
SEARCHES FOR NON-SUSY EXOTICS IN ATLAS

CHRISTOPHER MARINO SUSY 2014, MANCHESTER 21-26 JULY 2014

MOTIVATION

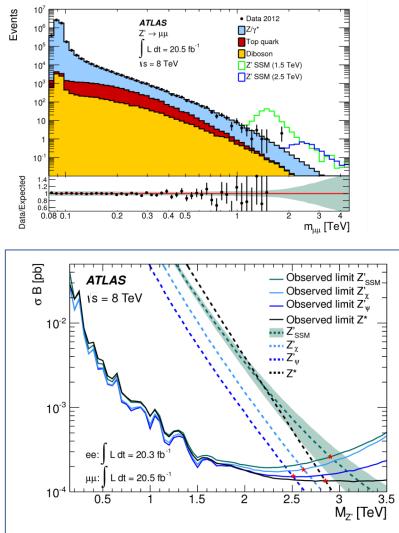
- Standard Model (SM) has generally given excellent agreement with experimental observation
- Discovery of Higgs boson provides an important missing piece
- Questions remain...
 - Dark matter, naturalness, unification with gravity...
- SUSY is one route to answering many questions
- But we can look for much with ATLAS data that is not SUSY...

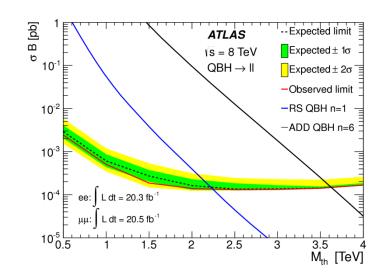
OVERVIEW OF EXOTIC RESULTS

• New Heavy Bosons

- Z', W', G*
- Searches at High Energy Scales
 - Contact Interactions
 - Black Holes
 - Excited electrons
 - Dijet resonances
- Unique Signatures
 - Long-lived particles

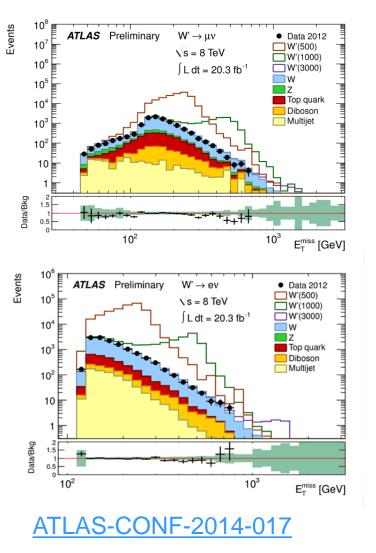
Some recent searches for non-SUSY new physics


- No significance evidence for new physics
- 2012 data using ~20 fb-1
- Limits set on a wide set of predictions for Exotics extensions


SEARCHES FOR NEW HEAVY BOSONS

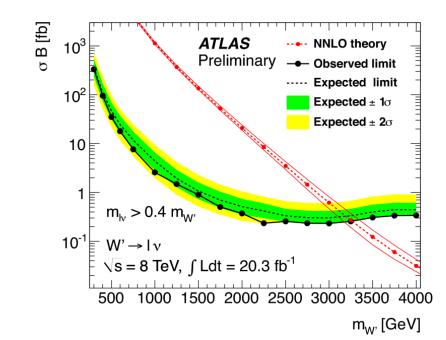
- Searches for new strong dynamics or for extra dimensions
- Provide non-SUSY explanation for electroweak symmetry breaking
- Signature based searches provide more model independence, but various benchmark models used

HIGH-MASS DILEPTON RESONANCES


- Invariant mass isolated muon or electron pairs
- Dominant background is $Z/\gamma^* \rightarrow II$
- Data-driven estimation of di-jet and W+jet backgrounds
- Limits set of various models with no excess above SM background:
 - SSM Z', E6 Z', Z*
 - Minimal models, Walking Technicolor
 - RS-Graviton, Quantum Black Holes

LO

arXiv:1405.4123


LEPTON + ET^{MISS} HIGH-MASS STATES

Christopher Marino, University of Victoria

- W' / W* \rightarrow Iv
- Isolated high-P_T lepton + missing transverse energy are selected
- W is main background
- Combined limit (~3.2 TeV) from muon and electron channels

