

Kinematic variables for weakly-interacting particle final state reconstruction at the LHC

Christopher Rogan

Nel HARVARD
 UNIVERSITY

SUSY14 - University of Manchester - July 22, 2014

Open vs. closed final states

CLOSED $H \rightarrow Z(\ell) Z(\ell \ell)$
Can calculate all masses, momenta, angles

Can use masses for discovery, can use information to measure spin, CP, etc.

OPEN $\quad H \rightarrow W(\ell \nu) W(\ell \nu)$
Under-constrained system with multiple weakly interacting particles - can't calculate all the kinematic information What useful information can we calculate?
What can we measure?

Missing transverse energy

We can infer the presence of weakly interacting particles in LHC events by looking for missing transverse energy

Missing transverse energy

Figures from SUSY10 conference talk:

Missing transverse energy is a powerful observable for inferring the presence of weakly interacting particles

But, it only tells us about their transverse momenta - often we can better resolve quantities of interest by using additional information

Missing transverse energy

Missing transverse energy only tells us about the momentum of weakly interacting particles in an event...

Missing transverse energy

...not about the identity or mass of weakly interacting particles

Missing transverse energy

...not about the identity or mass of weakly interacting particles

Missing transverse energy

We can learn more by using other information in an event to contextualize the missing transverse energy

Missing transverse energy

We can learn more by using other information in an event to contextualize the missing transverse energy \Rightarrow multiple weakly interacting particles?

Christopher Rogan - SUSY14 Manchester - July 22, 2014

Multiple weakly interacting particles?

- Dark Matter
- Higgs quadratic divergences

Example: slepton pair-production

Experimental signature: di-leptons final states with missing transverse momentum

Example: slepton pair-production

Main background:

Example: slepton pair-production

What quantities, if we could calculate them, could help us distinguish between signal and background events?

$$
\sqrt{\hat{s}}=2 \gamma^{\text {decay }} m_{\tilde{\ell}} \quad M_{\Delta} \equiv \frac{m_{\tilde{l}}^{2}-m_{\tilde{\chi}^{0}}^{2}}{m_{\tilde{l}}}
$$

Example: slepton pair-production

What information are we missing?

We don't observe the weakly interacting particles in the event. We can't measure their momentum or masses.

Example: slepton pair-production

What do we know?
We can reconstruct the 4 -vectors of the two leptons and the transverse momentum in the event

Example: slepton pair-production

Can we calculate anything useful?
With a number of simplifying assumptions...

$$
\vec{E}_{T}^{m i s s}=\sum \vec{p}_{T}^{\tilde{\chi}^{0}} \quad m_{\tilde{\chi}^{0}}=0 \quad m_{\tilde{\ell} 1}=m_{\tilde{\ell} 2}
$$

...we are still 4 d.o.f. short of reconstructing any masses of interest

Recursive Jigsaw Reconstruction

New approach to reconstructing final states with weakly interacting particles:

- The strategy is to transform observable momenta iteratively reference-frame to reference-frame, traveling through each of the reference frames relevant to the topology
- At each step, extremize only the relevant d.o.f. related to that transformation
- Repeat procedure recursively according to particular rules defined for each topology (the topology relevant to each reference frame)
- Rather than obtaining one observable, get a complete basis of useful observables for each event

See Paul Jackson's talk on Friday in this session

Recursive rest-frame reconstruction

For two lepton case, these are the 'super-razor variables':
M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014)
$\ell_{1}^{l a b}, \ell_{2}^{l a b}$ Begin with reconstructed lepton 4-vectors in lab frame

Recursive rest-frame reconstruction

For two lepton case, these are the 'super-razor variables':
M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014)
$\ell_{1}^{l a b}, \ell_{2}^{l a b}$
Begin with reconstructed lepton 4-vectors in lab frame

$$
\frac{\partial\left(E_{\ell_{1}}^{l a b z}+E_{\ell_{2}}^{l a b z}\right)}{\partial \beta_{z}}=0 \rightarrow \beta_{z} \quad \begin{aligned}
& \text { Remove dependence on unknown } \\
& \text { longitudinal boost by moving from } \\
& \text { 'lab' to 'lab z' frames }
\end{aligned}
$$

