level formula for the triple-h coupling is given in Eq. (A1) in Appendix A.
17 The loop-induced coupling of h to gg is modified by the same factor f that controls the h couplings to SM

fermions.
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FIG. 9. Top: The light Higgs coupling modification factor � as a function of µ3, for cases A (left) and B
(right). Bottom: The light Higgs coupling modification factor �� , comprising only the contributions from
the non-SM charged scalars in the loop, as a function of µ3. In all plots the solid red (light) line shows the
exact one-loop result, while the dashed black (dark) line is the expansion formula as discussed in the text.
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where � and �̂ are linear combinations of the quartic couplings in the 2HDM, mA is the mass of
the CP-odd scalar A, and the angle � is defined as usual in terms of the ratio of the vevs of the
two doublets, tan� = v2/v1, where v21 + v22 = v2 ' (246 GeV)2. Values of tan� ⇠ 1–50 are usually

h��

• Loop induced couplings: a↵ected by changes to hV V and hff , new charged

scalars in the loop
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W boson loop contributions by factors of f and V , respectively; and (ii) new contributions from
the charged scalars H+

3 , H+
5 , and H++

5 propagating in the loop. Details of the calculation are given
in Appendix B.

The decoupling behavior of the charged scalar loop contributions to the h�� and hZ� couplings
can be understood by considering the relevant couplings of h to charged scalars in the decoupling
limit:

ghH+
3 H+⇤

3
' (4�2 � �5) v +

�
M2

1 � 3M1M2
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3

,

ghH+
5 H+⇤

5
= ghH++

5 H++⇤
5

' (4�2 + �5) v +
3M1M2v

µ2
3

, (62)

where we have kept only the leading term in the decoupling limit. In particular, these triple-scalar
couplings go to a constant of order v in the decoupling limit. Combined with the loop integral
/ 1/m2

i , where mi is the mass of the charged scalar in the loop, we find that the contributions to
the h�� and hZ� amplitudes from charged scalars in the loop will decouple like µ�2

3 . In particular,
we have
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F1(MW ) + 4
3F1/2(mt)
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1 + 12M1M2

4µ2
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�
, (63)

where �� and �Z� are the contributions to the e↵ective h�� and hZ� couplings due to the
contributions of non-SM particles in the loop (see Appendix B for details). Here F1 and F1/2

(AW and Af ) represent the SM contributions from the W boson and the top quark to h ! ��
(h ! �Z). Note that, near the decoupling limit, the charged scalar contributions to the h�� and
hZ� loop contributions have the same dependence on the GM model parameters, as given in the
square brackets in Eq. (63).

We illustrate the decoupling behavior of the loop-induced h�� (hZ�) e↵ective coupling � (Z�),
as well as the contribution from only the new charged scalars �� (�Z�), in Fig. 9 (Fig. 10). Of
the SM fermion contributions, we include only the top quark loop. The e↵ective couplings � and
Z� are defined normalized to the SM prediction. We show the exact one-loop result (red solid
lines) as well as that obtained using the expansion formulas of Eqs. (61) and (63). The relatively
large deviation at low µ3 between the exact result and the expansion formulas in the upper panels
of Figs. 9 and 10 follows from the relatively large deviation between the exact f and its expansion
formula as shown in Fig. 8.

B. Comparison to decoupling in the two-Higgs-doublet model

We now compare the decoupling behavior of the GM model to the well-studied case of the CP-
conserving two-Higgs-doublet model (2HDM) [26]. In particular, we examine how the couplings of
the light custodial-singlet Higgs boson h deviate from the SM limit as a function of the common
mass scale of the heavy scalars.

The 2HDM contains five scalar states: two CP-even neutral scalars h and H, a CP-odd scalar A,
and two charged scalars H±. As shown in Ref. [26], the couplings of the light Higgs boson h in the
2HDM behave as follows in the decoupling limit (we choose the Type-II structure for the fermion

• � : Ratio of contribution from non-SM particles in loop to SM coupling
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FIG. 10. Top: The light Higgs coupling modification factor Z� as a function of µ3, for cases A (left) and
B (right). Bottom: The light Higgs coupling modification factor �Z� , comprising only the contributions
from the non-SM charged scalars in the loop, as a function of µ3. In all plots the solid red (light) line shows
the exact one-loop result, while the dashed black (dark) line is the expansion formula as discussed in the
text.

considered. We also note that ghhV V = 1 in the 2HDM.
Comparing the 2HDM couplings in the decoupling limit in Eq. (64) to those of the GM model in

Eq. (61), we make the following observations:

• In case A, V decouples like (v4/M4
new) in both the GM model and the 2HDM, whereas f

and ghhh decouple much faster in the GM model than in the 2HDM [like (v4/M4
new) in the

GM model compared to (v2/M2
new) in the 2HDM].

• In case B, V decouples much more slowly in the GM model than in the 2HDM [like (v2/M2
new)

in the GM model compared to (v4/M4
new) in the 2HDM], while f and ghhh decouple like

(v2/M2
new) in both the GM model and the 2HDM.

As such, precision measurements of the Higgs couplings at a Higgs factory such as the International
Linear Collider [30] may be able to di↵erentiate these models: relatively large deviations from the

hZ�
23
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where we have kept only the leading term in the decoupling limit. In particular, these triple-scalar
couplings go to a constant of order v in the decoupling limit. Combined with the loop integral
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where �� and �Z� are the contributions to the e↵ective h�� and hZ� couplings due to the
contributions of non-SM particles in the loop (see Appendix B for details). Here F1 and F1/2

(AW and Af ) represent the SM contributions from the W boson and the top quark to h ! ��
(h ! �Z). Note that, near the decoupling limit, the charged scalar contributions to the h�� and
hZ� loop contributions have the same dependence on the GM model parameters, as given in the
square brackets in Eq. (63).
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as well as the contribution from only the new charged scalars �� (�Z�), in Fig. 9 (Fig. 10). Of
the SM fermion contributions, we include only the top quark loop. The e↵ective couplings � and
Z� are defined normalized to the SM prediction. We show the exact one-loop result (red solid
lines) as well as that obtained using the expansion formulas of Eqs. (61) and (63). The relatively
large deviation at low µ3 between the exact result and the expansion formulas in the upper panels
of Figs. 9 and 10 follows from the relatively large deviation between the exact f and its expansion
formula as shown in Fig. 8.

B. Comparison to decoupling in the two-Higgs-doublet model

We now compare the decoupling behavior of the GM model to the well-studied case of the CP-
conserving two-Higgs-doublet model (2HDM) [26]. In particular, we examine how the couplings of
the light custodial-singlet Higgs boson h deviate from the SM limit as a function of the common
mass scale of the heavy scalars.

