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Setting

exact	 results	 in	 QFT	 are	 highly	 desirable	 but	 rare

As all beautiful things,

supersymmetry	 has	 proven	 a	 very	 successful	 theoretical	 tool

e.g.	 non-renormalization	 theorems,	 moduli	 space	 of	 vacua,	 ...

✤

many new exact results

based	 on	 the	 technique	 of	 supersymmetric localization

In	 the	 last	 few	 years:✤

In	 this	 talk,	 we	 will	 see	 a	 particularly	 interesting	 example✤
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comparison	 with	 the	 index	 and	 Casimir	 energy

❹ gravity	 duals

1402.2278 with D. MartelliBased on

1405.5144 with B. Assel and D. Martelli

supersymmetry	 in	 curved	 space	 and	 localization

partition	 function	 on	 Hopf	 surfaces



QFT path integral

hard	 to	 compute:● infinite-dimensional D�(x)!

integrand	 oscillates eiS[�]!

both	 IR	 and	 UV	 divergent!

it	 becomes	 more	 tractable	 :●

dramatic	 simplification	 in	 supersymmetric	 QFT●

in	 Euclidean	 signature eiS[�] ! e�S[�]✤

on	 compact	 manifolds	 :	 finite	 radius	 acts	 as	 an	 IR	 regulator✤

improved	 UV	 behavior✤

reduces	 to	 a	 finite-dimensional	 one
localization :  infinite-dimensional	 path	 integral	 	 ✤

➜   gives	 a	 non-perturbative	 definition	 of	 a	 QFT
ZZZ

D�O eiS[�]



Localization

In	 the	 last	 years	 the	 exact	 partition	 function	 has	 been	 
computed	 for	 many	 theories	 on	 various	 geometries,	 in	 
different	 dimensions.	 
Many	 applications.	 

●

saddle	 point	 approximation	 becomes	 exact
➜  huge simplification !

With	 some	 assumptions,
the	 supersymmetric	 path	 integral	 can	 be	 deformed	 so	 that

●

it	 is	 dominated	 by	 simple	 supersymmetric	 configurations

Z =

ZZZ
D�0 e�S[�0]

1

Sdet[kinetic operator for ��]

D�0 ! d�0�0 = constoften ,	 so

�0



Partition function with sources

●

can	 compute	 a	 specific	 set	 of	 correlators	 :

�
�

�gµ⌫
log Z[g] = hTµ⌫i�

�

�Aµ
log Z[A] = hjµi

background	 
gauge	 field

background	 
curved	 metric

conserved
current

energy-momentum
tensor

S[�;Aµ, gµ⌫ ] = S0[�] +
ZZZ

(Aµjµ + gµ⌫Tµ⌫ + . . .)

●

Couple	 it	 to	 background	 fields	 :

Z[Aµ, gµ⌫ ] =
ZZZ

D�e�S[�;Aµ,gµ⌫ ]

● Partition	 function	 :

Need	 to	 place	 our	 field	 theory	 on	 a	 Riemannian	 manifold	 by	 preserving	 susy

supermultiplet



K

Supersymmetric backgrounds

For	 a	 four-dimensional	 N=1	 theory	 with	 an	 R-symmetry

Klare, Tomasiello, Zaffaroni;   Dumitrescu, Festuccia, Seiberg ’12

Which	 curved	 backgrounds	 preserve	 supersymmetry?	 

Focus	 on	 second	 case	 :	 localization	 more	 powerful

●

one	 supercharge	 	 ⟺	 	 complex	 manifold	 with	 Hermitian	 metric

two	 supercharges	 (of	 opposite	 R-charge)	 	 ➜ 	 complex	 isometry

other	 background	 fields,	 including	 	 	 	 	 	 	 coupling	 to	 R-current,	 
fixed	 by	 supersymmetry

Aµ



Hopf surfaces
Assel, D.C., MartelliChoose	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 topology.	 S1 ⇥ S3● see also Closset, Shamir
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� i
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Hopf surfaces
Assel, D.C., MartelliChoose	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 topology.	 S1 ⇥ S3