Also dark matter interpretation

(0

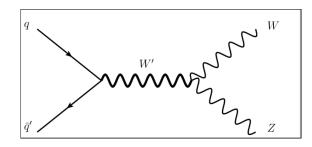
WZ RESONANCES TO LEPTONS

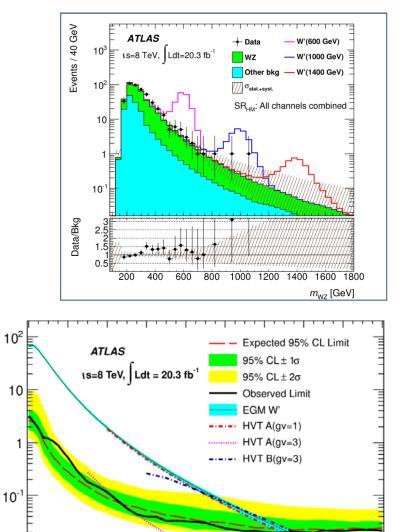
σ(pp→X) × B(X→WZ) [pb]

arXiv:1406.4456

10⁻²

400

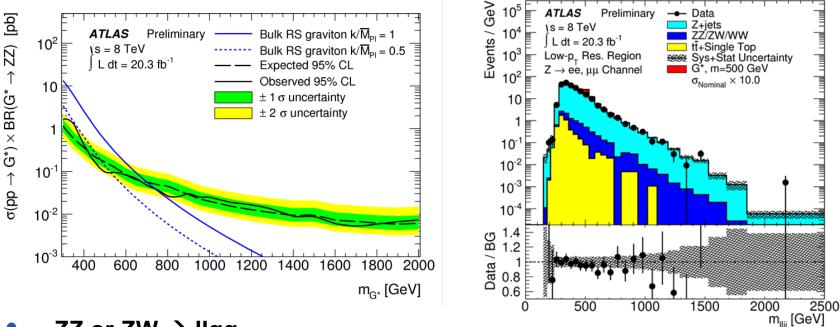

600


800

- W'→ WZ →3I+υ
- Exactly 3 charged leptons are selected

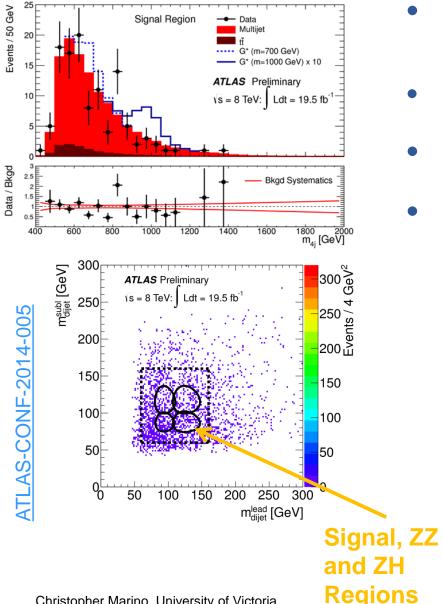
ευεε, μυεε, ευμμ, μυμμ

- Dominant background is SM WZ production, consistent with data
- 95% C.L. limits are set combining 4 decay channels
 - Extended gauge model W'
 - Heavy Vector Triplet


1000 1200 1400 1600

Christopher Marino, University of Victoria

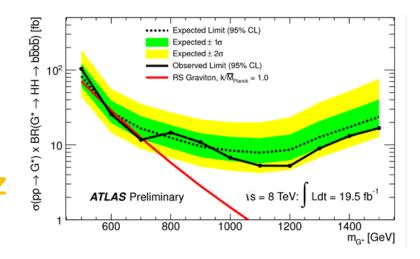
2000


1800

RESONANT DIBOSON PRODUCTION TO LEPTONS AND QUARKS

- ZZ or ZW \rightarrow Ilqq
- Mass of dijet, dilepton system reconstructed in 3 regions
 - High and low P_T regions where jets are resolved and merged-jet regions
- Z+jet dominant background is corrected with data from sidebands
- Upper limits set on σ x BR of Kaluza–Klein gravitons predicted by Randall–Sundrum and EGM W'

