One–loop SQCD corrections to the decay $\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$

Jason Aebischer

In collaboration with A. Crivellin and C. Greub

University of Bern

$\boldsymbol{u}^{\scriptscriptstyle b}$
^b UNIVERSITÄT BERN
AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

c	I IC	<u>v</u> ว	<u>م</u>	14
ు	05	12	υ	14

SUSY2014	Jason Aebischer
	3

1. Motivation

SUSY2014	Jason Aebischer	22.07.2014

- 1. Motivation
- 2. Process

		121	٦	
- 51	USY	(2)	Л	4

- 1. Motivation
- 2. Process
- 3. Results

~ 1	101	$\sim \sim$		
ા	JSY	20	14	

- 1. Motivation
- 2. Process
- 3. Results
- 4. Conclusion

SUSY2014

Naturalness

Cancellation of quadratic divergences

SUSY2014	Jason Aebischer

Naturalness

Cancellation of quadratic divergences

 W^+W^- Anomaly

arXiv:1406.0848v1, 1407.1043v1

Cross section $2-3\sigma$ discrepancy to SM

Naturalness

Cancellation of quadratic divergences

 W^+W^- Anomaly

arXiv:1406.0848v1, 1407.1043v1

Cross section $2-3\sigma$ discrepancy to SM

RGE equations

Large Yukawa couplings of third generation

SU	ISY201-	4

Search

		14	0	′ 2	JSN	Sι	
--	--	----	---	------------	-----	----	--

Minimal Flavour Violation (MFV)

Displaced vertex

SUSY2014	Jason Aebischer

Minimal Flavour Violation (MFV)

Displaced vertex

Non-minimal Flavour Violation

Influence on other channels: $\Gamma\left(\tilde{t}_1 \rightarrow b \tilde{\chi}_1^0 W\right)$

Minimal Flavour Violation (MFV)

Displaced vertex

Non-minimal Flavour Violation

Influence on other channels: $\Gamma\left(\tilde{t}_1 \rightarrow b \tilde{\chi}_1^0 W\right)$

Tree level decay width

$$\Gamma\left[\tilde{t}_{1} \to c \tilde{\chi}_{1}^{0}\right] = \frac{m_{\tilde{t}_{1}}}{16\pi} \frac{g_{1}^{2}}{18} \left(1 - \frac{m_{\tilde{\chi}_{1}^{0}}^{2}}{m_{\tilde{t}_{1}}^{2}}\right)^{2} \left(\left|W_{21}^{\tilde{u}}\right|^{2} + 16\left|W_{51}^{\tilde{u}}\right|^{2}\right), \qquad W_{s's}^{\tilde{u}*}\left(M_{\tilde{u}}^{2}\right)_{s't'} W_{t't}^{\tilde{u}} = m_{\tilde{u}_{s}}^{2} \delta_{st}$$

SL	JSY	<u>2</u>	0	14
		_	<u> </u>	

SUSY2014	Jason Aebischer

$$egin{aligned} & m_{ ilde{t}_1} - m_{ ilde{\chi}_1^0} < m_t \ & ilde{\chi}_1^0 & ext{is the LSP} \ & ilde{t}_1 & ext{is the NLSP} \end{aligned}$$

R-parity

Dominant decays: $\tilde{t_1} \to c \, \tilde{\chi}_1^0$, $\tilde{t_1} \to b \, \tilde{\chi}_1^0 W$

SUSY2014	Jason Aebischer	22.07.2014

$$egin{aligned} & m_{ ilde{t}_1} - m_{ ilde{\chi}_1^0} < m_t \ & ilde{\chi}_1^0 & ext{is the LSP} \ & ilde{t}_1 & ext{is the NLSP} \end{aligned}$$

R-parity

Dominant decays:
$$\tilde{t_1} \to c \tilde{\chi}_1^0$$
, $\tilde{t_1} \to b \tilde{\chi}_1^0 W$

Flavour Structure

Minimal or Non-minimal flavour violation

S	USY2014	

~ •	101	200	
- 51	1SY	20	14
		20	

M_{GUT} ~ 10¹⁶ GeV

Flavour-blind SUSY breaking

$$\left(M_{\tilde{q}}^{2}\right)_{st}=m_{0}^{2}\delta_{st}$$
 and $A^{f}\sim Y^{f}$

energy

SUSY2014

SUSY2014	Jason Aebischer	22.07.2014

C 1	101	$\sim \sim$	1 4
ા	JSY	20	14

22.07.2014

Non-minimal Flavour Violation

SUSY2014	
----------	--

Non-minimal Flavour Violation

General mass matrices
$$M_{\tilde{q}}^{2} = \begin{pmatrix} m^{\tilde{q}LL} & \Delta^{\tilde{q}LR} \\ \Delta^{\tilde{q}RL} & m^{\tilde{q}RR} \end{pmatrix}$$