X
S1 S3

⌧ ⇢, '1, '2

●

compatible	 metric	 still	 very	 general	 :

ds2 = ⌦2(⇢)d⌧2 + f2(⇢)d⇢2 + mIJ(⇢)d'Id'J I, J = 1,2

●

●
defined	 as	 a	 quotient	 of	 C2 � (0,0) (z1, z2) ⇠ (pz1, qz2)

p = e�2⇡b1 , q = e�2⇡b2 :	 	 complex	 structure	 moduli
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Consider	 partition	 function	 of	 an	 Euclidean	 theory	 on	 	 	 	 	 	 	 	 	 	 ,	 with	 
	 	 	 	 	 	 	 vector	 multiplet	 for	 general	 gauge	 group
	 	 	 	 	 	 	 (charged)	 chiral	 multiplets,	 with	 superpotential	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 

Hp,q

Localization on Hopf surfaces
●
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dynamical	 gauge	 field
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●

dynamical	 gauge	 field
path	 integral	 localizes

all	 other	 fields	 vanishing
A⌧ = const⎨

Adding	 a	 suitable	 susy-exact	 deformation	 term,●

	 Compute	 it	 building	 on	 3d	 results Alday, Martelli, Richmond, Sparks

Integral	 over	 all	 field	 fluctuations	 around	 this	 localization	 locus	 :●

susy	 ➜	 	 many	 cancellations	 between	 eigenvalues

Sdet[kinetic operator for ��]

regularized	 using	 triple	 Gamma	 and	 zeta	 functions
left	 with	 ∞	 product	 over	 3	 integers	 (from	 Fourier	 modes	 on	 U(1)	 	 )	 3



Localization on Hopf surfaces

●

Result	 :

Z[Hp,q] = e�F(p,q) (p; p)rG(q; q)rG

|W|
Z

T rG

dz

2⇡iz

Y

↵2�+

✓ (z↵, p) ✓
�
z�↵, q

� Y

J

Y

⇢2�J

�e

�
z⇢(pq)

rJ
2 , p, q

�

counts	 certain	 BPS	 states

prefactor supersymmetric	 index I(p , q)

Closset, Dumitrescu, Festuccia, Komargodski

General	 arguments	 show	 that	 	 	 	 	 is	 a	 holomorphic	 function	 of	 the	 complex	 
structure	 parameters	 and	 does	 not	 depend	 on	 Hermitian	 metric

Z

conjectured	 to	 computeZ[Hp,q] I(p , q)

Witten	 index	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ,	 refined	 by	 fugacities p , q

➜	 	 we	 have	 explicitly	 checked	 this.	 Found	 an	 extra contribution

tr(�1)F

●

F(p, q)



Localization on Hopf surfaces

Z[Hp,q] = e�F(p,q)I(p , q)

index

F(p, q) =
4⇡

3

✓
b1 + b2 �

b1 + b2

b1b2

◆
(a � c) +

4⇡

27
(b1 + b2)3

b1b2
(3 c � 2 a)

appears	 to	 be	 physical	 (non-removable	 by	 supersymmetric	 local	 4d	 counterterm)

dominates	 	 	 	 	 at	 large	 N	 	 ➜	 	 prediction for dual supergravity solutions

c =
1
32

�
9 trR3 � 5 trR

�
a =

3
32

�
3 trR3 � trR

�
,

related	 to	 anomalies?

SCFT	 central	 charges

R fermionic	 
R-charge

:

Z

limit	 of	 large ➜ yields	 a	 supersymmetric Casimir energyS1

p = e�2⇡b1 , q = e�2⇡b2



Gravity duals

➜	 can	 make	 highly	 non-trivial	 tests	 of	 AdS/CFT
	 	 	 	 and	 gain	 useful	 insight	 for	 field	 theory	 computations

AdS/CFT	 	 master	 equation	 (at	 large	 N)

➜  holographic	 evaluation	 of	 the	 QFT	 partition	 function

●

QFT	 background	 fields	 ⟺	 gravity	 boundary	 conditions	 M4 = @M5

e�Sgravity[M5] = Z[M4]

S5d sugra[M5] =
⇡2

54G5

(b1 + b2)3

b1b2

When	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ,	 our	 prediction	 from	 localization	 (at	 large	 N):@M5 = Hp,q



New supergravity solution

UVIR

S3
squashedS2

S1
Hopf

S1t

???