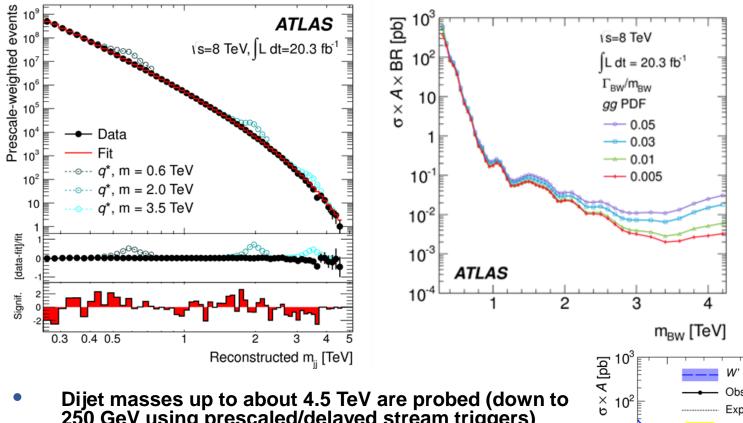
RESONANT HIGGS-PAIR PRODUCTION \rightarrow 4B

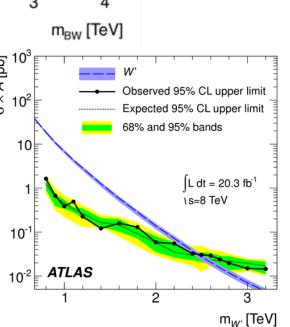


Search for Kaluza-Klein excitation of RS graviton

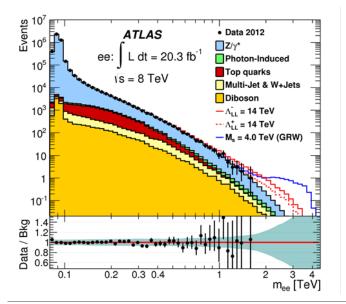
- $G^* \rightarrow HH \rightarrow 4b (\sim 3\% BR)$
- Invariant mass of 4 b-jets with $P_T > 40$ GeV
- Two pair of b-tagged jets with dijet invariant mass ~ $M_{\rm H}$

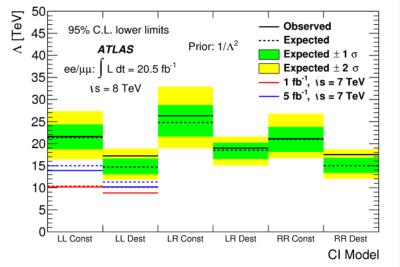
No excess observed


- Observed upper limits on σxBR ranges from 100 fb at 500 GeV to 7 fb at 1 TeV \triangleright
- Limits on KK G* in warped (RS) ED 590 to 710 GeV

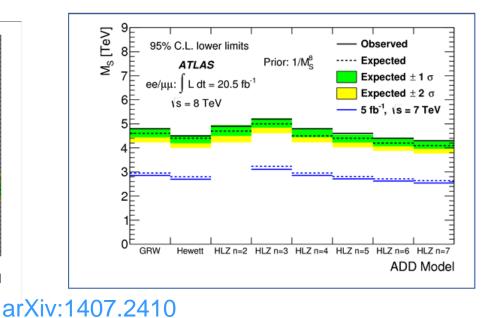

SEARCHES AT HIGH ENERGY SCALES

21/07/2014 Christopher Marino, University of Victoria

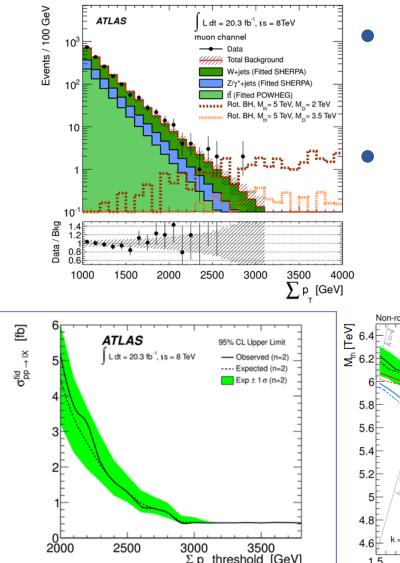

DIJET MASS RESONANCES



- Dijet masses up to about 4.5 TeV are probed (down to 250 GeV using prescaled/delayed stream triggers)
- No resonance-like features are observed in the dijet mass spectrum
- Limits on $\sigma \times A$ for a simple Gaussian resonance or a Breit-Wigner narrow resonance decaying to dijets
- Specific models: excited quarks, color-octet scalars, W', W*, BH, and ED

