Natural Supersymmetry in Warped Space

Yuichiro Nakai (Harvard U.)

B. Heidenreich and YN, arXiv:1407.5095[hep-ph]

Yukawa couplings have to be hierarchical.

Supersymmetry

SUSY is a nice framework to address several questions !

SUSY breaking can drive EWSB radiatively.

Problems of SUSY

Little hierarchy problem

$$m_{
m 1st,\,2nd} > 5 imes 10^4\,{
m TeV}$$

M. Bona, the UK Flavour Workshop (2013)

Light Higgs

125 GeV Higgs is heavy for SUSY.

Fine-tuning !

Yukawa hierarchies

SUSY itself does not address Yukawa hierarchies.

Stop mass bound

 $m_{ ilde{t}} > 650\,{
m GeV}$

Warped Natural SUSY

Gherghetta, Pomarol (2003), Sundrum (2009), Larsen, Nomura, Roberts (2012) ...

This pattern of SUSY breaking is naturally realized.

Warped Natural SUSY

Gherghetta, Pomarol (2003), Sundrum (2009), Larsen, Nomura, Roberts (2012) ...

Let's pursue a fully realistic model !

SUSY RS Model

$$ds^2 = e^{-2k|y|} \eta_{\mu
u} dx^{\mu} dx^{
u} + dy^2 ~~(0 \le |y| \le \pi R)$$

Randall, Sundrum (1999)

 S^1/Z_2

Extended SUSY in the bulk \implies N = 1 SUSY on the branes

Compactification scale : $k' \equiv k e^{-k\pi R} = \mathcal{O}(10) \text{ TeV}$ $kR \sim 10$

SM gauge fields in the bulk

Wavefunction profile of the zero mode is flat. UV IR

$$A_\mu(x,y)\simeq rac{1}{\sqrt{2\pi R}}\,A_\mu^{(0)}(x)$$

SUSY RS Model

Matter (hyper-)multiplets in the bulk

$$S_{\Psi} = \int d^{5}x \left\{ e^{-2k|y|} \int d^{4}\theta \left(\Psi^{\dagger}\Psi + \Psi^{c}\Psi^{c\dagger} \right) \right\}$$
Bulk mass parameter
$$+ e^{-3k|y|} \int d^{2}\theta \Psi^{c} \left[\partial_{y} - \left(\frac{3}{2} - c_{\Psi} \right) k\epsilon(y) \right] \Psi + \text{h.c.} \right\}$$

Wavefunction profile of the zero mode

$$\Psi(x,y) \simeq \frac{e^{-(c_{\Psi} - \frac{3}{2})k|y|}}{\sqrt{\frac{1}{(c_{\Psi} - \frac{1}{2})k} \left(1 - e^{-2\pi kR(c_{\Psi} - \frac{1}{2})}\right)}} \Psi^{(0)}(x)$$

Yukawa hierarchy

Yukawa coupling on IR brane

$$\begin{split} S_{\text{Yukawa}} &= \int d^5 x \, \delta(y - \pi R) \, e^{-3\pi k R} \begin{cases} & \text{Light quarks} & \text{Top quark} \\ \text{Leptons} & \\ \int d^2 \theta \left(\tilde{y}_u^{ij} H_u Q_i \bar{u}_j + \tilde{y}_d^{ij} H_d Q_i \bar{d}_j + \tilde{y}_\nu^{ij} H_u L_i \bar{\nu}_j + \tilde{y}_e^{ij} H_d L_i \bar{e}_j \right) + \text{h.c.} \end{cases} \end{split}$$

$$y_{u}^{ij} = \tilde{y}_{u}^{ij} k \,\zeta_{Q_{i}} \zeta_{\bar{u}_{j}}, \quad y_{d}^{ij} = \tilde{y}_{d}^{ij} k \,\zeta_{Q_{i}} \zeta_{\bar{d}_{j}}, \quad y_{\nu}^{ij} = \tilde{y}_{\nu}^{ij} k \,\zeta_{L_{i}} \zeta_{\bar{\nu}_{j}}, \quad y_{e}^{ij} = \tilde{y}_{e}^{ij} k \,\zeta_{L_{i}} \zeta_{\bar{e}_{j}}$$

$$\zeta_{\Psi} \simeq \begin{cases} \sqrt{c_{\Psi} - \frac{1}{2}} \ e^{-(c_{\Psi} - \frac{1}{2})\pi kR} & (c_{\Psi} \gg 1/2) \\ \\ \frac{1}{\sqrt{2\pi kR}} & (c_{\Psi} \sim 1/2) \\ \\ \sqrt{\frac{1}{2} - c_{\Psi}} & (c_{\Psi} \ll 1/2) \end{cases} \quad \textcircled{Top quark} \end{cases}$$

