LOCALIZATION on FOUR-MANIFOLDS, CASIMIR ENERGY and GRAVITY DUALS

Davide Cassani

King's College London

Setting

Is all beautiful things,
exact results in QFT are highly desirable but rare
supersymmetry has proven a very successful theoretical tool
e.g. non-renormalization theorems, moduli space of vacua, ...

In the last few years: many new exact results
based on the technique of supersymmetric localization
\% In this talk, we will see a particularly interesting example

Outline

(1) supersymmetry in curved space and localization
(2) partition function on Hopf surfaces
(3) comparison with the index and Casimir energy
(4) gravity duals

Based on 1402.2278 with D. Martelli
 1405.5144 with B. Assel and D. Martelli

QFT path integral

$\int \mathcal{D} \Phi \mathcal{O} e^{i S[\Phi]} \rightarrow$ gives a non-perturbative definition of a QFT

- hard to compute: \triangle infinite-dimensional $\mathcal{D} \Phi(x)$
§ integrand oscillates $e^{i S[\Phi]}$
both \mathbb{R} and UV divergent
- it becomes more tractable :
$\%$ in Euclidean signature $e^{i S[\Phi]} \rightarrow e^{-S[\Phi]}$
\% on compact manifolds : finite radius acts as an IR regulator
- dramatic simplification in supersymmetric QFT
\% improved UV behavior
\% localization : infinite-dimensional path integral reduces to a finite-dimensional one

Localization

- With some assumptions, the supersymmetric path integral can be deformed so that
- it is dominated by simple supersymmetric configurations $\boldsymbol{\Phi}_{\mathbf{0}}$
- saddle point approximation becomes exact
\rightarrow huge simplification!

$$
\begin{aligned}
& Z=\int \mathcal{D} \Phi_{0} e^{-S\left[\Phi_{0}\right]} \frac{1}{\operatorname{Sdet}[\text { kinetic operator for } \delta \Phi]} \\
& \text { often } \Phi_{0}=\text { const, so } \mathcal{D} \Phi_{0} \rightarrow d \Phi_{0}
\end{aligned}
$$

- In the last years the exact partition function has been computed for many theories on various geometries, in different dimensions.
Many applications.

Partition function with sources

Need to place our field theory on a Riemannian manifold by preserving susy

- Couple it to background fields :

- Partition function :

$$
Z\left[A_{\mu}, g_{\mu \nu}\right]=\int \mathcal{D} \Phi e^{-S\left[\Phi ; A_{\mu}, g_{\mu \nu}\right]}
$$

- can compute a specific set of correlators :

$$
-\frac{\delta}{\delta A_{\mu}} \log Z[A]=\left\langle j^{\mu}\right\rangle \quad-\frac{\delta}{\delta g^{\mu \nu}} \log Z[g]=\left\langle T_{\mu \nu}\right\rangle
$$

Supersymmetric backgrounds

- Which curved backgrounds preserve supersymmetry?

For a four-dimensional $\mathrm{N}=1$ theory with an R -symmetry

Klare, Tomasiello, Zaffaroni; Dumitrescu, Festuccia, Seiberg '12

- one supercharge \Longleftrightarrow complex manifold with Hermitian metric
- two supercharges (of opposite R-charge) $\boldsymbol{\rightarrow}$ complex isometry \boldsymbol{K}
other background fields, including \boldsymbol{A}_{μ} coupling to R -current, fixed by supersymmetry

Focus on second case : localization more powerful

Hopf surfaces

- Choose $S^{1} \times S^{3}$ topology.

Assel, D.C., Martelli see also Closset, Shamir

Hopf surfaces

- Choose $S^{1} \times S^{3}$ topology.
- Complex manifolds with $S^{1} \times S^{3}$ topology are Hopf surfaces $\mathcal{H}_{p, q}$ defined as a quotient of $\mathbb{C}^{2}-(0,0) \quad\left(z_{1}, z_{2}\right) \sim\left(p z_{1}, q z_{2}\right)$

$$
p=\mathrm{e}^{-2 \pi b_{1}}, \quad q=\mathrm{e}^{-2 \pi b_{2}} \quad: \text { complex structure moduli }
$$

Hopf surfaces

- Choose $S^{1} \times S^{3}$ topology.
- Complex manifolds with $S^{1} \times S^{3}$ topology are Hopf surfaces $\mathcal{H}_{p, q}$ defined as a quotient of $\mathbb{C}^{2}-(0,0) \quad\left(z_{1}, z_{2}\right) \sim\left(p z_{1}, q z_{2}\right)$

$$
p=\mathrm{e}^{-2 \pi b_{1}}, \quad q=\mathrm{e}^{-2 \pi b_{2}} \quad: \text { complex structure moduli }
$$