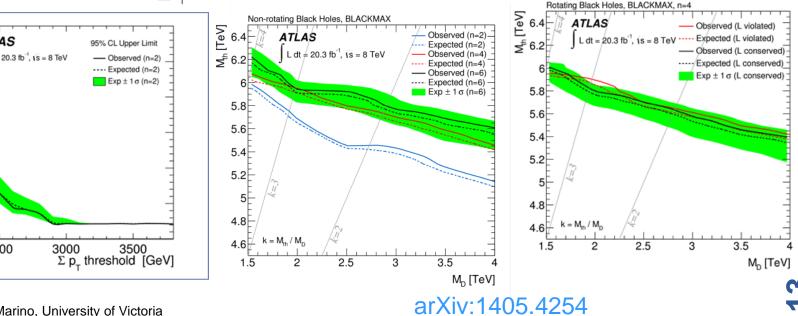


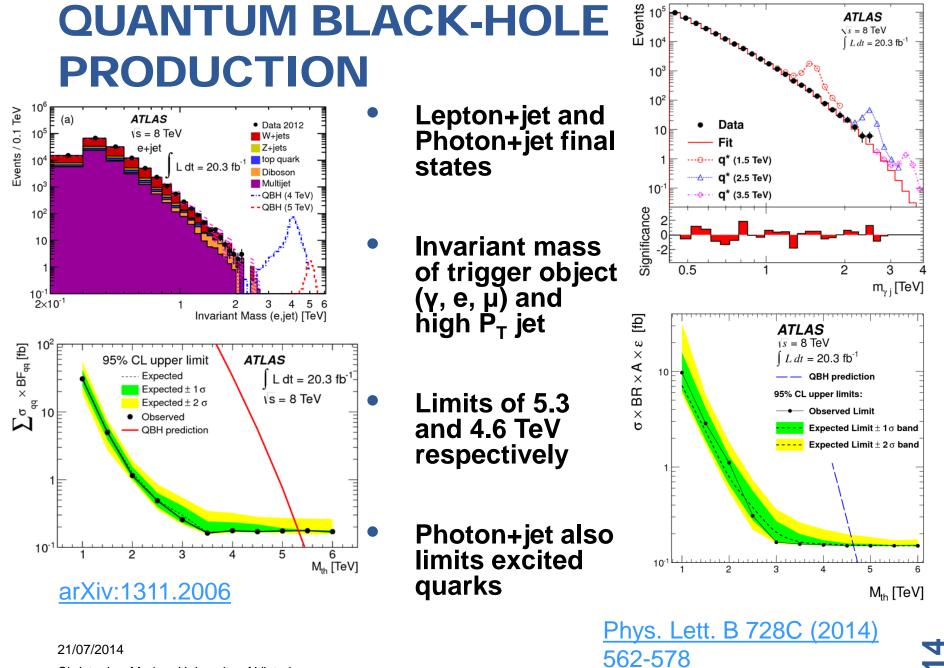
SEARCH FOR CONTACT INTERACTIONS AND LARGE EXTRA DIMENSIONS



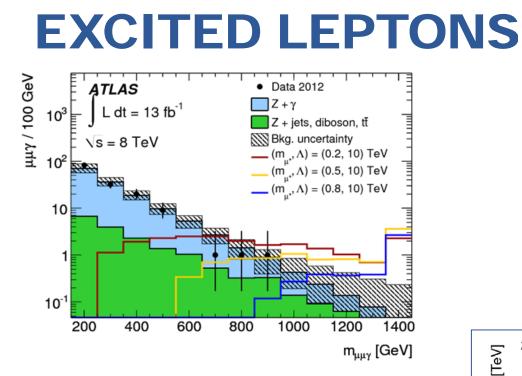
- Complementary search to dilepton resonance search (non-resonant)
- Contact interactions (CI) and Arkani-Hamed, Dimopoulos and Dvali model (ADD) with large extra dimensions
- Limits are set on
 - CI scale, Λ, 15.4 26.3 TeV
 - ED string scale, M_s, 4.1 6.1 TeV

