LOCALIZATION on FOUR-MANIFOLDS, CASIMIR ENERGY and GRAVITY DUALS

Davide Cassani

King's College London

SUSY 2014

Manchester

Setting

As all beautiful things,

exact results in QFT are highly desirable but rare

supersymmetry has proven a very successful theoretical tool

e.g. non-renormalization theorems, moduli space of vacua, ...

In the last few years: many new exact results

based on the technique of supersymmetric localization

In this talk, we will see a particularly interesting example

Outline

- supersymmetry in curved space and localization
- 2 partition function on Hopf surfaces
- **3** comparison with the index and Casimir energy
- d gravity duals

Based on 1402.2278 with D. Martelli

1405.5144 with B. Assel and D. Martelli

QFT path integral

- $\int {\cal D} \Phi \, {\cal O} \, e^{i S[\Phi]}$
- \rightarrow gives a non-perturbative definition of a QFT

- hard to compute:
- $\begin{array}{c} & \text{infinite-dimensional} \quad \mathcal{D}\Phi(x) \\ & & \text{integrand oscillates} \quad e^{iS[\Phi]} \\ & & \text{integrand oscillates} \quad both IR and UV divergent \end{array}$
- it becomes more tractable :
 - \bullet in Euclidean signature $e^{iS[\Phi]}
 ightarrow e^{-S[\Phi]}$
 - ✤ on compact manifolds : finite radius acts as an IR regulator
- dramatic simplification in supersymmetric QFT
 - improved UV behavior
 - Iocalization : infinite-dimensional path integral reduces to a finite-dimensional one

Localization

With some assumptions,

the supersymmetric path integral can be deformed so that

- \diamond it is dominated by simple supersymmetric configurations Φ_0
- saddle point approximation becomes exact

huge simplification !

$$Z = \int \mathcal{D}\Phi_0 e^{-S[\Phi_0]} \frac{1}{\text{Sdet}[\text{kinetic operator for } \delta\Phi]}$$

often $\Phi_0 = \text{const}$, so $\mathcal{D}\Phi_0 \to d\Phi_0$

 In the last years the exact partition function has been computed for many theories on various geometries, in different dimensions.

Many applications.

Partition function with sources

Need to place our field theory on a Riemannian manifold by preserving susy

• Couple it to background fields :

• Partition function :

$$Z[A_\mu,g_{\mu
u}] ~=~ \int \mathcal{D}\Phi \, e^{-S[\Phi;A_\mu,g_{\mu
u}]}$$

can compute a specific set of correlators :

$$-rac{\delta}{\delta A_{\mu}}\log Z[A] \;=\; \langle j^{\mu}
angle$$

$$-rac{\delta}{\delta g^{\mu
u}}\log Z[g] \;=\; \langle T_{\mu
u}
angle$$

Supersymmetric backgrounds

• Which curved backgrounds preserve supersymmetry?

For a four-dimensional N=1 theory with an R-symmetry

Klare, Tomasiello, Zaffaroni; Dumitrescu, Festuccia, Seiberg '12

one supercharge \iff complex manifold with Hermitian metric

two supercharges (of opposite R-charge) \rightarrow complex isometry K

other background fields, including A_{μ} coupling to R-current, fixed by supersymmetry

Focus on second case : localization more powerful

• Choose $S^1 \times S^3$ topology.

Assel, D.C., Martelli see also Closset, Shamir

• Choose $S^1 \times S^3$ topology.

Assel, D.C., Martelli see also Closset, Shamir

• Complex manifolds with $S^1 imes S^3$ topology are Hopf surfaces ${\cal H}_{p,q}$

defined as a quotient of $\mathbb{C}^2 - (0,0)$ $(z_1,z_2) \sim (pz_1,qz_2)$

 $p = e^{-2\pi b_1}, \quad q = e^{-2\pi b_2}$: complex structure moduli

• Choose $S^1 \times S^3$ topology.

Assel, D.C., Martelli see also Closset, Shamir

• Complex manifolds with $S^1 imes S^3$ topology are Hopf surfaces ${\cal H}_{p,q}$

defined as a quotient of $\mathbb{C}^2 - (0,0)$ $(z_1,z_2) \sim (pz_1,qz_2)$

 $p = e^{-2\pi b_1}, \quad q = e^{-2\pi b_2}$: complex structure moduli

• Choose $S^1 \times S^3$ topology.

Assel, D.C., Martelli see also Closset, Shamir

• Complex manifolds with $S^1 imes S^3$ topology are Hopf surfaces ${\cal H}_{p,q}$

defined as a quotient of $\mathbb{C}^2 - (0,0)$ $(z_1,z_2) \sim (pz_1,qz_2)$

 $p = e^{-2\pi b_1}, \quad q = e^{-2\pi b_2}$: complex structure moduli

• two supercharges: complex Killing vector $K = b_1 \frac{\partial}{\partial \varphi_1} + b_2 \frac{\partial}{\partial \varphi_2} - i \frac{\partial}{\partial \tau}$ $S^1 \longrightarrow X \quad \rho, \varphi_1, \varphi_2$ $S^3 \longrightarrow X \quad \rho, \varphi_1, \varphi_2$

 S^3 as torus fibration over an interval, $b_1, b_2 \in \mathbb{R}$ for simplicity

• Choose $S^1 \times S^3$ topology.