Recursive rest-frame reconstruction

For two lepton case, these are the 'super-razor variables': M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014)

$$
\left(\tilde{\chi}_{1}+\tilde{\chi}_{2}\right)^{2}=\left(\ell_{1}+\ell_{2}\right)^{2}
$$

Determine boost from 'lab z' to 'CM $(\tilde{\ell} \tilde{\ell})$ ' frame by specifying Lorentz-invariant choice for invisible system mass

Recursive rest-frame reconstruction

For two lepton case, these are the 'super-razor variables': M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014)

$\frac{\partial\left(E_{\ell_{1}}^{\tilde{\ell}_{1}}+E_{\ell_{2}}^{\tilde{\ell}_{2}}\right)}{\partial \vec{\beta}_{\tilde{\ell} \tilde{\ell} \rightarrow \tilde{\ell}_{i}}}=0 \rightarrow \vec{\beta}_{\tilde{\ell} \tilde{\ell} \rightarrow \tilde{\ell}_{i}} \begin{aligned} & \text { Determine asymmetric boost from to slepton rest frames by minimizing } \\ & \text { lepton energies in those frames }\end{aligned}$

Recursive rest-frame reconstruction

For two lepton case, these are the 'super-razor variables':
M. Buckley, J. Lykken, CR, M. Spiropulu, PRD 89, 055020 (2014)
$\ell_{1}^{l a b}, \ell_{2}^{l a b}$
Begin with reconstructed lepton 4-vectors in lab frame
$\frac{\partial\left(E_{\ell_{1}}^{l a b z}+E_{\ell_{2}}^{l a b z}\right)}{\partial \beta_{z}}=0 \rightarrow \beta_{z}$
$\left(\tilde{\chi}_{1}+\tilde{\chi}_{2}\right)^{2}=\left(\ell_{1}+\ell_{2}\right)^{2}$

Remove dependence on unknown longitudinal boost by moving from 'lab' to 'lab z' frames

Determine boost from 'lab z' to 'CM ($\tilde{\ell} \tilde{\ell}$)' frame by specifying Lorentz-invariant choice for invisible system mass
$\frac{\partial\left(E_{\ell_{1}}^{\tilde{\ell}_{1}}+E_{\ell_{2}}^{\tilde{\ell}_{2}}\right)}{\partial \vec{\beta}_{\tilde{\ell} \tilde{\ell} \rightarrow \tilde{\ell}_{i}}}=0 \rightarrow \vec{\beta}_{\tilde{\ell} \tilde{\ell} \rightarrow \tilde{\ell}_{i}} \begin{aligned} & \text { Determine asymmetric boost from } \\ & \begin{array}{l}\text { CM to slepton rest frames by minimizing } \\ \text { lepton energies in those frames }\end{array}\end{aligned}$

Recursive rest-frame reconstruction

Resonant Higgs production

$$
H \rightarrow W W^{*} \rightarrow 2 \ell 2 \nu
$$

Using information from the two leptons, and the missing transverse momentum, the observable $\sqrt{\hat{s}}_{R}$ is directly sensitive to the Higgs mass

From:

CMS Collaboration, Measurement of Higgs boson production and properties in the $W W$ decay channel with leptonic final states, arXiv:1312.1129v1 [hep-ex]
Christopher Rogan - SUSY14 Manchester - July 22, 2014

Recursive rest-frame reconstruction

Variable comparison

MadGraph+PGS

MadGraph+PGS
$\sqrt{s}=8 \mathrm{TeV} \mathrm{pp} \rightarrow \tilde{l} ; \eta \rightarrow l \chi_{1} ; \mathrm{m}_{\tilde{l}}=150 \mathrm{GeV}$

Three different singularity variables, all attempting to measure the same thing

$$
M_{\Delta}^{R} \geq M_{T 2}(0) \geq M_{C T \perp}
$$

More details about variable comparisons in PRD 89, 055020 (arXiv:1310.4827) and backup slides 26

But what else can we calculate?

With recursive scheme can extract the two mass scales $\sqrt{\hat{s}} R$ and M_{Δ}^{R} almost completely independently

Angles, angles, angles...