The 2HDM contains five scalar states: two CP-even neutral scalars h and H, a CP-odd scalar A,
and two charged scalars H±. As shown in Ref. [26], the couplings of the light Higgs boson h in the
2HDM behave as follows in the decoupling limit (we choose the Type-II structure for the fermion

• � : Ratio of contribution from non-SM particles in loop to SM coupling
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FIG. 9. Top: The light Higgs coupling modification factor � as a function of µ3, for cases A (left) and B
(right). Bottom: The light Higgs coupling modification factor �� , comprising only the contributions from
the non-SM charged scalars in the loop, as a function of µ3. In all plots the solid red (light) line shows the
exact one-loop result, while the dashed black (dark) line is the expansion formula as discussed in the text.
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where � and �̂ are linear combinations of the quartic couplings in the 2HDM, mA is the mass of
the CP-odd scalar A, and the angle � is defined as usual in terms of the ratio of the vevs of the
two doublets, tan� = v2/v1, where v21 + v22 = v2 ' (246 GeV)2. Values of tan� ⇠ 1–50 are usually
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Case µ3 ⌘ p|µ2
3| �1 �2 �3 �4 �5 M1 M2

A 300–1000 GeV derived 0.1 0.1 0.1 0.1 100 GeV 100 GeV

B 300–1000 GeV derived 0.1 0.1 0.1 0.1 µ3/3 µ3/3

TABLE II. Values of coupling parameters for the two decoupling scenarios considered. We set mh =
125 GeV and use this to fix �1 in terms of the other parameters. µ2

2 is eliminated in terms of the known
SM Higgs vev v.

Quantity Case A Case B
mH,3,5

µ3
� 1 µ�2

3 µ�2
3

v� µ�2
3 µ�1

3

sin↵ µ�2
3 µ�1

3

V � 1 µ�4
3 µ�2

3

f � 1 µ�4
3 µ�2

3

ghhV V /gSMhhV V � 1 µ�4
3 µ�2

3

ghhh/g
SM
hhh � 1 µ�4

3 µ�2
3

�� µ�2
3 µ�2

3

�Z� µ�2
3 µ�2

3

TABLE III. The power law behavior of the heavy scalar masses, triplet vev, custodial singlet mixing angle,
and light Higgs couplings for parameter cases A and B. See text for definitions.

angle, and the couplings of the light Higgs to SM particles in the approach to decoupling. We
derive explicit expansions for each of these observables in the decoupling limit, keeping terms up
to next-to-leading order in inverse powers of µ2

3. In the expansions we treat M1 and M2 as being of
order

p
µ2
3 or smaller. As we will show, all of the low-energy observables reduce to their appropriate

SM limits as µ3 ! 1.
We also make a numerical comparison between our expansion formulas and the exact expressions

for each observable. To illustrate the approach to the decoupling limit, we consider two explicit
parameter scenarios. In the first scenario (case A) we let µ3 ⌘

p
µ2
3 become large while holding

M1 and M2 constant. In the second scenario (case B) we let µ3 become large while scaling M1 and
M2 proportionally to µ3. The specific parameter choices in each case are given in Table II. These
parameter choices satisfy all of the theoretical constraints described in Sec. III.

We do not consider cases in which only one of the Mi parameters scales with µ3 because the
overall decoupling behavior is much more strongly influenced by M1 than by M2. In the expansion
formulas that we derive below, M2 always appears multiplied by M1 in terms that are suppressed
by larger powers of µ3. As a result, in the case that M1 / µ3 while M2 is constant, the overall
decoupling behavior will be very similar to that in case B. Similarly, in the case that M2 / µ3 while
M1 is constant the decoupling behavior would resemble that of case A.

The overall power law dependence of each observable on µ3 in the decoupling limit is tabulated
in Table III. In general the convergence to the SM is more rapid in case A, where the observables
approach the decoupling limit at rates proportional to µ�2

3 or µ�4
3 . In comparison, in case B the

decoupling rates are proportional to µ�1
3 or µ�2

3 .
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formulas that we derive below, M2 always appears multiplied by M1 in terms that are suppressed
by larger powers of µ3. As a result, in the case that M1 / µ3 while M2 is constant, the overall
decoupling behavior will be very similar to that in case B. Similarly, in the case that M2 / µ3 while
M1 is constant the decoupling behavior would resemble that of case A.

The overall power law dependence of each observable on µ3 in the decoupling limit is tabulated
in Table III. In general the convergence to the SM is more rapid in case A, where the observables
approach the decoupling limit at rates proportional to µ�2

3 or µ�4
3 . In comparison, in case B the

decoupling rates are proportional to µ�1
3 or µ�2

3 .
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Case µ3 ⌘ p|µ2
3| �1 �2 �3 �4 �5 M1 M2

A 300–1000 GeV derived 0.1 0.1 0.1 0.1 100 GeV 100 GeV

B 300–1000 GeV derived 0.1 0.1 0.1 0.1 µ3/3 µ3/3

TABLE II. Values of coupling parameters for the two decoupling scenarios considered. We set mh =
125 GeV and use this to fix �1 in terms of the other parameters. µ2

2 is eliminated in terms of the known
SM Higgs vev v.

Quantity Case A Case B
mH,3,5

µ3
� 1 µ�2

3 µ�2
3

v� µ�2
3 µ�1

3

sin↵ µ�2
3 µ�1

3

V � 1 µ�4
3 µ�2

3

f � 1 µ�4
3 µ�2

3

ghhV V /gSMhhV V � 1 µ�4
3 µ�2

3

ghhh/g
SM
hhh � 1 µ�4

3 µ�2
3

�� µ�2
3 µ�2

3

�Z� µ�2
3 µ�2

3

TABLE III. The power law behavior of the heavy scalar masses, triplet vev, custodial singlet mixing angle,
and light Higgs couplings for parameter cases A and B. See text for definitions.

angle, and the couplings of the light Higgs to SM particles in the approach to decoupling. We
derive explicit expansions for each of these observables in the decoupling limit, keeping terms up
to next-to-leading order in inverse powers of µ2

3. In the expansions we treat M1 and M2 as being of
order

p
µ2
3 or smaller. As we will show, all of the low-energy observables reduce to their appropriate

SM limits as µ3 ! 1.
We also make a numerical comparison between our expansion formulas and the exact expressions

for each observable. To illustrate the approach to the decoupling limit, we consider two explicit
parameter scenarios. In the first scenario (case A) we let µ3 ⌘

p
µ2
3 become large while holding

M1 and M2 constant. In the second scenario (case B) we let µ3 become large while scaling M1 and
M2 proportionally to µ3. The specific parameter choices in each case are given in Table II. These
parameter choices satisfy all of the theoretical constraints described in Sec. III.

We do not consider cases in which only one of the Mi parameters scales with µ3 because the
overall decoupling behavior is much more strongly influenced by M1 than by M2. In the expansion
formulas that we derive below, M2 always appears multiplied by M1 in terms that are suppressed
by larger powers of µ3. As a result, in the case that M1 / µ3 while M2 is constant, the overall
decoupling behavior will be very similar to that in case B. Similarly, in the case that M2 / µ3 while
M1 is constant the decoupling behavior would resemble that of case A.

The overall power law dependence of each observable on µ3 in the decoupling limit is tabulated
in Table III. In general the convergence to the SM is more rapid in case A, where the observables
approach the decoupling limit at rates proportional to µ�2

3 or µ�4
3 . In comparison, in case B the

decoupling rates are proportional to µ�1
3 or µ�2

3 .