MICROSCOPIC BLACK HOLES

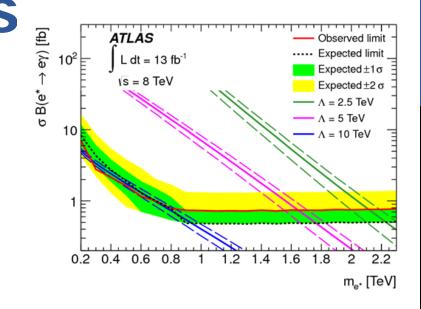


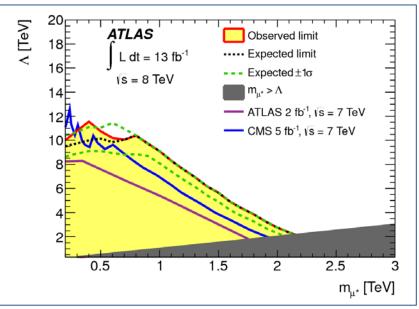

Search for high- P_{T} leptons + jets

- At least one isolated muon or electron
- At least two additional leptons or jets

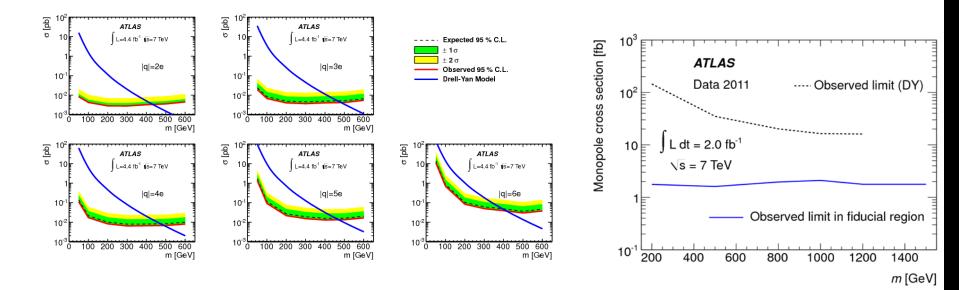

ADD 2, 4, and 6 ED models:

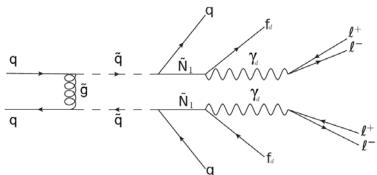
Scale in extra dim.: M_D Production threshold: M_{th}





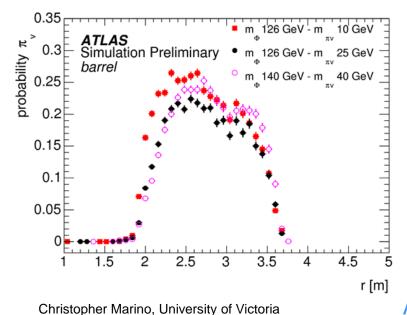
Christopher Marino, University of Victoria

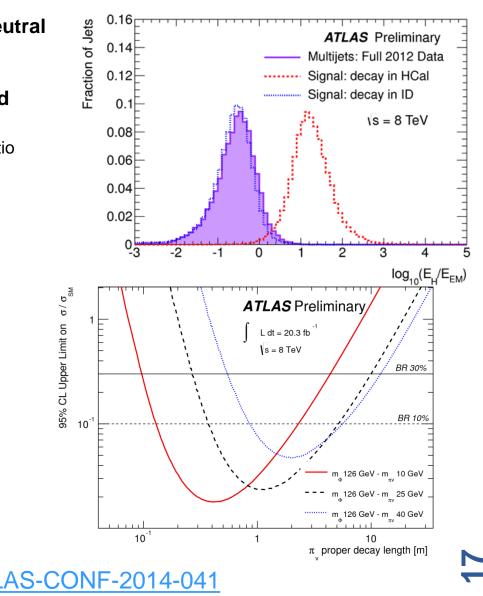

- Excited leptons:
- II* → IIγ
- Strong or weak production
- Model-independent searches



UNIQUE SIGNATURES

- Long-lived Particles utilize special signatures that may require custom triggers or reliance on associated production
- Examples:
 - Lepton Jets
 - Multi-charge particles
 - Monopoles
- One brand new result with 20 fb^-1
- More updates coming very soon!