Proton Decay

u Even if we impose R-parity as usual, ... \widetilde{b} $W_{
m IR} \sim rac{1}{\Lambda_{
m IR}} QQQL \,\, imes$ (wavefunction factors) ĩ \overline{s} **O(10)** TeV ! d d Rapid proton decay ... **RPV** is natural in SUSY RS ! Z_3 lepton number symmetry $L
ightarrow e^{2\pi i/3} \, L, \qquad ar{
u}
ightarrow e^{-2\pi i/3} \, ar{
u}, \qquad ar{e}
ightarrow e^{-2\pi i/3} \, ar{e}$ Anomaly free
Three generations !

<u>SU</u>SY 2014

R-parity Violation

LSPs can decay promptly and evade searches based on missing transverse energy !

$$W_{
m BNV} = rac{1}{2} \lambda_{ijk}^{\prime\prime} ar{u}_i ar{d}_j ar{d}_k$$

Stop and sbottom

BNV couplings

 $m_{ ilde{b},\, ilde{t}}\gtrsim 100\,{
m GeV}$

Constraints from ΔB = 2 processes are satisfied !

The gauge field couples marginally to the CFT current $\,J_{Y}^{\mu}\,$

$$\blacktriangleright$$
 Scaling dimension of D_Y : $\Delta=2$

SCFT admits a relevant deformation : $\Delta \mathcal{L} = M_D^2 \, D_Y$

Conformal phase breaks down at $\,M_D\,$

 $(\Delta = 3)$

TeV Unification

Extend the SM gauge group to forbid the relevant deformation

Semi-simple group (SU(5), ...)

 Left-right symmetry under which the U(1) D-term transforms nontrivially

 $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

The unified group is brokenUVIRon IR brane by boundary conditions G_U G_U G_{SM} cf. The Higgsless model of EWSB G_U G_{SM}

Extra gauge fields → Dirichlet boundary condition on IR brane

ND Gauge Field

Extra gauge fields with ND boundary conditions satisfy

$$\begin{split} \frac{J_0(m/k)}{Y_0(m/k)} &= \frac{J_1(m/k')}{Y_1(m/k')} & \longrightarrow & m_0 \simeq \sqrt{\frac{2}{\pi kR}} \, k' \\ \mathcal{L}_{SU(5)} \sim -\frac{1}{4} \left\{ \frac{1}{g_{\rm UV}^2} + \frac{N_{\rm CFT}}{16\pi^2} \log\left(\frac{M_{\rm pl}}{\Lambda_{\rm IR}}\right) \right\} \sum_{a \, ({\rm All})} (F_{\mu\nu}^a)^2 & \textbf{x, y} & \textbf{x, y} \\ &+ \frac{1}{2} \frac{N_{\rm CFT}}{16\pi^2} \, \Lambda_{\rm IR}^2 \sum_{\alpha \, ({\rm Broken})} (A_{\mu}^{\alpha})^2 & \text{CFT particles} \\ & & \mathbf{m}_0^2 \sim \frac{\Lambda_{\rm IR}^2}{\log\left(M_{\rm pl}/\Lambda_{\rm IR}\right)} \quad \log\left(M_{\rm pl}/\Lambda_{\rm IR}\right) \simeq \pi kR \end{split}$$

 $k' = \mathcal{O}(10) \,\mathrm{TeV} \implies$ ND gauge fields may be discovered at LHC !