• relatively large deviations in all couplings would favor GM Case B

• relatively large deviations fermion and trilinear couplings, but SM like
vector couplings favors 2HDM
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FIG. 8. The light Higgs coupling modification factors V (upper dashed curves) and f (lower dot-dashed
curves) as a function of µ3, for cases A (left) and B (right). The colored (light) curves are the exact results
while the black (dark) curves show the corresponding expansion formulas as in Eq. (61).

triple-h self-coupling,16 are given by

V = cos↵
v�
v

� 8p
3
sin↵

v�
v

' 1 +
3

8

M2
1 v

2

µ4
3

,

f = cos↵
v

v�
' 1� 1

8

M2
1 v

2

µ4
3

,

ghhV V =
2M2

V

v2

✓
cos2 ↵+

8

3
sin2 ↵

◆
' 2M2

V

v2

✓
1 +

5

4

M2
1 v

2

µ4
3

◆
,

ghhh ' 3m2
h

v

⇢
1� M2

1 v
2

µ4
3


7

8
� 3

2

v2

m2
h

✓
(2�2 � �5) +

M1M2

µ2
3

◆��
, (61)

where V and f are defined as the ratios of the couplings ghV V and ghff̄ to those of the SM
Higgs boson as in Ref. [29], and MV is the appropriate massive gauge boson mass. Each of these
couplings becomes equal to the corresponding coupling of the SM Higgs boson in the limit µ3 ! 1.
Furthermore, each of these tree-level couplings of h decouples at a rate proportional to µ�4

3 (µ�2
3 )

in case A (case B). We also notice that, near the decoupling limit, V > 1 and f < 1, and that
|V � 1| = 3|f � 1|.

The decoupling behavior of V and f is illustrated in Fig. 8. We see that the expansion formula
for V provides a very good approximation to the exact result, but the expansion formula for
f deviates significantly from the exact result for small values of µ3 . 400 GeV, indicating that
subleading terms become numerically relevant for these relatively low µ3 values.

We finally consider the decoupling behavior of the loop-induced couplings of h to �� and Z�.17

Modifications to these couplings come from two sources: (i) the modifications of the fermion and

16 The exact tree-level formula for the triple-h coupling is given in Eq. (A1) in Appendix A.
17 The loop-induced coupling of h to gg is modified by the same factor f that controls the h couplings to SM

fermions.

• Another distinguishing feature is the V is enhanced in the decoupling

limit of the GM model

Type-II 2HDM Georgi-Machacek

J.F. Gunion, H.E. Haber [PRD 67, 075019]
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Numerical Scans

27

FIG. 11. The light Higgs coupling modification factors V (upper) and f (lower) as a function of the
mass of the lightest of the new scalars, Mnew = min(mH ,m3,m5). The right panels shows a close-up of the
region of small coupling deviations.

V. CONCLUSIONS

The measured properties of the SM-like Higgs boson discovered at the LHC have so far been
consistent with SM expectations. Together with this, the fact that no additional new particles
have yet been discovered at the LHC motivates the study of the decoupling limits of Higgs sector
extensions, as they can lead to a 125 GeV resonance with very small deviations from SM Higgs
couplings and heavier states that are out of reach with current data.
In this paper we studied the most general scalar potential of the GM model that preserves

gauge invariance and the custodial SU(2) symmetry. We started by collecting the theoretical
constraints on the potential parameters required to satisfy tree-level unitarity in 2 ! 2 scalar
scattering amplitudes, ensure the potential is bounded from below, and avoid the existence of deeper
custodial SU(2)-violating minima. We then showed that the GMmodel with this most general scalar
potential does possess a decoupling limit, and studied the phenomenological properties of the model
as the decoupling limit is approached.
We found that the mixing angle that controls the amount of triplet in the light Higgs state h,

as well as the fraction of vev carried by the triplet v�/v, both go to zero in the decoupling limit

• Numerical scans to examine accessible range of couplings

• We allow all the free parameters to vary and impose theoretical con-

straints.
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Numerical Scans
28

FIG. 12. As in Fig. 11 but for � (upper) and Z� (lower).

like (v/Mnew) or faster, while the fractional size of the mass splittings among the heavy scalars and
the deviations of the couplings of the light Higgs boson from those of the SM Higgs go to zero like
(v2/M2

new) or faster, where Mnew is the mass scale of the heavy scalars. The decoupling of the light
Higgs boson couplings goes like (v2/M2

new) when the dimensionful trilinear couplings in the scalar
potential grow with Mnew as the decoupling limit is taken. The decoupling is faster, like (v4/M4

new),
when these trilinear couplings remain small (of order v) as the decoupling limit is taken.

Compared to the decoupling limit of the 2HDM, the most notable di↵erence is in the decoupling
behavior of the hV V coupling. As described above, in the GM model this coupling can deviate
from the SM prediction by an amount of order (v2/M2

new) or less, whereas in the 2HDM it can
deviate at most by corrections of order (v4/M4

new)—i.e., deviations in V can decouple much more
slowly in the GM model than in the 2HDM.

The hV V coupling V also allows the GM model to be distinguished from any SM Higgs sector
extension containing only SU(2)L doublets and singlets. In the GM model, we find analytically
that the leading modification to V in the decoupling limit is always positive; this is confirmed
by a numerical scan (imposing all theoretical constraints) from which we find that V � 1 for
Mnew & 500 GeV. For comparison, models containing only SU(2)L-doublet and -singlet scalars
always have V  1. From our numerical scans we also found that the GM model can fully
populate the current experimentally-allowed 1� ranges of Higgs couplings to pairs of vector bosons,

• All couplings can show 10% deviations even when the mass of the lightest

scalar is around 800 GeV.

• The 1� allowed regions of higgs couplings measured at the LHC can be
populated fully by the GM model with scalar masses below 400�600 GeV.

21



Indirect Constraints 

• Include constraints from : B meson mixing, Bs ! µµ, Rb, b ! s� ,Oblique
parameters (ongoing)

• Most stringent constraint comes from Bs ! µµ
10
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Indirect Constraints 
• At one-loop level ⇢ 6= 1 and we require a counterterm to cancel the singu-

larities in the T parameter

• We could approach the constraint from oblique parameters in the following

ways:

• Apply the constraint only from the S parameter

• Perform the one-loop calculations with the required counterterm

5

and

f3(M,m) =

Z 1

0

dx
x(1� x)

xM2 � (1� x)m2
(19)

=
M4 �m4 + 2M2 m2

�
lnm2 � lnM2

�

2 (M2 �m2)3
. (20)

The couplings that appear in Eq. (16) are given by [2]

gZhH0
3
= �i

r
2

3

e

sW cW

⇣p
3
v�
v
c↵ + s↵

v�
v

⌘
,

gZHH0
3
= i

r
2

3

e

sW cW

⇣
c↵

v�
v

�
p
3
v�
v
s↵

⌘
,

gZH0
5H

0
3
= �i

r
1

3

e

sW cW

v�
v
,

gZH+
5 H+⇤

3
=

e

2sW cW

v�
v
,

gZZh = � e2

6s2W c2W

⇣
8
p
3s↵v� � 3c↵v�

⌘
,

gZZH =
e2

6s2W c2W

⇣
8
p
3c↵v� + 3s↵v�

⌘
,

gZZH0
5
= �

r
8

3

e2

s2W c2W
v�,

gZW+H+⇤
5

= �
p
2e2v�

cW s2W
, (21)

where we abbreviate s↵ ⌘ sin↵, c↵ ⌘ cos↵, and similarly for the sine and cosine of the weak mixing
angle. The SM coupling gSMZZh is given by

gSMZZh =
e2v

2s2W c2W
. (22)