(0

LIGHT HIGGS BOSON DECAYING TO LONG-LIVED WEAKLY-INTERACTING PARTICLES

- Higgs boson decays to two long-lived neutral particles (π_v)
 - Then $\pi_v \rightarrow bb$, cc or $\tau\tau$
- Events are selected using the specialized Cal-ratio trigger
 - > Jet with high Had/EM calorimeter energy ratio and $E_T > 60$ GeV
- Jets must have
 - > $\log 10(E_H/E_{EM}) > 1.2$
 - > No good tracks in ID with P_T >1GeV
- Main background SM QCD jets

CONCLUSIONS

- Exotic searches provide an alternative to SUSY in answering remaining questions in particle physics
- Many searches for non-SUSY new physics performed with 2012 ATLAS data
- No evidence for new phenomena, but strong limits placed on many theoretical models of new physics in Run I
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublic</u>
 <u>Results</u>
- Looking forward to Run II
 - More energy, larger dataset
 - \succ Tools developed and lessons learned from Run I
 - Improved triggering for unique signatures

ATLAS Exotics Searches* - 95% CL Exclusion

Status: ICHEP 2014

	Model	<i>ℓ</i> ,γ	Jets	E ^{miss} T	∫£ dt[fl	¹] Mass limit	2 ut = (1.0 - 20.3) 10	Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \ell\ell \\ \text{ADD QBH} \to \ell q \\ \text{ADD QBH} \\ \text{ADD BH high } N_{trk} \\ \text{ADD BH high } \sum p_T \\ \text{RS1 } G_{KK} \to \ell\ell \\ \text{RS1 } G_{KK} \to \ell\ell \\ \text{RS1 } G_{KK} \to WW \to \ell\nu\ell\nu \\ \text{Bulk RS } G_{KK} \to ZZ \to \ell\ell qq \\ \text{Bulk RS } G_{KK} \to HH \to b\bar{b}b\bar{b} \\ \text{Bulk RS } g_{KK} \to t\bar{t} \\ S^1/Z_2 \text{ ED} \\ \text{UED} \end{array}$	$\begin{array}{c} - \\ 2e, \mu \\ 1 e, \mu \\ - \\ 2 \mu (SS) \\ \geq 1 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ - \\ 1 e, \mu \\ 2 e, \mu \\ 2 \gamma \end{array}$	1-2j - 1j 2j - 2j/1J 4b $\geq 1 b, \geq 1J/2$ -	Yes - - - Yes - 2j Yes - Yes	4.7 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 19.5 14.3 5.0 4.8	MD 4.37 TeV Ms 5.2 TeV Mth 5.2 TeV Mth 5.82 TeV Mth 5.82 TeV Mth 5.7 TeV Mth 6.2 TeV GKK mass 1.23 TeV GKK mass 590-710 GeV gKK mass 2.0 TeV MKK ≈ R ⁻¹ 4.71 TeV Compact. scale R ⁻¹ 1.41 TeV	n = 2 n = 3 HLZ n = 6 $n = 6, M_D = 1.5 \text{ TeV, non-rot BH}$ $n = 6, M_D = 1.5 \text{ TeV, non-rot BH}$ $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$ BR = 0.925	1210.4491 ATLAS-CONF-2014-030 1311.2006 to be submitted to PRD 1308.4075 1405.4254 1405.4123 1208.2880 ATLAS-CONF-2014-039 ATLAS-CONF-2013-052 1209.2535 ATLAS-CONF-2012-072
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{EGM}\; W' \to WZ \to \ell\nu\ell'\ell' \\ \mathrm{EGM}\; W' \to WZ \to qq\ell\ell \\ \mathrm{LRSM}\; W_R \to t\bar{b} \\ \mathrm{LRSM}\; W_R \to t\bar{b} \end{array}$	2 e,μ 2 τ 1 e,μ 3 e,μ 2 e,μ 1 e,μ 0 e,μ	_ _ _ 2 j / 1 J 2 b, 0-1 j ≥ 1 b, 1 J	- Yes Yes - Yes -	20.3 19.5 20.3 20.3 20.3 14.3 20.3	Z' mass 2.9 TeV Z' mass 1.9 TeV W' mass 3.28 TeV W' mass 1.52 TeV W' mass 1.59 TeV W' mass 1.84 TeV W' mass 1.77 TeV		1405.4123 ATLAS-CONF-2013-066 ATLAS-CONF-2014-017 1406.4456 ATLAS-CONF-2014-039 ATLAS-CONF-2013-050 to be submitted to EPJC