D.C., Martelli ’14

S3
squashedS2

S1
Hopf

S1t

studied	 5d	 supergravity	 susy	 equations	 with	 these	 boundary	 conditions	 ●

●

more	 symmetry	 	 	 U(1)xU(1)xU(1)	 	 ➜  SU(2)xU(1)xU(1)

We	 took	 a	 first	 step	 :

considered S1 ⇥ S3
squashed



New supergravity solution

found a new one-parameter family of solutions

regular

D.C., Martelli ’14

UVIR

S3
squashedS2

S1
Hopf

S1t
AdS-like

bulk

boundary

family	 parameterized	 by	 
squashing	 of	 S3

no	 horizon

agrees	 with	 field	 theory	 formula	 with b1 = b2

need	 better	 understanding	 of	 supersymmetric	 holographic	 renormalization!

● countertermsSgravity ⇠
rS1

rS1
Hopf

+ . . .



Conclusions
●

Z[Hp,q] = e�F(p,q)I(p , q)

I	 presented	 an	 explicit	 computation	 of	 the	 partition	 function	 of	 N=1	 gauge	 
theories	 on	 a	 Hopf	 surface	 	 	 	 	 	 	 	 	 	 ,	 allowing	 for	 a	 general	 metricHp,q

Find:

involves	 supersymmetric	 Casimir	 energyF(p, q)

First	 holographic	 check	 by	 constructing	 a	 new	 supergravity	 solution●

●

➜  refine	 our	 understanding	 of	 gauge/gravity	 correspondence

It	 would	 be	 interesting	 :
	 	 	 	 	 	 to	 explore	 more	 its	 meaning	 in	 field	 theory
	 	 	 	 	 	 to	 retrieve	 it	 in	 full	 generality	 in	 a	 holographic	 setup



... thank you for your attention



Extra slides



localization

independent	 of	 	 	 :t
d

dt
Z(t) = �

ZZZ
D�QV e�S�tQV = �

ZZZ
D�Q

⇣
V e�S�tQV

⌘
= 0

Z(t) =
ZZZ

D�e�S[�]� t QV [�]deformed	 partition	 function	 

S[�],	 (Euclidean)	 action�fields

Qsupersymmetry Q S = 0such	 that

introduce	 a	 fermionic	 term V [�] Q (QV ) = 0:

:	 saddle	 point	 approximation	 becomes	 exactt ! 1

Z(t = 0) = Z(t ! 1)➜

if	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ,	 then	 dominant	 contribution	 at	 large	 	 	 	 is	 fromtQV |
bosonic

� 0

Z =
ZZZ

D� e�S[�] = ?

parameter

QV |
bos

= 0



localization

➜ infinite-dimensional	 integral	 localizes	 to	 a	 finite	 one

V =
ZZZ

d

4
x

p
g

⇥
(Q )†

 + 

†(Q †)†⇤typical	 choice	 : fermions 

QV |
bosonic

=
ZZZ

d

4

x

p
g

�
|Q |2 + |Q †|2

�
� 0

saddle	 points	 	 ⇔	 	 supersymmetric	 configurations Q = 0 Q † = 0

 =  † = 0

★

� = �0 +
1

p
t

�� + . . .

solving ★ fluctuation

Z =

ZZZ
D�0 e�S[�0]

1

Sdet[kinetic operator for ��]

D�0 ! d�0�0 = constoften ,	 so



Lsugra =
�
R + 12 � 1

3
F 2

�
⇤ 1 � 8

27
A ^ F ^ F

minimal d=5 gauged supergravity

bosonic lagrangian:

field content

the simplest d=5 sugra with  AdS vacuum

susy condition 

rA := r� iA

any solution lifts to type IIB supergravity on a Sasaki-Einstein₅

⇥
rA

µ � 1
2
�µ � i

12

�
�µ

⌫⇢ � 4�⌫
µ�⇢

�
F⌫⇢

⇤
✏ = 0

gµ⌫ , Aµ ,  µ

� µ = 0 :