We constrain these contributions to oblique parameters using a �2 variable including the corre-
lations in the measured S, T , and U values,

�2 =
X

i,j

(Oi �Oexp
i )(Oj �Oexp

j )[�2]�1
ij , (23)

where Oi is the ith observable and [�2]�1
ij is the inverse of the matrix of uncertainties,

[�2]ij = �Oi �Oj ⇢ij , (24)

where ⇢ij are the relative correlations (note ⇢ii = 1). For the two-observable case of interest, we
can invert the matrix �2 explicitly and write

�2 =
1

(1� ⇢2ST )

"
(S � Sexp)

2

(�Sexp)
2 +

(T � Texp)
2

(�Texp)
2 � 2 (S � Sexp) (T � Texp)

�Sexp�Texp

#
(25)

• Minimize �2
with respect to T and use Tmin to obtain the constraint

6

Here Sexp and Texp are the experimental central values, �Sexp and �Texp are their 1� experimental
uncertainties, ⇢ST is the relative correlation, and S and T are the contributions from the scalar
multiplet computed using the formulas above.

However, it is well known that in the Georgi-Machacek model the vev of the real triplet breaks
the SU(2)R symmetry at one-loop level, requiring a counterterm to correct singularities in the T
parameter [18, 20]. As such, there are several possible ways of approaching the constraint from
oblique paramters:

• Apply the constraint only using the S parameter (referred to as a loose electroweak precision

constraint in [20]). (** [20] claims this corresponds to T = 0, but would it not
correspond to T = Texp? **)

• Minimize the �2 constraint with respect to T , such that

@�2

@T
= 0 (26)

and using the corresponding value of T ,

Tmin = Texp + (S � Sexp)
�Texp

�Sexp
(27)

in the constraint. This retreives the most conservative bound for a given S value.

• Perform a full one-loop calculation including the required counterterm.

IV. Rb

The explicit form of the 1-loop electroweak correction to the Z width into b quarks �(Z ! bb̄)
from the charged scalar H+

3 is [4]

��Z!bb̄(H
+
3 ) =

↵2NcmZ tan2 ✓H
96⇡s4W c2Wm2

W

⇥
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t

�
1 + 2s2WQb

� �
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where
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+ 2C24(0, q
2, 0,m2

H ,m2
f ,m

2
f )�m2

tC0(0, q
2, 0,m2

H ,m2
f ,m

2
f )

+B1(0,m
2
f ,m

2
H)� 1
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Gunion, Vega, Wudka [PRD 43, 2322]

23



Conclusions

• Improved measurements of higgs couplings can help distinguish GM model
from other extensions such as the 2HDM.

• Including exclusion due to oblique parameters.

Future Work

• Approach to the SM is in general faster when M1 and M2 are fixed as

compared to M1 = M2 = µ3/3

• GM model with most general gauge-invariant and SU(2)C preserving po-

tential does possess a decoupling limit

• GM model can fully populate the allowed 1� ranges of Higgs couplings
when the new scalars are lighter than 400-600 GeV.

• Numerical scans show that 10% coupling deviations are possible for new

scalars even as heavy as 800 GeV
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Theoretical Constraints : Unitarity 7

Q Y Basis states Eigenvalues

0 0 [�++⇤�++,�+⇤�+, ⇠+⇤⇠+,�+⇤�+,�0⇤�0, ⇠0⇠0p
2
,�0⇤�0] x+

1 , x
�
1 , x

+
2 , x

�
2 , y1, y1, y2

0 1 [�+⇠+⇤,�0⇠0,�+�+⇤,�0�0⇤] y3, y4, y4, y5

0 2 [�
0�0
p
2
,�0⇠0,�+⇠+⇤] x+

2 , x
�
2 , y2

0 3 [�0�0] y3

0 4 [�
0�0
p

2
] y2

1 �2 [⇠+�0⇤] y2

1 �1 [�+�0⇤, ⇠+�0⇤] y3, y4

1 0 [⇠+⇠0,�+⇤�++,�+�0⇤,�0⇤�+] x+
2 , x

�
2 , y1, y2

1 1 [�0⇠+,�+⇠0,�+⇤�++,�0⇤�+] y3, y4, y4, y5

1 2 [�+�0,�+⇠0,�++⇠+⇤,�0⇠+] x+
2 , x

�
2 , y1, y2

1 3 [�+�0,�0�+] y3, y4

1 4 [�+�0] y2

2 0 [�++�0⇤, ⇠+⇠+p
2

] y1, y2

2 1 [�+⇠+,�++�0⇤] y3, y4

2 2 [�
+�+
p

2
,�++⇠0,�+⇠+] x+

2 , x
�
2 , y2

2 3 [�+�+,�0�++] y3, y4

2 4 [�++�0, �+�+
p
2

] y1, y2

3 2 [�++⇠+] y2

3 3 [�++�+] y3

3 4 [�++�+] y2

4 4 [�
++�++
p
2

] y2

TABLE I. Basis states and eigenvalues of the scattering matrix M for 2 ! 2 scalar scattering in the
high-energy limit, classified according to the total charge Q and total hypercharge Y of the initial and
final states. We have included a symmetry factor of 1/

p
2 in the matrix element for each pair of identical

particles in the initial or final state. The eigenvalues are defined in Eq. (24). The charge-conjugates of the
listed states yield the same sets of eigenvalues.

We work in the high energy limit, in which the only tree-level diagrams that contribute to 2 ! 2
scalar scattering are those involving the four-point scalar couplings; all diagrams involving scalar
propagators are suppressed by the square of the collision energy. Thus the dimensionful couplings
M1, M2, µ2

2, and µ2
3 are not constrained directly by perturbative unitarity. In the high energy limit

we can ignore electroweak symmetry breaking and include the Goldstone bosons as physical fields
(this is equivalent to including scattering processes involving longitudinally polarized W and Z
bosons). We neglect scattering processes involving transversely polarized gauge bosons or fermions.

Under these conditions, only the zeroth partial wave amplitude contributes to M, so that the
constraint |Re a0| < 1

2 corresponds to |M| < 8⇡. This condition must be applied to each of the
eigenvalues of the coupled-channel scattering matrix M including each possible combination of
two scalar fields in the initial and final states. Because the scalar potential is invariant under
SU(2)L⇥U(1)Y , the scattering processes preserve electric charge and hypercharge and can be con-
veniently classified by the total electric charge and hypercharge of the incoming and outgoing states.
We include a symmetry factor of 1/

p
2 for each pair of identical particles in the initial and final

states. The basis states and resulting eigenvalues of M are summarized in Table I.
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The eigenvalues of M comprise the following independent combinations of �i (defined in the
same way as in Ref. [9]):4

x±
1 = 12�1 + 14�3 + 22�4 ±

q
(12�1 � 14�3 � 22�4)

2 + 144�2
2,

x±
2 = 4�1 � 2�3 + 4�4 ±

q
(4�1 + 2�3 � 4�4)

2 + 4�2
5,

y1 = 16�3 + 8�4,

y2 = 4�3 + 8�4,

y3 = 4�2 � �5,

y4 = 4�2 + 2�5,

y5 = 4�2 � 4�5. (24)

Requiring |Re a0| < 1
2 imposes the conditions |x±

i | < 8⇡ and |yi| < 8⇡, which must all be simulta-
neously satisfied.5

These conditions allow us to determine the maximum range allowed by unitarity for each of the
parameters �i, which will be useful for setting up numerical parameter scans. We first note that the
conditions |x±

i | < 8⇡ take the general form |z±
p

x2 + y2| < 1, which can be rewritten without loss

of generality as
p

x2 + y2 + |z| < 1. This equation describes the region bounded by a pair of cones
with apices at z = ±1 that meet at a unit circle in the x–y plane. Clearly, then, the maximum
allowed range of y (i.e., �2 or �5) is obtained by setting x = z = 0, and the maximum allowed range
in the x–z plane is obtained by setting y = 0.