Recursive scheme fully specifies approximate event decay chain, also yielding angular observables

Two transformations mean at least two independent angles of interest (essentially the decay angle of the state whose rest-frame you are in)

Towards a kinematic basis

MadGraph+PGS

MadGraph+PGS

but

$$
\sqrt{\hat{s}}_{R} \sim 2 \gamma^{\operatorname{decay}} M_{\Delta}
$$

$$
\vec{p}_{T}^{C M}=\vec{p}_{T}^{\ell_{1}}+\vec{p}_{T}^{\ell_{2}}+\vec{E}_{T}^{\text {miss }}
$$

while $\sqrt{\hat{s}}=2 \gamma^{\text {decay }} m_{\tilde{\ell}}$

From PRD 89, 055020 (2014)

Towards a kinematic basis

MadGraph + PGS

but

$$
\sqrt{\hat{s}}_{R} \sim 2 \gamma^{\operatorname{decay}} M_{\Delta}
$$

while $\sqrt{\hat{s}}=2 \gamma^{\text {decay }} m_{\tilde{\ell}}$
Underestimating the real mass means over-estimating the boost magnitude:

From PRD 89, 055020 (2014)

MadGraph+PGS
$\sqrt{s}=8 \mathrm{TeV}$

Christopher Rogan - SUSY14 Manchester - July 22, 2014

Angular Variables

Incorrect boost magnitude induces correlation

Angle between lab \rightarrow CM frame boost and di-leptons in CM frame is sensitive to
$\frac{m_{\chi}}{m^{\chi}}$ rather than M_{Δ} $m_{\tilde{\ell}}$

\sim Uncorrelated with other super-
razor variables

Angular Variables

In the approximate di-slepton rest frame, reconstructed decay angle sensitive to particle spin and production

Angular Variables

In the approximate slepton rest frames, reconstructed slepton decay angle sensitive to particle spin correlations

Angular Variables

Also allows us to better resolve the kinematic endpoint of interest

Super-razor variable basis

$\sqrt{\hat{S}} R \quad \begin{gathered}\text { Sensitive to mass of CM } \\ \text { Good for resonant production }\end{gathered}$ of heavy parents
$M_{\Delta}^{R} \quad \begin{gathered}\text { Mass-squared difference } \\ \text { resonant/non-resonant prod. }\end{gathered}$
Can re-imagine a di-lepton analysis in new basis of variables

Can improve sensitivity while removing MET cuts!

$\Delta \phi_{R}^{\beta}$
Sensitive to ratio of invisible and visible masses
$\cos \theta_{R}$
Spin and production

Generalizing further

Recursive Jigsaw approach can be generalized to arbitrarily complex final states with weakly interacting particles

Example: the di-leptonic top basis

In more complicated decay topologies there can be many masses/mass-splittings, spin-sensitive angles and other observables of interest that can be used to distinguish between the SM and SUSY signals

HEl
ITAS

Example: the di-leptonic top basis

A rich basis of useful Recursive Jigsaw observables can be calculated, each with largely independent information

See Paul Jackson's talk on Friday for more details!

Outlook

- The strategy of Recursive Jigsaw Reconstruction is to not only develop 'good' mass estimator variables, but to decompose each event into a basis of kinematic variables
- Through the recursive procedure, each variable is (as much as possible) independent of the others
- The interpretation of variables is straightforward; they each correspond to an actual, well-defined, quantity in the event
- Can be generalized to arbitrarily complex final states with many weakly interacting particles
- Stay tuned for documentation and code package to be released next month

BACKUP SLIDES

Weakly interacting particles @ LHC

- Why are they interesting?
- Electroweak bosons
- Decays of W and Z often produce neutrinos
- New symmetries
- Discrete symmetries (ex. R-parity) make lightest new 'charged’ particles stable
- Dark Matter
- It exists - but what is it? Would like to know if we're producing these particles at the LHC
- Natural SUSY
- Present in both RPC and RPV scenarios
- How do we study them?
- Can infer their presence through missing transverse energy
- Hermetic design of LHC experiments allows us to infer 'what's missing'

Singularity variables

Kinematic Singularities. A singularity is a point where the local tangent space cannot be defined as a plane, or has a different dimension than the tangent spaces at nonsingular points.