CI	Cl qqqq Cl qqℓℓ Cl uutt	_ 2 e,μ 2 e,μ (SS)	$\begin{array}{c} 2 \ j \\ - \\ \geq 1 \ b, \geq 1 \ j \end{array}$	_ Yes	4.8 20.3 14.3	Λ 7.6 TeV Λ Λ 3.3 TeV	$\eta = +1$ 21.6 TeV $\eta_{LL} = -1$ C = 1	1210.1718 ATLAS-CONF-2014-030 ATLAS-CONF-2013-051
DM	EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e,μ 0 e,μ	1-2 j 1 J, ≤ 1 j	Yes Yes	10.5 20.3	M. 731 GeV M. 2.4 TeV	at 90% CL for $m(\chi) < 80$ GeV at 90% CL for $m(\chi) < 100$ GeV	ATLAS-CONF-2012-147 1309.4017
ГØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ, 1 τ	≥ 2 j ≥ 2 j 1 b, 1 j	- - -	1.0 1.0 4.7	LQ mass 660 GeV LQ mass 685 GeV LQ mass 534 GeV	eta=1 eta=1 eta=1 eta=1	1112.4828 1203.3172 1303.0526
Heavy quarks	Vector-like quark $TT \rightarrow Ht + X$ Vector-like quark $TT \rightarrow Wb + X$ Vector-like quark $TT \rightarrow Zt + X$ Vector-like quark $BB \rightarrow Zb + X$ Vector-like quark $BB \rightarrow Wt + X$	1 e,μ 2/≥3 e,μ 2/≥3 e,μ	$ \begin{array}{l} \geq 2 \ b, \geq 4 \ j \\ \geq 1 \ b, \geq 3 \ j \\ \geq 2/ \geq 1 \ b \\ \geq 2/ \geq 1 \ b \\ \geq 2/ \geq 1 \ b \\ \geq 1 \ b, \geq 1 \ j \end{array} $	Yes – –	14.3 14.3 20.3 20.3 14.3	T mass790 GeVT mass670 GeVT mass735 GeVB mass755 GeVB mass720 GeV	T in (T,B) doublet isospin singlet T in (T,B) doublet B in (B,Y) doublet B in (T,B) doublet	ATLAS-CONF-2013-018 ATLAS-CONF-2013-060 ATLAS-CONF-2014-036 ATLAS-CONF-2014-036 ATLAS-CONF-2013-051
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$	1 γ - 1 or 2 e, μ 2 e, μ, 1 γ	1 j 2 j 1 b, 2 j or 1 –	– – j Yes –	20.3 20.3 4.7 13.0	q* mass 3.5 TeV q* mass 4.09 TeV b* mass 870 GeV (* mass 2.2 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2 \text{ TeV}$	1309.3230 to be submitted to PRD 1301.1583 1308.1364
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Type III Seesaw Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Multi-charged particles Magnetic monopoles	$ \begin{array}{c} 1 \ e, \mu, 1 \ \gamma \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu (SS) \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	- 2 j - - - - -	Yes 	20.3 2.1 5.8 4.7 4.4 2.0	ar mass 960 GeV N ⁰ mass 1.5 TeV N [±] mass 245 GeV H ^{±±} mass 409 GeV multi-charged particle mass 490 GeV monopole mass 862 GeV	$m(W_R) = 2$ TeV, no mixing $ V_e =0.055, V_{\mu} =0.063, V_{\tau} =0$ DY production, BR $(H^{\pm\pm} \rightarrow \ell \ell)=1$ DY production, $ q = 4e$ DY production, $ g = 1g_D$	to be submitted to PLB 1203.5420 ATLAS-CONF-2013-019 1210.5070 1301.5272 1207.6411
$\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ 10^{-1} 1 10 Mass scale [TeV]								

*Only a selection of the available mass limits on new states or phenomena is shown.

ATLAS Preliminary

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1} \quad \sqrt{s} = 7, 8 \text{ TeV}$

0