The coupling �1 is constrained by the unitarity conditions on x±
1 and x±

2 . The least stringent
constraints come from setting �2 = �5 = 0 and read |�1| < 1

3⇡ from x±
1 and |�1| < ⇡ from x±

2 . We
thus obtain the maximum range from unitarity,

�1 2
✓
�1

3
⇡,

1

3
⇡

◆
' (�1.05, 1.05) . (25)

Constraints on the couplings �3 and �4 come from the unitarity conditions on x±
1 , x

±
2 , y1, and

y2. These are shown in the left panel of Fig. 1, where we again take �2 = 0 in x±
1 and �5 = 0

in x±
2 for the least stringent constraints. The allowed region in the �3–�4 plane is a six-sided

region bounded by the constraints on x±
1 , x

±
2 , and y1. The constraint on y2 does not provide any

additional information. Simultaneously satisfying all constraints, we obtain the maximum ranges
from unitarity,

�3 2
✓
�4

5
⇡,

4

5
⇡

◆
' (�2.51, 2.51) ,

�4 2
✓
�16

25
⇡,

16

25
⇡

◆
' (�2.01, 2.01) . (26)

Constraints on the couplings �2 and �5 come from the unitarity constraints on x±
1 , x

±
2 , y3, y4,

and y5. These are shown in the right panel of Fig. 1, where we take �1 = �3 = �4 = 0 in x±
1 and

4 Our notation for the �i is di↵erent from that of Ref. [9]. This has been taken into account in the definitions of x±
i

and yi in Eq. (24). A translation between our notation and that of Ref. [9] is given in Appendix C.
5 The unitarity constraint imposed in Ref. [14] corresponds to |x±

1 | < 16⇡, which is obtained by requiring |a0| < 1

rather than our more stringent constraint |Re a0| < 1
2 .
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B. Bounded-from-below requirement on the scalar potential

The constraints that must be satisfied at tree level for the scalar potential to be bounded from
below can be determined by considering only the terms in the scalar potential [Eq. (5)] that are
quartic in the fields, because these terms dominate at large field values. Following the approach of
Ref. [27], we parametrize the potential using the following definitions:

r ⌘
q
Tr(�†�) + Tr(X†X),

r2 cos2 � ⌘ Tr(�†�),

r2 sin2 � ⌘ Tr(X†X),

⇣ ⌘ Tr(X†XX†X)

[Tr(X†X)]2
,

! ⌘ Tr(�†⌧a�⌧ b)Tr(X†taXtb)

Tr(�†�)Tr(X†X)
. (29)

Scanning all possible field values yields the parameter ranges

r 2 [0,1), � 2
h
0,

⇡

2

i
, ⇣ 2


1

3
, 1

�
and ! 2


�1

4
,
1

2

�
. (30)

The ranges of ⇣ and ! will be discussed in more detail below.
The quartic terms in the potential are given in this parametrization by,

V (4)(r, tan �, ⇣,!) =
r4

(1 + tan2 �)2
⇥
�1 + (�2 � !�5) tan

2 � + (⇣�3 + �4) tan
4 �

⇤
. (31)

The potential will be bounded from below if the expression multiplying r4 in Eq. (31) is always
positive. The expression in the square brackets in Eq. (31) is a bi-quadratic in tan � ⌘ y of the
form [a+ by2 + cy4]. Such an expression is positive for all values of y 2 [0,1) when

a > 0, c > 0, and b+ 2
p
ac > 0. (32)

We thus obtain the bounded-from-below conditions,

�1 > 0, ⇣�3 + �4 > 0, and �2 � !�5 + 2
p

�1(⇣�3 + �4) > 0. (33)

These conditions must be satisfied for all allowed values of ⇣ and !.
The field combination ⇣ is given explicitly by

⇣ =
1

[Tr(X†X)]2

n
2
�|�0|2 + |�+|2 + |�++|2�2 + ⇥

2|⇠+|2 + (⇠0)2
⇤2

+2|�+�+ � 2�0�++|2 + 4|⇠+�0 � ⇠0�+ � ⇠+⇤�++|2 , (34)

where

Tr(X†X) = 2|�0|2 + 2|�+|2 + 2|�++|2 + 2|⇠+|2 + (⇠0)2. (35)
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�
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
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4
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1

2

�
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The ranges of ⇣ and ! will be discussed in more detail below.
The quartic terms in the potential are given in this parametrization by,
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4 �

⇤
. (31)

The potential will be bounded from below if the expression multiplying r4 in Eq. (31) is always
positive. The expression in the square brackets in Eq. (31) is a bi-quadratic in tan � ⌘ y of the
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p
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�
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The ranges of ⇣ and ! will be discussed in more detail below.
The quartic terms in the potential are given in this parametrization by,
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⇥
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2 � + (⇣�3 + �4) tan
4 �

⇤
. (31)

The potential will be bounded from below if the expression multiplying r4 in Eq. (31) is always
positive. The expression in the square brackets in Eq. (31) is a bi-quadratic in tan � ⌘ y of the
form [a+ by2 + cy4]. Such an expression is positive for all values of y 2 [0,1) when

a > 0, c > 0, and b+ 2
p
ac > 0. (32)
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p
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10

B. Bounded-from-below requirement on the scalar potential

The constraints that must be satisfied at tree level for the scalar potential to be bounded from
below can be determined by considering only the terms in the scalar potential [Eq. (5)] that are
quartic in the fields, because these terms dominate at large field values. Following the approach of
Ref. [27], we parametrize the potential using the following definitions:

r ⌘
q
Tr(�†�) + Tr(X†X),

r2 cos2 � ⌘ Tr(�†�),

r2 sin2 � ⌘ Tr(X†X),

⇣ ⌘ Tr(X†XX†X)

[Tr(X†X)]2
,

! ⌘ Tr(�†⌧a�⌧ b)Tr(X†taXtb)

Tr(�†�)Tr(X†X)
. (29)

Scanning all possible field values yields the parameter ranges

r 2 [0,1), � 2
h
0,

⇡

2

i
, ⇣ 2


1

3
, 1

�
and ! 2


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�
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The ranges of ⇣ and ! will be discussed in more detail below.
The quartic terms in the potential are given in this parametrization by,

V (4)(r, tan �, ⇣,!) =
r4
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⇥
�1 + (�2 � !�5) tan

2 � + (⇣�3 + �4) tan
4 �

⇤
. (31)

The potential will be bounded from below if the expression multiplying r4 in Eq. (31) is always
positive. The expression in the square brackets in Eq. (31) is a bi-quadratic in tan � ⌘ y of the
form [a+ by2 + cy4]. Such an expression is positive for all values of y 2 [0,1) when

a > 0, c > 0, and b+ 2
p
ac > 0. (32)