Non-minimal Flavour Violation

General mass matrices
$$M_{\tilde{q}}^{2} = \begin{pmatrix} m^{\tilde{q}LL} & \Delta^{\tilde{q}LR} \\ \Delta^{\tilde{q}RL} & m^{\tilde{q}RR} \end{pmatrix}$$

General A-terms

$$A^{u} = \begin{pmatrix} A_{uu} & A_{uc} & A_{ut} \\ A_{cu} & A_{cc} & A_{ct} \\ A_{tu} & A_{tc} & A_{tt} \end{pmatrix}$$

SUSY2014

SUSY2014

$$\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$$

Tree level process: K. Hikasa, M. Kobayashi (1987) arXiv:1102.5712v1

Electroweak corrections: M. Muhlleitner, E.Popenda (2011) arXiv:1102.5712v1

SUSY2014	Jason Aebischer	22.07.2014

$$\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$$

Tree level process: K. Hikasa, M. Kobayashi (1987) arXiv:1102.5712v1

Electroweak corrections: M. Muhlleitner, E.Popenda (2011) arXiv:1102.5712v1

SUSY2014	Jason Aebischer	22.07.2014

$$\tilde{t}_1 \rightarrow c \, \tilde{\chi}_1^0$$

Tree level process: K. Hikasa, M. Kobayashi (1987) arXiv:1102.5712v1

Electroweak corrections: M. Muhlleitner, E.Popenda (2011) arXiv:1102.5712v1

$$\begin{split} \overline{i \left[\Gamma_{\tilde{u}_{s}u_{f}}^{\tilde{\chi}_{p}^{0}L} P_{L} + \Gamma_{\tilde{u}_{s}u_{f}}^{\tilde{\chi}_{p}^{0}R} P_{R} \right]} \\ \Gamma_{\tilde{u}_{s}u_{f}}^{\tilde{\chi}_{p}^{0}L} = & \frac{-e}{\sqrt{2}s_{W}c_{W}} W_{fs}^{\tilde{u}*} \left(\frac{1}{3} Z_{N}^{1p}s_{W} + Z_{N}^{2p}c_{W} \right) - Y^{u_{f}}^{w} W_{f+3,s}^{\tilde{u}*} Z_{N}^{4p} \\ \Gamma_{\tilde{u}_{s}u_{f}}^{\tilde{\chi}_{p}^{0}R} = & \frac{2\sqrt{2}e}{3c_{W}} W_{f+3,s}^{\tilde{u}*} Z_{N}^{1p*} - Y^{u_{f}} W_{fs}^{\tilde{u}*} Z_{N}^{4p*} \end{split}$$

SUSY2014	Jason Aebischer	22.07.2014

SUSY2014

$$\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$$

 α_s -corrections to tree level process

SUSY2014	Jason Aebischer	

 $\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$

 α_s –corrections to tree level process

SUSY2014	Jason Aebischer	22.07.2014

SUSY2014

Squark self-energies

LSZ factors and squark masses

SUSY2014	
----------	--

Squark self-energies

LSZ factors and squark masses

SUSY2014	Jason Aebischer	22.07.2014

SUSY2014

Quark self-energies

LSZ factors

SUSY2014	
50512011	

Quark self-energies

LSZ factors

SUSY2014	Jason Aebischer	22.07.2014

SUSY2014

Genuine vertex corrections

C0, B0 functions

SUSY2014

Genuine vertex corrections

C0, B0 functions

22.07.2014

|--|

SUSY2014

Real emission

Collinear and IR divergences

Real emission

Collinear and IR divergences

SUSY2014	Jason Aebischer	22.07.2014

Real emission

Collinear and IR divergences

KLN theorem

$$\Gamma\left(\tilde{t}_{1} \rightarrow c \,\tilde{\chi}_{1}^{0}\right) + \Gamma\left(\tilde{t}_{1} \rightarrow c \,\tilde{\chi}_{1}^{0} g, E_{g} < \Lambda\right) \quad \text{IR finite}$$

	101	$\sim \sim$		
- 51	USY	20	14	

Real emission

Collinear and IR divergences

KLN theorem

 $\Gamma\left(\tilde{t}_{1} \rightarrow c \,\tilde{\chi}_{1}^{0}\right) + \Gamma\left(\tilde{t}_{1} \rightarrow c \,\tilde{\chi}_{1}^{0} g, E_{g} < \Lambda\right) \quad \text{IR finite}$