From:

Ian-Woo Kim. Algebraic singularity method for mass measurements with missing energy. Phys. Rev. Lett., 104:081601, Feb 2010.

Singularity variables

The guiding principle we employ for creating useful hadron-collider event variables, is that: we should place the best possible bounds on any Lorentz invariants of interest, such as parent masses or the center-of-mass energy $\hat{s}^{1 / 2}$, in any cases where it is not possible to determine the actual values of those Lorentz invariants due to incomplete event information.

From:

A.J. Barr, T.J. Khoo, P. Konar, K. Kong, C.G. Lester, et al. Guide to transverse projections and mass-constraining variables. Phys.Rev., D84:095031, 2011.

Singularity Variables

- State-of-the-art for LHC Run I was to use singularity variables as observables in searches
- Derive observables that bound a mass or mass-splitting of interest by
- Assuming knowledge of event decay topology
- Extremizing over under-constrained kinematic degrees of freedom associated with weakly interacting particles

Singularity Variable Example: $\mathrm{M}_{\mathrm{T} 2}$

 Generalization of transverse mass to two weakly interacting particle eventsExtremization of unknown degrees of freedom

LSP 'test mass'

$\mathrm{M}_{\mathrm{T} 2}$ in practice

From:

ATLAS-CONF-2013-049

Backgrounds with leptonic W decays fall steeply once $\mathrm{M}_{\mathrm{T} 2}$ exceeds the W mass

Searches based on singularity variables have sensitivity to new physics signatures with mass splittings larger than the analogous SM ones

Example: M_{CT}

MadGraph + PGS

 $\mathrm{pp} \rightarrow \tilde{l} \tilde{l} ; \tilde{l} \rightarrow l \tilde{\chi}_{\mathrm{i}}^{0} ; \mathrm{m}_{l}=150 \mathrm{GeV}$

Constructed to have a kinematic endpoint at:

$$
M_{C T}^{\max }=\frac{m_{\tilde{\ell}}^{2}-m}{m_{\tilde{\chi}_{1}^{0}}}
$$

From:
assuming ~mass-less leptons

$$
M_{C T}^{2}=2\left(p_{T}^{\ell_{1}} p_{T}^{\ell_{2}}+\vec{p}_{T}^{\ell_{1}} \cdot \vec{p}_{T}^{\ell_{2}}\right)
$$

Daniel R. Tovey. On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders. JHEP, 0804:034, 2008.

M_{CT} in practice

Singularity variables (like M_{CT}) can be sensitive to quantities that can vary dramatically event-by-event
MadGraph+PGS $\mathrm{pp} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} ; \mathrm{W}^{ \pm} \rightarrow l^{ \pm} v$

The mass challenge

The invariant mass is invariant under coherent Lorentz transformations of two particles

$$
m_{i n v}^{2}\left(p_{1}, p_{2}\right)=m_{1}^{2}+m_{2}^{2}+2\left(E_{1} E_{2}-\vec{p}_{1} \cdot \vec{p}_{2}\right)
$$

The Euclidean mass (or contra-variant mass) is invariant under antisymmetric Lorentz transformations of two particles

$$
m_{e u c l}^{2}\left(p_{1}, p_{2}\right)=m_{1}^{2}+m_{2}^{2}+2\left(E_{1} E_{2}+\vec{p}_{1} \cdot \vec{p}_{2}\right)
$$

Even the simplest case requires variables with both properties!