The SU(5) Model

Coupling unification can be realized by IR brane-localized kinetic term SU(5) SU(5) G_{SM}

$$S_{\rm IR} = \int d^5 x \,\delta(y - \pi R) \left\{ \frac{1}{4\tilde{g}_a^2} \int d^2\theta \,\mathrm{Tr} \,W^{a\alpha} W^a{}_\alpha + \mathrm{h.c.} \right\} \quad a = 3, 2, 1$$

Split multiplets for quarks and leptons : $10_Q, 10_{ar{u},\,ar{e}}$ & $5_{ar{d}}, 5_L$

 ${f Z_3}$ lepton number symmetry $\omega_3~\equiv~e^{2\pi i/3}$

$$\mathbf{10}_Q \to \omega_3 \mathbf{10}_Q, \quad \mathbf{10}_{\bar{u},\bar{e}} \to \omega_3^{-1} \mathbf{10}_{\bar{u},\bar{e}}, \quad \bar{\mathbf{5}}_L \to \omega_3 \bar{\mathbf{5}}_L, \quad \bar{\mathbf{5}}_{\bar{d}} \to \omega_3^{-1} \bar{\mathbf{5}}_{\bar{d}}$$

Extra fields in split multiplets : $Q', \bar{u}', \bar{d}', L', \bar{e}'$

Light Exotics

Obtain sizable masses of exotics by ND boundary conditions ?

Exotics satisfy
$$\frac{J_{c-1/2}(m/k)}{Y_{c-1/2}(m/k)} = \frac{J_{c+1/2}(m/k')}{Y_{c+1/2}(m/k')} \qquad \Rightarrow \text{ No ...}$$
For $c \gg 1/2$

$$m \simeq 2\sqrt{c + \frac{1}{2}} \zeta k'$$
UV

Light exotics always appear ...

Exponentially small overlap !!

 $M_{Q_1'} \sim 2\zeta_{\bar{u}_1} k' \ll M_Z$

The SU(5) model is excluded ...

Split Couplings without Exotics

A way to avoid light exotics in split multiplets $\Psi_A = (A, B')$ $\Psi_B = (A', B)$

Introduce a new multiplet on UV brane :

 $\bar{\Psi}_{\rm UV} = (\bar{A}_{\rm UV}, \bar{B}_{\rm UV})$ A mass term : $M_{\rm UV} \bar{\Psi}_{\rm UV} (s_{\theta} \Psi_A - c_{\theta} \Psi_B)$ A light multiplet : $\hat{\Psi} = (\hat{A}, \hat{B}) = c_{\theta} \Psi_A + s_{\theta} \Psi_B$

 $c_{\theta}\zeta_A$

Yukawa couplings on IR brane : $\mathcal{L}_{IR} = A\mathcal{O}_A + B\mathcal{O}_B + \dots$

The Left-Right Model

The symmetry is broken on IR brane : $SU(2)_R \times U(1)_{B-L} \rightarrow U(1)_Y$

W', Z' may be discovered at LHC via $\ W' \to \ell \nu$, $\ Z' \to \ell^+ \ell^-$

Split multiplets : $Q_Q = (Q, U'')$ $Q_{\bar{u}} = (Q', U_{\bar{u}})$ $Q_{\bar{d}} = (Q'', U_{\bar{d}})$

Introduce new multiplets on UV brane to avoid light exotics : $\mathcal{Q}_{1,2}$

Yukawa couplings on IR brane : $W_{\text{Yukawa}} = Q\bar{u}H_u + QdH_d$

Summary

To pursue a fully realistic SUSY RS model ...

Viable pattern of RPV is naturally derived !

Thank you.

Backup

Yukawa hierarchy

Wavefunction factors

$$m_{u_i} \simeq \zeta_{Q_i} \zeta_{\bar{u}_i} v \sin \beta, \qquad m_{d_i} \simeq \zeta_{Q_i} \zeta_{\bar{d}_i} v \cos \beta$$
$$|(V_{\text{CKM}})_{ij}| \simeq \frac{\zeta_{Q_j}}{\zeta_{Q_i}} \qquad \text{for} \quad j \le i$$
$$(V_{\text{CKM}})_{21}| \simeq \lambda, \qquad |(V_{\text{CKM}})_{32}| \simeq \lambda^2, \qquad |(V_{\text{CKM}})_{31}| \simeq \lambda^3 \qquad \lambda \sim 0.2$$

$$\zeta_{Q_1} \simeq \lambda^3 \zeta_{Q_3}, \qquad \zeta_{Q_2} \simeq \lambda^2 \zeta_{Q_3}, \\ \zeta_{\bar{u}_1} \simeq \frac{m_u}{\lambda^3 \zeta_{Q_3} v \sin \beta}, \qquad \zeta_{\bar{u}_2} \simeq \frac{m_c}{\lambda^2 \zeta_{Q_3} v \sin \beta}, \qquad \zeta_{\bar{u}_3} \simeq \frac{m_t}{\zeta_{Q_3} v \sin \beta}, \\ \zeta_{\bar{d}_1} \simeq \frac{m_d}{\lambda^3 \zeta_{Q_3} v \cos \beta}, \qquad \zeta_{\bar{d}_2} \simeq \frac{m_s}{\lambda^2 \zeta_{Q_3} v \cos \beta}, \qquad \zeta_{\bar{d}_3} \simeq \frac{m_b}{\zeta_{Q_3} v \cos \beta}$$