We thus obtain the bounded-from-below conditions,

�1 > 0, ⇣�3 + �4 > 0, and �2 � !�5 + 2
p

�1(⇣�3 + �4) > 0. (33)

These conditions must be satisfied for all allowed values of ⇣ and !.
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where

Tr(X†X) = 2|�0|2 + 2|�+|2 + 2|�++|2 + 2|⇠+|2 + (⇠0)2. (35)
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below can be determined by considering only the terms in the scalar potential [Eq. (5)] that are
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⇡
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i
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
1

3
, 1

�
and ! 2


�1

4
,
1

2

�
. (30)

The ranges of ⇣ and ! will be discussed in more detail below.
The quartic terms in the potential are given in this parametrization by,

V (4)(r, tan �, ⇣,!) =
r4

(1 + tan2 �)2
⇥
�1 + (�2 � !�5) tan

2 � + (⇣�3 + �4) tan
4 �

⇤
. (31)

The potential will be bounded from below if the expression multiplying r4 in Eq. (31) is always
positive. The expression in the square brackets in Eq. (31) is a bi-quadratic in tan � ⌘ y of the
form [a+ by2 + cy4]. Such an expression is positive for all values of y 2 [0,1) when

a > 0, c > 0, and b+ 2
p
ac > 0. (32)

We thus obtain the bounded-from-below conditions,

�1 > 0, ⇣�3 + �4 > 0, and �2 � !�5 + 2
p

�1(⇣�3 + �4) > 0. (33)

These conditions must be satisfied for all allowed values of ⇣ and !.
The field combination ⇣ is given explicitly by

⇣ =
1

[Tr(X†X)]2

n
2
�|�0|2 + |�+|2 + |�++|2�2 + ⇥

2|⇠+|2 + (⇠0)2
⇤2

+2|�+�+ � 2�0�++|2 + 4|⇠+�0 � ⇠0�+ � ⇠+⇤�++|2 , (34)

where

Tr(X†X) = 2|�0|2 + 2|�+|2 + 2|�++|2 + 2|⇠+|2 + (⇠0)2. (35)
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⇡

2

i
, ⇣ 2


1

3
, 1

�
and ! 2


�1

4
,
1

2

�
. (30)

The ranges of ⇣ and ! will be discussed in more detail below.
The quartic terms in the potential are given in this parametrization by,

V (4)(r, tan �, ⇣,!) =
r4

(1 + tan2 �)2
⇥
�1 + (�2 � !�5) tan

2 � + (⇣�3 + �4) tan
4 �

⇤
. (31)

The potential will be bounded from below if the expression multiplying r4 in Eq. (31) is always
positive. The expression in the square brackets in Eq. (31) is a bi-quadratic in tan � ⌘ y of the
form [a+ by2 + cy4]. Such an expression is positive for all values of y 2 [0,1) when

a > 0, c > 0, and b+ 2
p
ac > 0. (32)

We thus obtain the bounded-from-below conditions,

�1 > 0, ⇣�3 + �4 > 0, and �2 � !�5 + 2
p

�1(⇣�3 + �4) > 0. (33)

These conditions must be satisfied for all allowed values of ⇣ and !.
The field combination ⇣ is given explicitly by

⇣ =
1

[Tr(X†X)]2

n
2
�|�0|2 + |�+|2 + |�++|2�2 + ⇥

2|⇠+|2 + (⇠0)2
⇤2

+2|�+�+ � 2�0�++|2 + 4|⇠+�0 � ⇠0�+ � ⇠+⇤�++|2 , (34)

where

Tr(X†X) = 2|�0|2 + 2|�+|2 + 2|�++|2 + 2|⇠+|2 + (⇠0)2. (35)
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⇡
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i
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
1

3
, 1

�
and ! 2


�1

4
,
1

2

�
. (30)

The ranges of ⇣ and ! will be discussed in more detail below.
The quartic terms in the potential are given in this parametrization by,

V (4)(r, tan �, ⇣,!) =
r4

(1 + tan2 �)2
⇥
�1 + (�2 � !�5) tan

2 � + (⇣�3 + �4) tan
4 �

⇤
. (31)

The potential will be bounded from below if the expression multiplying r4 in Eq. (31) is always
positive. The expression in the square brackets in Eq. (31) is a bi-quadratic in tan � ⌘ y of the
form [a+ by2 + cy4]. Such an expression is positive for all values of y 2 [0,1) when

a > 0, c > 0, and b+ 2
p
ac > 0. (32)

We thus obtain the bounded-from-below conditions,

�1 > 0, ⇣�3 + �4 > 0, and �2 � !�5 + 2
p

�1(⇣�3 + �4) > 0. (33)

These conditions must be satisfied for all allowed values of ⇣ and !.
The field combination ⇣ is given explicitly by

⇣ =
1

[Tr(X†X)]2

n
2
�|�0|2 + |�+|2 + |�++|2�2 + ⇥

2|⇠+|2 + (⇠0)2
⇤2

+2|�+�+ � 2�0�++|2 + 4|⇠+�0 � ⇠0�+ � ⇠+⇤�++|2 , (34)

where

Tr(X†X) = 2|�0|2 + 2|�+|2 + 2|�++|2 + 2|⇠+|2 + (⇠0)2. (35)
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FIG. 2. The boundary of the region in the (⇣,!) plane that is populated by taking all possible combinations
of field values. The region enclosed by the curve is populated.

The region in the (⇣,!) plane populated by taking all possible combinations of field values is
shown in Fig. 2. For a given ⇣, the region encompasses ! 2 [!�,!+], where9

!±(⇣) =
1

6
(1�B)±

p
2

3


(1�B)

✓
1

2
+B

◆�1/2
, (42)

with

B ⌘
s

3

2

✓
⇣ � 1

3

◆
2 [0, 1]. (43)

Following Ref. [27], the monotonic dependence on ⇣ and ! in Eq. (33) can be used to obtain the
following bounded-from-below constraints:10

�1 > 0,

�4 >

(
� 1

3�3 for �3 � 0,

��3 for �3 < 0,

�2 >

8
><

>:

1
2�5 � 2

q
�1

�
1
3�3 + �4

�
for �5 � 0 and �3 � 0,

!+(⇣)�5 � 2
p

�1(⇣�3 + �4) for �5 � 0 and �3 < 0,

!�(⇣)�5 � 2
p

�1(⇣�3 + �4) for �5 < 0.

(44)

9 These bounds on ! are obtained by noting that the curved part of the boundary in Fig. 2 is traced out by field
combinations in which only Re�0 and ⇠0 are nonzero. Taking into account the normalization by Tr(X†X), the
formulas for ⇣ and ! along this boundary can then be expressed as functions of a single variable, which can in turn
be expressed in terms of ⇣.