Correcting for $\mathrm{CM} \mathrm{p}_{\mathrm{T}}$

- Want to boost from lab-frame to CM-frame
- We know the transverse momentum of the CMframe:

$$
\vec{p}_{T}^{C M}=\vec{p}_{T}^{\ell_{1}}+\vec{p}_{T}^{\ell_{2}}+\vec{E}_{T}^{\mathrm{miss}}
$$

- But we don't know the energy, or mass, of the CMframe:

$$
\vec{\beta}_{l a b \rightarrow C M}=\frac{\vec{p}_{T}^{C M}}{\sqrt{\left|\vec{p}_{T}^{C M}\right|^{2}+\hat{s}}}
$$

p_{T} corrections for M_{CT}

Attempts have been made to mitigate this problem:

(i) 'Guess' the lab $\rightarrow \mathrm{CM}$ frame boost:
$\begin{cases}M_{C T} & \text { after boosting by } \beta=p_{b} / E_{\mathrm{cm}} \quad \text { if } A_{x(\mathrm{lab})} \geq 0 \text { or } A_{x(\mathrm{lo})}^{\prime} \geq 0\end{cases}$
$M_{C T(\text { corr })}=\left\{\begin{array}{lll}M_{C T} & \text { after boosting by } \beta=p_{b} / \hat{E} & \text { if } A_{x(\mathrm{hi})}^{\prime}<0 \\ M_{C y} & \text { if } A_{x(\mathrm{hi})}^{\prime} \geq 0\end{array}\right.$
x - parallel to boost
y - perp. to boost

$$
\text { with: } \begin{aligned}
A_{x} & =p_{x}\left[q_{1}\right] E_{y}\left[q_{2}\right]+p_{x}\left[q_{2}\right] E_{y}\left[q_{1}\right] \\
M_{C y}^{2} & =\left(E_{y}\left[q_{1}\right]+E_{y}\left[q_{2}\right]\right)^{2}-\left(p_{y}\left[q_{1}\right]-p_{y}\left[q_{2}\right]\right)^{2}
\end{aligned}
$$

Giacomo Polesello and Daniel R. Tovey. Supersymmetric particle mass measurement with the boost-corrected contransverse mass. JHEP, 1003:030, 2010.
(ii) Only look at event along axis perpendicular to boost:

Konstantin T. Matchev and Myeonghun Park. A General method for determining the masses of semi-invisibly decaying particles at hadron colliders. Phys.Rev.Lett., 107:061801, 2011.

$\mathrm{M}_{\text {CTperp }}$ in practice

'peak position' of signal and backgrounds due to other cuts (p_{T}, MET) and only weakly sensitive to sparticle masses

From:

CMS-SUS-PAS-13-006

Recursive rest-frame reconstruction

M_{Δ}^{R} is a singularity variable - in fact it is essentially identical to M_{CT} but evaluated in a different reference frame. Boost procedure ensures that new variable is invariant under the previous transformations

Resonant Higgs production

$H \rightarrow W W^{*} \rightarrow 2 \ell 2 \nu$

The shape of the $\sqrt{\hat{s}}$ distribution, for the Higgs signal and backgrounds, is used to extract both the Higgs mass and signal strength - even while information is los with the two escaping neutrinos
From:
CMS Collaboration, Measurement of Higgs boson production and properties in the $W W$ decay channel with leptonic final states, arXiv:1312.1129v1 [hep-ex]
Christopher Rogan - SUSY14 Manchester - July 22, 2014

Resonant Higgs production

$H \rightarrow W W^{*} \rightarrow 2 \ell 2 \nu$

The $\Delta \phi$ between the leptons is evaluated in the R-frame, removing dependence on the p_{T} of the Higgs and correlation with $\sqrt{\hat{s}}{ }_{R}$

CMS uses 2D fit of variables to measure Higgs mass in this channel
From:
CMS Collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, arXiv:1312.1129v1 [hep-ex]
Christopher Rogan - SUSY14 Manchester - July 22, 2014

What other info can we extract?

Ex. $\mathrm{M}_{\mathrm{T} 2}$ extremization assigns values to missing degrees of freedom - if one takes these assignments literally, can we calculate other useful variables?

From:

Mass and Spin Measurement with M(T2) and MAOS Momentum - Cho, Won Sang et al.
Nucl.Phys.Proc.Suppl. 200-202 (2010) 103-112 arXiv:0909.4853 [hep-ph]

When we assign unconstrained d.o.f. by extremizing one quantity, what are the general properties of other variables we calculate? What are the correlations among them?