Integration performed over all gluon energies

SI	JSY	201	4
_			

Renormalization

SUSY2014

Renormalization

Dimensional Reduction (DR) and on-shell scheme

Massless charm quark

SI SI	IS V	12	<u>^</u> 1	Δ	
50	וכו	~	υı	- T	

Renormalization

Dimensional Reduction (DR) and on-shell scheme

Massless charm quark

Renormalization

Introduction of counter terms

SUSY2014

SUSY2014

Gluon contribution to decay width

$$x_{1} = \frac{m_{\tilde{\chi}_{1}^{0}}^{2}}{m_{\tilde{t}_{1}}^{2}}$$

SUSV2014	lason Aebischer
30312014	Jason Acoiscilei

Gluon contribution to decay width

$$x_1 = \frac{m_{\tilde{\chi}_1^0}^2}{m_{\tilde{t}_1}^2}$$

$$\Gamma^{g} = -\frac{C_{F}gs^{2}m_{\tilde{t}}}{1536\pi^{3}} \left(\left| \Gamma^{\tilde{\chi}_{1}^{0}L} \right|^{2} + \left| \Gamma^{\tilde{\chi}_{1}^{0}R} \right|^{2} \right) \left(\frac{(75 + 8\pi^{2}(x_{1} - 1) - 81x_{1})(x_{1} - 1) - 36(x_{1} - 1)^{2} \operatorname{Log}\left(\frac{\mu}{m_{\tilde{t}}}\right) + 6(4 - 3x_{1})x_{1}\operatorname{Log}(x_{1})}{+12(x_{1} - 1)^{2} \operatorname{Log}(x_{1} - 1)(3 + 2\operatorname{Log}(x_{1})) + 48(x_{1} - 1)^{2} Li_{2}(x_{1})} \right)$$

SL	JSY2	014
		••••

Gluon contribution to decay width

$$x_1 = \frac{m_{\tilde{\chi}_1^0}^2}{m_{\tilde{t}_1}^2}$$

$$\Gamma^{g} = -\frac{C_{F}gs^{2}m_{\tilde{i}}}{1536\pi^{3}} \left(\left| \Gamma^{\tilde{\chi}_{1}^{0}L} \right|^{2} + \left| \Gamma^{\tilde{\chi}_{1}^{0}R} \right|^{2} \right) \left(\frac{(75 + 8\pi^{2}(x_{1} - 1) - 81x_{1})(x_{1} - 1) - 36(x_{1} - 1)^{2} \operatorname{Log}\left(\frac{\mu}{m_{\tilde{i}}}\right) + 6(4 - 3x_{1})x_{1}\operatorname{Log}(x_{1})}{+12(x_{1} - 1)^{2} \operatorname{Log}(x_{1} - 1)(3 + 2\operatorname{Log}(x_{1})) + 48(x_{1} - 1)^{2} \operatorname{Li}_{2}(x_{1})} \right)$$

Gluino contribution to decay width

Also completely worked out, but formulas are more complicated

SI	ISV2	014	
30	7215	.014	

Numerics

<u> </u>	SV201	Δ	
	J I Z U I	-T	

Numerics

Parameters

$$M_{\tilde{u}}^{2} = \begin{pmatrix} \left(m_{1}^{L}\right)^{2} & \left(\hat{\delta}^{LL}\right)_{12} & \left(\hat{\delta}^{LL}\right)_{13} & \left(\hat{\delta}^{LR}\right)_{11} & \left(\hat{\delta}^{LR}\right)_{12} & \left(\hat{\delta}^{LR}\right)_{13} \\ \left(\hat{\delta}^{LL}\right)_{21} & \left(m_{2}^{L}\right)^{2} & \left(\hat{\delta}^{LL}\right)_{23} & \left(\hat{\delta}^{LR}\right)_{21} & \left(\hat{\delta}^{LR}\right)_{22} & \left(\hat{\delta}^{LR}\right)_{23} \\ \left(\hat{\delta}^{LL}\right)_{31} & \left(\hat{\delta}^{LL}\right)_{32} & \left(m_{3}^{L}\right)^{2} & \left(\hat{\delta}^{LR}\right)_{31} & \left(\hat{\delta}^{LR}\right)_{32} & \left(\hat{\delta}^{LR}\right)_{33} \\ \left(\hat{\delta}^{RL}\right)_{11} & \left(\hat{\delta}^{RL}\right)_{12} & \left(\hat{\delta}^{RL}\right)_{13} & \left(m_{1}^{R}\right)^{2} & \left(\hat{\delta}^{RR}\right)_{12} & \left(\hat{\delta}^{RR}\right)_{13} \\ \left(\hat{\delta}^{RL}\right)_{21} & \left(\hat{\delta}^{RL}\right)_{22} & \left(\hat{\delta}^{RL}\right)_{21} & \left(\hat{\delta}^{RR}\right)_{21} & \left(m_{2}^{R}\right)^{2} & \left(\hat{\delta}^{RR}\right)_{23} \\ \left(\hat{\delta}^{RL}\right)_{31} & \left(\hat{\delta}^{RL}\right)_{32} & \left(\hat{\delta}^{RL}\right)_{33} & \left(\hat{\delta}^{RR}\right)_{31} & \left(\hat{\delta}^{RR}\right)_{32} & \left(m_{3}^{R}\right)^{2} \end{pmatrix} \\ \left(\hat{\delta}^{LR}\right)_{ij} \coloneqq \left(\hat{\delta}^{LR}\right)_{ij} \left(\left(m_{i}^{L}\right)^{2} + \left(m_{j}^{R}\right)^{2}\right) \end{cases}$$