Coupling size is proportional to wavefunction factors !

	sb	bd	ds
u	8×10^{-6}	2×10^{-6}	1×10^{-6}
c	7×10^{-4}	2×10^{-4}	1×10^{-4}
t	3×10^{-3}	1×10^{-3}	6×10^{-4}

 $\tan \beta = 3$ and $\zeta_{Q_3} = 1$

R-parity violation

<u>n - n oscillations (RPV on IR brane)</u>

Constraint : $\tau_{n-\bar{n}} \ge 2.44 \times 10^8 \,\mathrm{s}$

If the scalars of light quarks are very heavy , ...

The leading diagram must involve only light superpartners.

$$\tau_{n-\bar{n}} \sim (3 \times 10^{10} \,\mathrm{s}) \left(\frac{\lambda_{tds}}{6 \times 10^{-4}}\right)^{-2} \left(\frac{m_{\tilde{g}}}{1.2 \,\mathrm{TeV}}\right) \left(\frac{m_{\tilde{t}}}{300 \,\mathrm{GeV}}\right)^{4}$$

The bound is easily satisfied !

R-parity violation

<u>n - n oscillations (RPV on UV brane)</u>

Sizable coupling for light quarks.

The bound is weaker than the FCNC bound.

R-parity violation

Dinucleon decay (RPV on IR brane)

Constraint: $\tau_{pp \to K^+K^+} \ge 1.7 \times 10^{32} \, \mathrm{yrs}$

If the scalars of light quarks are very heavy , ...

The leading diagram must involve only light superpartners.

$$\tau_{pp \to K^+ K^+} \sim (4 \times 10^{39} \,\mathrm{yrs}) \left(\frac{\lambda_{tds}}{6 \times 10^{-4}}\right)^{-4} \left(\frac{m_{\tilde{W}}}{600 \,\mathrm{GeV}}\right)^2 \left(\frac{m_{\tilde{t},\tilde{b}}}{300 \,\mathrm{GeV}}\right)^{12}$$

R-parity violation

Dinucleon decay (RPV on UV brane)

Scalars of light quarks are very heavy,

but sizable coupling for light quarks.

For
$$\tan \beta = 3$$
 and $\zeta_{Q_3} = 1$

$$\tau_{pp\to K^+K^+} \sim \left(5 \times 10^{35} \,\mathrm{yrs}\right) \left(\frac{\lambda'_{uds}}{0.05}\right)^{-4} \left(\frac{m_{\tilde{g}}}{1.2 \,\mathrm{TeV}}\right)^2 \left(\frac{m_{\tilde{q}}}{1000 \,\mathrm{TeV}}\right)^8$$

Constraints from $\Delta B = 2$ processes are satisfied !

R-parity violation

LSP decay (Constraint from displaced vertex)

If LSP is lighter than top quark, decay length is still short.

Strassler (2003) Sundrum (2009)

Heavy scalars
$$\implies \mathcal{L}_{\rm FI} \sim \int d^4\theta \, \xi \, V_1$$

Large Higgs soft masses !

Three-site model

	$U(1)_{1}$	$U(1)_{2}$	$U(1)_{3}$
Σ_1	1	-1	0
$\bar{\Sigma}_1$	-1	1	0
Σ_2	0	1	-1
$\bar{\Sigma}_2$	0	-1	1
H_u	0	0	1/2
H_d	0	0	-1/2

$$\bigcirc = \bigcirc = H_u, H_d$$

$$W \sim X_1 \left(\Sigma_1 \overline{\Sigma}_1 - v_1^2 \right) + X_2 \left(\Sigma_2 \overline{\Sigma}_2 - v_2^2 \right)$$

$$|\Sigma_1|^2 - |\bar{\Sigma}_1|^2 \sim |\Sigma_2|^2 - |\bar{\Sigma}_2|^2 \sim \frac{\xi}{g_Y}$$