Assel, D.C., Martelli see also Closset, Shamir

• Complex manifolds with $S^1 imes S^3$ topology are Hopf surfaces ${\mathcal H}_{p,q}$

defined as a quotient of $\mathbb{C}^2 - (0,0)$ $(z_1,z_2) \sim (pz_1,qz_2)$

 $p = e^{-2\pi b_1}, \quad q = e^{-2\pi b_2}$: complex structure moduli

• two supercharges: complex Killing vector $K = b_1 \frac{\partial}{\partial \varphi_1} + b_2 \frac{\partial}{\partial \varphi_2} - i \frac{\partial}{\partial \tau}$ $S^1 \qquad X \qquad \rho, \varphi_1, \varphi_2$ $S^3 \qquad \tau \qquad X \qquad \rho, \varphi_1, \varphi_2$

 S^3 as torus fibration over an interval, $b_1, b_2 \in \mathbb{R}$ for simplicity

• compatible metric still very general :

 $\mathrm{d}s^2 = \Omega^2(
ho)\mathrm{d} au^2 + f^2(
ho)\mathrm{d}
ho^2 + m_{IJ}(
ho)\mathrm{d}arphi_I\mathrm{d}arphi_J \qquad I,J=1,2$

- Consider partition function of an Euclidean theory on $\mathcal{H}_{p,q}$, with
 - vector multiplet for general gauge group
 - (charged) chiral multiplets, with superpotential

- Consider partition function of an Euclidean theory on $\mathcal{H}_{p,q}$, with
 - vector multiplet for general gauge group
 - (charged) chiral multiplets, with superpotential
- Adding a suitable susy-exact deformation term,

path integral localizes

dynamical gauge field $\mathcal{A}_{\tau} = \text{const}$ all other fields vanishing

- Consider partition function of an Euclidean theory on $\mathcal{H}_{p,q}$, with
 - vector multiplet for general gauge group
 - (charged) chiral multiplets, with superpotential
- Adding a suitable susy-exact deformation term,

path integral localizes

dynamical gauge field $\mathcal{A}_{\tau} = \text{const}$ all other fields vanishing

• Integral over all field fluctuations around this localization locus : $\frac{\text{Sdet}[\text{kinetic operator for } \delta \Phi]}{\delta \Phi}$

Compute it building on 3d results Alday, Martelli, Richmond, Sparks

- \diamond susy \rightarrow many cancellations between eigenvalues
- ♦ left with ∞ product over 3 integers (from Fourier modes on U(1)³)
- regularized using triple Gamma and zeta functions

Result :

- General arguments show that Z is a holomorphic function of the complex structure parameters and does not depend on Hermitian metric
 Closset, Dumitrescu, Festuccia, Komargodski
- $Z[\mathcal{H}_{p,q}]$ conjectured to compute $\ \mathcal{I}(p\,,q)$

 \Rightarrow we have explicitly checked this. Found an extra contribution $\mathcal{F}(p,q)$

$$\begin{split} Z[\mathcal{H}_{p,q}] &= e^{-\mathcal{F}(p,q)} \mathcal{I}(p,q) \\ & \swarrow \text{ index} \end{split}$$
$$\mathcal{F}(p,q) &= \frac{4\pi}{3} \left(b_1 + b_2 - \frac{b_1 + b_2}{b_1 b_2} \right) (a-c) + \frac{4\pi}{27} \frac{(b_1 + b_2)^3}{b_1 b_2} (3 \ c - 2 \ a) \\ & p = e^{-2\pi b_1}, \ q = e^{-2\pi b_2} \\ a &= \frac{3}{32} \left(3 \ \text{tr} R^3 - \text{tr} R \right), \quad c = \frac{1}{32} \left(9 \ \text{tr} R^3 - 5 \ \text{tr} R \right) \qquad R : \text{ fermionic} \\ & \text{R-charge} \\ & \text{SCFT central charges} \end{split}$$

appears to be physical (non-removable by supersymmetric local 4d counterterm)

- limit of large $S^1 \rightarrow$ yields a supersymmetric Casimir energy
- related to anomalies?