Razor kinematic variables

mega-jet
invisible?

mega-jet

- Assign every reconstructed object to one of two mega-jets
- Analyze the event as a 'canonical' open final state:
- two variables: M_{R} (mass scale), R (scale-less event imbalance)
- An inclusive approach to searching for a large class of new physics possibilities with open final states

$$
\begin{array}{cl}
\text { Razor variables } & \begin{array}{c}
\text { arXiv:1006.2727v1 [hep-ph] } \\
\\
\text { CMS+ATLAS }
\end{array} \\
\text { PRD 85,012004 (2012) } \\
\text { analyses } & \text { PRJC 73, 2362 (2013) } \\
& \text { CMS-PAS-SUS-13-004 (2013) }
\end{array}
$$

Razor kinematic variables

mega-jet
invisible?

- Assign every reconstructed object to one of two mega-jets
- Analyze the event as a 'canonical' open final state:
- two variables: M_{R} (mass scale), R (scale-less event imbalance)

$$
M_{R} \sim \sqrt{\hat{s}} \quad R=\frac{M_{T}^{R}}{M_{R}} \sim \frac{M_{\Delta}}{\sqrt{\hat{s}}}
$$

Two distinct mass scales in event
Two pieces of complementary information

A Monte Carlo analysis to compare

- Baseline Selection From PRD 89, 055020 (arXiv:1310.4827 [hep-ph])
- Exactly two opposite sign leptons with

$$
\mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV} / \mathrm{c} \text { and }|\eta|<2.5
$$

- If same flavor, $\mathrm{m}(\ell \ell)>15 \mathrm{GeV} / \mathrm{c} 2$
- ΔR between leptons and any jet (see below) >0.4
- veto event if b-tagged jet with $\mathrm{p}_{\mathrm{T}}>25 \mathrm{GeV} / \mathrm{c}$ and $|\eta|<2.5$
- Kinematic Selection
'CMS selection'
$\left|m(\ell \ell)-m_{Z}\right|>15 \mathrm{GeV}$

CMS-PAS-SUS-12-022
'ATLAS selection'
$\left|m(\ell \ell)-m_{Z}\right|>10 \mathrm{GeV}$

ATLAS-CONF-2013-049

1D Shape Analysis

- Analysis Categories
- Consider final 9 different final states according to lepton flavor and jet multiplicity - simultaneous binned fit includes both high S/B and low S/B categories

$$
(e e, \mu \mu, e \mu) \times(0,1, \geq 2 \text { jets }) \quad \text { with } p_{T}^{j e t}>30 \mathrm{GeV} / c,\left|\eta^{j e t}\right|<3
$$

Fit to kinematic distributions (in this case, $\mathrm{M}_{\Delta}{ }^{\mathrm{R}}, \mathrm{M}_{\mathrm{T} 2}$ or $\mathrm{M}_{\mathrm{CTperp}}$ in 10 GeV bins), over all categories for $W W, t t$ and $Z / \gamma^{*}+$ jets yields

Systematic uncertainties

From PRD 89, 055020 (arXiv:1310.4827 [hep-ph])

- 2% lepton ID (correlated btw bkgs, uncorrelated between lepton categories)
- 10% jet counting (per jet) (uncorrelated between all processes)
- 10% x-section uncertainty for backgrounds (uncorrelated) + theoretical x-section uncertainty for signal (small)
- 'shape' uncertainty derived by propagating effect of 10% jet energy scale shift up/down to MET and recalculating shapes templates of kinematic variables
- Uncertainties are introduced into toy pseudo-experiments through marginalization (pdfs fixed in likelihood evaluation but systematically varied in shape and normalization in toy pseudo-experiment generation)

Compared to Reality

From PRD 89, 055020 (arXiv:1310.4827 [hep-ph])

$$
p p \rightarrow \tilde{\ell}_{L} \tilde{\ell}_{L} ; \quad \tilde{\ell}_{L} \rightarrow \tilde{\chi}_{1}^{0} \ell
$$

CMS-PAS-SUS-12-022

Expected Limit Comparison

Charginos

Super-Razor Basis Selection

From PRD 89, 055020 (arXiv:1310.4827 [hep-ph])

Comparisons

Christopher Rogan - SUSY14 Manchester - July 22, 2014