10 Reference [14] computed the bounded-from-below constraints taking into account all combinations of two nonzero
scalar fields. Because our treatment allows any number of the scalar fields to be nonzero, our bounded-from-below
constraints are more stringent than those of Ref. [14].
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B. Bounded-from-below requirement on the scalar potential

The constraints that must be satisfied at tree level for the scalar potential to be bounded from
below can be determined by considering only the terms in the scalar potential [Eq. (5)] that are
quartic in the fields, because these terms dominate at large field values. Following the approach of
Ref. [27], we parametrize the potential using the following definitions:

r ⌘
q
Tr(�†�) + Tr(X†X),

r2 cos2 � ⌘ Tr(�†�),

r2 sin2 � ⌘ Tr(X†X),

⇣ ⌘ Tr(X†XX†X)

[Tr(X†X)]2
,

! ⌘ Tr(�†⌧a�⌧ b)Tr(X†taXtb)

Tr(�†�)Tr(X†X)
. (29)

Scanning all possible field values yields the parameter ranges

r 2 [0,1), � 2
h
0,

⇡

2

i
, ⇣ 2


1

3
, 1

�
and ! 2


�1

4
,
1

2

�
. (30)

The ranges of ⇣ and ! will be discussed in more detail below.
The quartic terms in the potential are given in this parametrization by,

V (4)(r, tan �, ⇣,!) =
r4

(1 + tan2 �)2
⇥
�1 + (�2 � !�5) tan

2 � + (⇣�3 + �4) tan
4 �

⇤
. (31)

The potential will be bounded from below if the expression multiplying r4 in Eq. (31) is always
positive. The expression in the square brackets in Eq. (31) is a bi-quadratic in tan � ⌘ y of the
form [a+ by2 + cy4]. Such an expression is positive for all values of y 2 [0,1) when

a > 0, c > 0, and b+ 2
p
ac > 0. (32)

We thus obtain the bounded-from-below conditions,

�1 > 0, ⇣�3 + �4 > 0, and �2 � !�5 + 2
p

�1(⇣�3 + �4) > 0. (33)

These conditions must be satisfied for all allowed values of ⇣ and !.
The field combination ⇣ is given explicitly by

⇣ =
1

[Tr(X†X)]2

n
2
�|�0|2 + |�+|2 + |�++|2�2 + ⇥

2|⇠+|2 + (⇠0)2
⇤2

+2|�+�+ � 2�0�++|2 + 4|⇠+�0 � ⇠0�+ � ⇠+⇤�++|2 , (34)

where

Tr(X†X) = 2|�0|2 + 2|�+|2 + 2|�++|2 + 2|⇠+|2 + (⇠0)2. (35)
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The ranges of ⇣ and ! will be discussed in more detail below.
The quartic terms in the potential are given in this parametrization by,

V (4)(r, tan �, ⇣,!) =
r4

(1 + tan2 �)2
⇥
�1 + (�2 � !�5) tan

2 � + (⇣�3 + �4) tan
4 �

⇤
. (31)

The potential will be bounded from below if the expression multiplying r4 in Eq. (31) is always
positive. The expression in the square brackets in Eq. (31) is a bi-quadratic in tan � ⌘ y of the
form [a+ by2 + cy4]. Such an expression is positive for all values of y 2 [0,1) when

a > 0, c > 0, and b+ 2
p
ac > 0. (32)

We thus obtain the bounded-from-below conditions,

�1 > 0, ⇣�3 + �4 > 0, and �2 � !�5 + 2
p

�1(⇣�3 + �4) > 0. (33)

These conditions must be satisfied for all allowed values of ⇣ and !.
The field combination ⇣ is given explicitly by

⇣ =
1

[Tr(X†X)]2

n
2
�|�0|2 + |�+|2 + |�++|2�2 + ⇥

2|⇠+|2 + (⇠0)2
⇤2

+2|�+�+ � 2�0�++|2 + 4|⇠+�0 � ⇠0�+ � ⇠+⇤�++|2 , (34)

where

Tr(X†X) = 2|�0|2 + 2|�+|2 + 2|�++|2 + 2|⇠+|2 + (⇠0)2. (35) 27
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FIG. 1. Constraints on the (�3,�4) and (�5,�2) planes from perturbative unitarity. The constraints from
x±
1 and x±

2 are the maximum allowed ranges obtained by setting the couplings not shown on the figure axes
to zero.

x±
2 for the least stringent constraints. (The constraint from x±

2 yields |�5| < 4⇡, which corresponds
to the left and right edges of the plot.) The allowed region in the �2–�5 plane is a parallelogram
bounded by the constraints on x±

1 and y5. The constraints on y3 and y4 do not provide any
additional information. Simultaneously satisfying all constraints, we obtain the maximum ranges
from unitarity,

�2 2
✓
�2

3
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2

3
⇡

◆
' (�2.09, 2.09) ,

�5 2
✓
�8

3
⇡,

8

3
⇡

◆
' (�8.38, 8.38) . (27)

Within these maximum ranges the unitarity constraints |x±
i |, |yi| < 8⇡ must still be imposed. Dis-

carding expressions that provide no additional information, we obtain the minimal set of unitarity
conditions,6

q
(6�1 � 7�3 � 11�4)

2 + 36�2
2 + |6�1 + 7�3 + 11�4| < 4⇡,

q
(2�1 + �3 � 2�4)

2 + �2
5 + |2�1 � �3 + 2�4| < 4⇡,

|2�3 + �4| < ⇡,

|�2 � �5| < 2⇡. (28)

6 Imposing |a0| < 1 instead of |Re a0| < 1
2 would double the right-hand side of each of these expressions.
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FIG. 3. Constraints on the (�3,�4) plane from perturbative unitarity, as in Fig. 1, together with the
bounded-from-below (BFB) constraints �4 > � 1

3�3 and �4 > ��3.

The last two conditions for �2 must be satisfied for all values of ⇣ 2 ⇥
1
3 , 1

⇤
.

The bounded-from-below constraints in Eq. (44) reduce the maximum accessible ranges of the
scalar quartic couplings compared to those obtained from perturbative unitarity constraints in
Eqs. (25–27). The bounded-from-below constraint on �1 trivially restricts its maximum accessible
range to be

�1 2
✓
0,

1

3
⇡

◆
' (0, 1.05) . (45)

The bounded-from-below constraint on �4 restricts the maximum accessible ranges of �3 and
�4, as shown in Fig. 3. The bounded-from-below constraint excludes the regions below the dot-
dashed lines, while the unitarity constraint from |x±

1 | < 8⇡ restricts �3 and �4 to lie between the
two solid lines (we again set �2 = 0 for the least restrictive constraint on �3 and �4 from x±

1 ).
The allowed region is a triangle with vertices at (�3/⇡,�4/⇡) = (0, 0),

�� 1
2 ,

1
2

�
, and

�
3
5 ,� 1

5

�
. The

unitarity constraint from y1 becomes superfluous; however, the unitarity constraint from x±
2 can

still be important for large enough values of |�5| (in Fig. 3 we set �5 = 0 for the least restrictive
constraint on �3 and �4 from x±

2 ). The maximum accessible ranges of �3 and �4 are therefore
reduced compared to those given in Eq. (26) to read

�3 2
✓
�1

2
⇡,

3

5
⇡

◆
' (�1.57, 1.88) ,

�4 2
✓
�1

5
⇡,

1

2
⇡

◆
' (�0.628, 1.57) . (46)