• dominates Z at large N \rightarrow prediction for dual supergravity solutions

Gravity duals

AdS/CFT master equation (at large N)

 $\mathrm{e}^{-S_{\mathrm{gravity}}[M_5]} = Z[M_4]$

 $M_4 = \partial M_5$ QFT background fields \Leftrightarrow gravity boundary conditions

- → holographic evaluation of the QFT partition function
- can make highly non-trivial tests of AdS/CFT and gain useful insight for field theory computations

• When $\partial M_5 = \mathcal{H}_{p,q}$, our prediction from localization (at large N):

$$S_{
m 5d\,sugra}[M_5]\,=\,rac{\pi^2}{54G_5}rac{(b_1+b_2)^3}{b_1b_2}$$

New supergravity solution

more symmetry $U(1)xU(1)xU(1) \rightarrow SU(2)xU(1)xU(1)$

studied 5d supergravity susy equations with these boundary conditions

New supergravity solution

D.C., Martelli '14

found a new one-parameter family of solutions

• $S_{
m gravity} \sim rac{r_{S^1}}{r_{S^1_{
m Hopf}}} + \dots$ counterterms

agrees with field theory formula with $b_1 = b_2$

need better understanding of supersymmetric holographic renormalization

Conclusions

• I presented an explicit computation of the partition function of N=1 gauge theories on a Hopf surface $\mathcal{H}_{p,q}$, allowing for a general metric

Find:
$$Z[\mathcal{H}_{p,q}] = e^{-\mathcal{F}(p,q)}\mathcal{I}(p,q)$$

- First holographic check by constructing a new supergravity solution
- $\mathcal{F}(p,q)$ involves supersymmetric Casimir energy

It would be interesting :

- to explore more its meaning in field theory
- to retrieve it in full generality in a holographic setup
 - → refine our understanding of gauge/gravity correspondence

... thank you for your attention

Extra slides

localization

fields Φ , (Euclidean) action $S[\Phi]$

$$Z = \int \mathcal{D}\Phi \, e^{-S[\Phi]} = ?$$

supersymmetry Q such that QS = 0

introduce a fermionic term $V[\Phi]$: Q(QV) = 0

deformed partition function
$$Z(t) = \int \mathcal{D}\Phi e^{-S[\Phi] - t QV[\Phi]} \chi_{\text{parameter}}$$

independent of t:

$$\frac{d}{dt}Z(t) = -\int \mathcal{D}\Phi \, QV \, e^{-S-tQV} = -\int \mathcal{D}\Phi \, Q\Big(V \, e^{-S-tQV}\Big) = 0$$

$$\Rightarrow \quad Z(t=0) = Z(t \to \infty)$$

if $QV|_{bosonic} \ge 0$, then dominant contribution at large t is from $QV|_{bos} = 0$ $t \to \infty$: saddle point approximation becomes **exact**

localization

typical choice : $V = \int d^4x \sqrt{g} \left[(Q\psi)^{\dagger}\psi + \psi^{\dagger} (Q\psi^{\dagger})^{\dagger} \right] \psi$ fermions

$$QV|_{ ext{bosonic}} \ = \ \int d^4x \sqrt{g} \left(|Q\psi|^2 + |Q\psi^\dagger|^2
ight) \ \ge \ 0$$

saddle points \Leftrightarrow supersymmetric configurations $Q\psi=0$ $Q\psi^{\dagger}=0$ \star

$$\Phi = \Phi_0 + \frac{1}{\sqrt{t}} \frac{\delta \Phi}{\int} \frac{1}{\int} \frac{\delta \Phi}{\int} \frac{1}{\int} \frac{\delta \Phi}{\int} \frac{1}{\int} \frac$$

$$\overline{\overline{t}} \stackrel{\delta \Phi}{\uparrow} + \cdot \cdot \cdot$$

$$Z = \int \mathcal{D}\Phi_0 \, e^{-S[\Phi_0]} rac{1}{ ext{Sdet}[ext{kinetic operator for } \delta\Phi]}$$

often $\Phi_0=\mathrm{const}$, so $\mathcal{D}\Phi_0 o d\Phi_0$

 \rightarrow infinite-dimensional integral localizes to a finite one

 $\psi=\psi^{\dagger}=0$

minimal d=5 gauged supergravity

the simplest d=5 sugra with AdS vacuum

• field content $g_{\mu\nu}, A_{\mu}, \psi_{\mu}$

bosonic lagrangian:

$$\mathcal{L}_{ ext{sugra}} = ig(R + 12 - rac{1}{3} F^2 ig) * 1 - rac{8}{27} A \wedge F \wedge F$$

• susy condition $\delta \psi_{\mu} = 0$:

$$\begin{bmatrix} \nabla^{A}_{\mu} - \frac{1}{2}\gamma_{\mu} - \frac{i}{12} \left(\gamma_{\mu}^{\nu\rho} - 4\delta^{\nu}_{\mu}\gamma^{\rho} \right) F_{\nu\rho} \end{bmatrix} \epsilon = 0$$
$$\nabla^{A} := \nabla - iA$$

any solution lifts to type IIB supergravity on a Sasaki-Einstein₅