SUSY2014

Numerics

Parameters

$$M_{ii}^{2} = \begin{pmatrix} \left(m_{1}^{L}\right)^{2} & \left(\hat{\delta}^{LL}\right)_{12} & \left(\hat{\delta}^{LL}\right)_{13} & \left(\hat{\delta}^{LR}\right)_{11} & \left(\hat{\delta}^{LR}\right)_{12} & \left(\hat{\delta}^{LR}\right)_{13} \\ \left(\hat{\delta}^{LL}\right)_{21} & \left(m_{2}^{L}\right)^{2} & \left(\hat{\delta}^{LL}\right)_{23} & \left(\hat{\delta}^{LR}\right)_{21} & \left(\hat{\delta}^{LR}\right)_{22} & \left(\hat{\delta}^{LR}\right)_{23} \\ \left(\hat{\delta}^{LL}\right)_{31} & \left(\hat{\delta}^{LL}\right)_{32} & \left(m_{3}^{L}\right)^{2} & \left(\hat{\delta}^{LR}\right)_{31} & \left(\hat{\delta}^{LR}\right)_{32} & \left(\hat{\delta}^{LR}\right)_{33} \\ \left(\hat{\delta}^{RL}\right)_{11} & \left(\hat{\delta}^{RL}\right)_{12} & \left(\hat{\delta}^{RL}\right)_{13} & \left(m_{1}^{R}\right)^{2} & \left(\hat{\delta}^{RR}\right)_{12} & \left(\hat{\delta}^{RR}\right)_{13} \\ \left(\hat{\delta}^{RL}\right)_{21} & \left(\hat{\delta}^{RL}\right)_{22} & \left(\hat{\delta}^{RL}\right)_{21} & \left(\hat{\delta}^{RR}\right)_{21} & \left(m_{2}^{R}\right)^{2} & \left(\hat{\delta}^{RR}\right)_{23} \\ \left(\hat{\delta}^{RL}\right)_{31} & \left(\hat{\delta}^{RL}\right)_{32} & \left(\hat{\delta}^{RL}\right)_{33} & \left(\hat{\delta}^{RR}\right)_{31} & \left(\hat{\delta}^{RR}\right)_{32} & \left(m_{3}^{R}\right)^{2} \end{pmatrix} \\ \left(\hat{\delta}^{LR}\right)_{ij} \coloneqq \left(\delta^{LR}\right)_{ij} \left(\left(m_{i}^{L}\right)^{2} + \left(m_{j}^{R}\right)^{2}\right) \\ m_{i_{1}} = 300GeV \\ m_{\tilde{\chi}^{0}} = 250GeV \end{pmatrix}$$

SQCD corrections to decay width

SUSY2014

Gluon vs. Gluino contribution for $(\delta^{LL})_{23}$

SUSY2014	Jason Aebischer	22.07.2014

Gluon vs. Gluino contribution for $(\delta^{LR})_{23}$

SUSY2014	Jason Aebischer	22.07.2014

Dependence on $(\delta^{LL})_{23}$

SUSY2014	Jason Aebischer	22.07.2014

Dependence on $(\delta^{LR})_{23}$

SUSY2014	Jason Aebischer	22.07.2014

SUSY2014

QCD corrections

Up to 13% correction for LL, RR

Up to 50% correction for LR, RL

SUSY2014	Jason Aebischer	

QCD corrections

Up to 13% correction for LL, RR

Up to 50% correction for LR, RL

Mixing

Gluon for LL

Gluino for LR

QCD corrections

Up to 13% correction for LL, RR

Up to 50% correction for LR, RL

Mixing

Gluon for LL

Gluino for LR

Parameters

Small dependence of
$$R \coloneqq \frac{\Gamma^{(0)} + \alpha_s \Gamma^{(1)}}{\Gamma^{(0)}}$$
 on $\left(\delta^{LR}\right)_{23}$, $\left(\delta^{LL}\right)_{23}$

SL	ISY	20	14
50	, , ,	20	

Outlook

CLIC	· · · · · /	<u> </u>	
NIN	XY 21	112	L
505) I Z (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	r i

Outlook

Effect on other channels

$$\Gamma\left(\tilde{t}_{1} \rightarrow b\,\tilde{\chi}^{\,0}W\right)$$

Jason Aebischer

Thank you