Finally, the bounded-from-below constraint on �2 restricts the accessible range of �2 as follows.
The least restrictive lower bound on �2 from unitarity is obtained by taking �1 = 0 and 7�3+11�4 =
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Finally, the bounded-from-below constraint on �2 restricts the accessible range of �2 as follows.
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Finally, the bounded-from-below constraint on �2 restricts the accessible range of �2 as follows.
The least restrictive lower bound on �2 from unitarity is obtained by taking �1 = 0 and 7�3+11�4 =
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The region in the (⇣,!) plane populated by taking all possible combinations of field values is
shown in Fig. 2. For a given ⇣, the region encompasses ! 2 [!�,!+], where9

!±(⇣) =
1

6
(1�B)±

p
2

3


(1�B)

✓
1

2
+B

◆�1/2
, (42)

with

B ⌘
s

3

2

✓
⇣ � 1

3

◆
2 [0, 1]. (43)

Following Ref. [27], the monotonic dependence on ⇣ and ! in Eq. (33) can be used to obtain the
following bounded-from-below constraints:10

�1 > 0,

�4 >

(
� 1

3�3 for �3 � 0,

��3 for �3 < 0,

�2 >

8
><

>:

1
2�5 � 2

q
�1

�
1
3�3 + �4

�
for �5 � 0 and �3 � 0,

!+(⇣)�5 � 2
p

�1(⇣�3 + �4) for �5 � 0 and �3 < 0,

!�(⇣)�5 � 2
p

�1(⇣�3 + �4) for �5 < 0.

(44)

9 These bounds on ! are obtained by noting that the curved part of the boundary in Fig. 2 is traced out by field
combinations in which only Re�0 and ⇠0 are nonzero. Taking into account the normalization by Tr(X†X), the
formulas for ⇣ and ! along this boundary can then be expressed as functions of a single variable, which can in turn
be expressed in terms of ⇣.

10 Reference [14] computed the bounded-from-below constraints taking into account all combinations of two nonzero
scalar fields. Because our treatment allows any number of the scalar fields to be nonzero, our bounded-from-below
constraints are more stringent than those of Ref. [14].

• Maximum Ranges :

• Within these ranges the following conditions need to be satisfied :
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Theoretical Constraints : Alternative Minima

14

0 in x±
1 . However, when �1 = 0, the bounded-from-below constraint on �2 forces �2 > 0, with the

least restrictive constraint obtained for �5 = 0. The least restrictive lower bound on �2 will occur
for nonzero values of �1, �3 and �4 and could be obtained through a numerical scan. However,
because these maximum accessible parameter ranges are primarily useful for setting up numerical
scans in the first place, we do not compute a numerical lower bound on �2 here.

C. Conditions to avoid alternative minima

We now consider the conditions on the parameters of the scalar potential that are required in
order to ensure that the desired electroweak-breaking and custodial SU(2)-preserving minimum is
the true global minimum.

In the notation of Eq. (31), the full scalar potential can be written as

V =
r2

(1 + tan2 �)

1

2

⇥
µ2
2 + µ2

3 tan
2 �

⇤

+
r4

(1 + tan2 �)2
⇥
�1 + (�2 � !�5) tan

2 � + (⇣�3 + �4) tan
4 �

⇤

+
r3

(1 + tan2 �)3/2
tan �

⇥��M1 � ⇢M2 tan
2 �

⇤
, (47)

where r, tan �, ⇣ and ! were defined in Eq. (29) and we define two new dimensionless field combi-
nations � and ⇢ according to

� ⌘ Tr(�†⌧a�⌧ b)(UXU †)ab
Tr(�†�)[Tr(X†X)]1/2

,

⇢ ⌘ Tr(X†taXtb)(UXU †)ab
[Tr(X†X)]3/2

. (48)

To derive the allowed range of �, we start by again choosing the SU(2)L basis so that the field
value of � lies entirely in the real neutral component, � = v�p

2
12⇥2. We can then apply Eq. (37) to

reduce � to the simple form

� =
1

4

(2Re�0 + ⇠0)

[Tr(X†X)]1/2
, (49)

where Tr(X†X) is given in Eq. (35). Because � is invariant under custodial SU(2), this expression
can be rewritten in a very simple form in terms of the custodial SU(2) eigenstates given in Eq. (39):

� =

p
3

4

X1

[(X1)2 + |X3|2 + |X5|2]1/2
. (50)

From this form it can be easily seen that � 2
h
�

p
3
4 ,

p
3
4

i
.11

11 Our desired vacuum, with h�0i = h⇠0i = v�, corresponds to � =
p
3/4. The vacuum with � = �

p
3/4 is also

acceptable; it corresponds to negative v�.
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Case µ3 ⌘ p|µ2
3| �1 �2 �3 �4 �5 M1 M2

A 300–1000 GeV derived 0.1 0.1 0.1 0.1 100 GeV 100 GeV

B 300–1000 GeV derived 0.1 0.1 0.1 0.1 µ3/3 µ3/3

TABLE II. Values of coupling parameters for the two decoupling scenarios considered. We set mh =
125 GeV and use this to fix �1 in terms of the other parameters. µ2

2 is eliminated in terms of the known
SM Higgs vev v.

Quantity Case A Case B
mH,3,5

µ3
� 1 µ�2

3 µ�2
3

v� µ�2
3 µ�1

3

sin↵ µ�2
3 µ�1

3

V � 1 µ�4
3 µ�2

3

f � 1 µ�4
3 µ�2

3

ghhV V /gSMhhV V � 1 µ�4
3 µ�2

3

ghhh/g
SM
hhh � 1 µ�4

3 µ�2
3

�� µ�2
3 µ�2

3

�Z� µ�2
3 µ�2

3

TABLE III. The power law behavior of the heavy scalar masses, triplet vev, custodial singlet mixing angle,
and light Higgs couplings for parameter cases A and B. See text for definitions.

angle, and the couplings of the light Higgs to SM particles in the approach to decoupling. We
derive explicit expansions for each of these observables in the decoupling limit, keeping terms up
to next-to-leading order in inverse powers of µ2

3. In the expansions we treat M1 and M2 as being of
order

p
µ2
3 or smaller. As we will show, all of the low-energy observables reduce to their appropriate

SM limits as µ3 ! 1.
We also make a numerical comparison between our expansion formulas and the exact expressions

for each observable. To illustrate the approach to the decoupling limit, we consider two explicit
parameter scenarios. In the first scenario (case A) we let µ3 ⌘

p
µ2
3 become large while holding

M1 and M2 constant. In the second scenario (case B) we let µ3 become large while scaling M1 and
M2 proportionally to µ3. The specific parameter choices in each case are given in Table II. These
parameter choices satisfy all of the theoretical constraints described in Sec. III.

We do not consider cases in which only one of the Mi parameters scales with µ3 because the
overall decoupling behavior is much more strongly influenced by M1 than by M2. In the expansion
formulas that we derive below, M2 always appears multiplied by M1 in terms that are suppressed
by larger powers of µ3. As a result, in the case that M1 / µ3 while M2 is constant, the overall
decoupling behavior will be very similar to that in case B. Similarly, in the case that M2 / µ3 while
M1 is constant the decoupling behavior would resemble that of case A.

The overall power law dependence of each observable on µ3 in the decoupling limit is tabulated
in Table III. In general the convergence to the SM is more rapid in case A, where the observables
approach the decoupling limit at rates proportional to µ�2

3 or µ�4
3 . In comparison, in case B the

decoupling rates are proportional to µ�1
3 or µ�2

3 .
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