Hopf surfaces

- Choose $S^{1} \times S^{3}$ topology.
- Complex manifolds with $S^{1} \times S^{3}$ topology are Hopf surfaces $\mathcal{H}_{p, q}$ defined as a quotient of $\mathbb{C}^{2}-(0,0) \quad\left(z_{1}, z_{2}\right) \sim\left(p z_{1}, q z_{2}\right)$

$$
p=\mathrm{e}^{-2 \pi b_{1}}, \quad q=\mathrm{e}^{-2 \pi b_{2}} \quad: \text { complex structure moduli }
$$

- two supercharges: complex Killing vector

$$
K=b_{1} \frac{\partial}{\partial \varphi_{1}}+b_{2} \frac{\partial}{\partial \varphi_{2}}-i \frac{\partial}{\partial \tau}
$$

S^{3} as torus fibration over an interval, $b_{1}, b_{2} \in \mathbb{R}$ for simplicity

Hopf surfaces

- Choose $S^{1} \times S^{3}$ topology.
- Complex manifolds with $S^{1} \times S^{3}$ topology are Hopf surfaces $\mathcal{H}_{p, q}$ defined as a quotient of $\mathbb{C}^{2}-(0,0) \quad\left(z_{1}, z_{2}\right) \sim\left(p z_{1}, q z_{2}\right)$

$$
p=\mathrm{e}^{-2 \pi b_{1}}, \quad q=\mathrm{e}^{-2 \pi b_{2}} \quad: \text { complex structure moduli }
$$

- two supercharges: complex Killing vector

$$
K=b_{1} \frac{\partial}{\partial \varphi_{1}}+b_{2} \frac{\partial}{\partial \varphi_{2}}-i \frac{\partial}{\partial \tau}
$$

S^{3} as torus fibration over an interval, $b_{1}, b_{2} \in \mathbb{R}$ for simplicity

- compatible metric still very general :

$$
\mathrm{d} s^{2}=\Omega^{2}(\rho) \mathrm{d} \tau^{2}+f^{2}(\rho) \mathrm{d} \rho^{2}+m_{I J}(\rho) \mathrm{d} \varphi_{I} \mathrm{~d} \varphi_{J} \quad I, J=1,2
$$

Localization on Hopf surfaces

- Consider partition function of an Euclidean theory on $\mathcal{H}_{p, q}$, with
- vector multiplet for general gauge group
- (charged) chiral multiplets, with superpotential

Localization on Hopf surfaces

- Consider partition function of an Euclidean theory on $\mathcal{H}_{p, q}$, with
- vector multiplet for general gauge group
- (charged) chiral multiplets, with superpotential
- Adding a suitable susy-exact deformation term,
path integral localizes
$\left\{\begin{array}{l}\text { dynamical gauge field } \mathcal{A}_{\tau}=\text { const } \\ \text { all other fields vanishing }\end{array}\right.$

Localization on Hopf surfaces

- Consider partition function of an Euclidean theory on $\mathcal{H}_{p, q}$, with
- vector multiplet for general gauge group
- (charged) chiral multiplets, with superpotential
- Adding a suitable susy-exact deformation term,
path integral localizes $\quad\left\{\begin{array}{l}\text { dynamical gauge field } \mathcal{A}_{\tau}=\text { const } \\ \text { all other fields vanishing }\end{array}\right.$
- Integral over all field fluctuations around this localization locus :

$$
\text { Sdet }[\text { kinetic operator for } \delta \Phi]
$$

Compute it building on 3d results

- susy \rightarrow many cancellations between eigenvalues
- left with ∞ product over 3 integers (from Fourier modes on $\left.U(1)^{3}\right)$
- regularized using triple Gamma and zeta functions

Localization on Hopf surfaces

Result :

Witten index $\operatorname{tr}(-\mathbf{1})^{\boldsymbol{F}}$, refined by fugacities p, q counts certain BPS states

- General arguments show that Z is a holomorphic function of the complex structure parameters and does not depend on Hermitian metric

Closset, Dumitrescu, Festuccia, Komargodski

- $Z\left[\mathcal{H}_{p, q}\right]$ conjectured to compute $\mathcal{I}(p, q)$
\rightarrow we have explicitly checked this. Found an extra contribution $\mathcal{F}(p, q)$

Localization on Hopf surfaces

$$
Z\left[\mathcal{H}_{p, q}\right]=\mathrm{e}^{-\mathcal{F}(p, q)} \mathcal{I}(p, q)
$$

$\mathcal{F}(p, q)=\frac{4 \pi}{3}\left(b_{1}+b_{2}-\frac{b_{1}+b_{2}}{b_{1} b_{2}}\right)(a-c)+\frac{4 \pi}{27} \frac{\left(b_{1}+b_{2}\right)^{3}}{b_{1} b_{2}}(3 c-2 a)$

$$
p=\mathrm{e}^{-2 \pi b_{1}}, \quad q=\mathrm{e}^{-2 \pi b_{2}}
$$

$$
a=\frac{3}{32}\left(3 \operatorname{tr} R^{3}-\underset{r}{\operatorname{tr} R),} \quad \underset{\nearrow}{c}=\frac{1}{32}\left(9 \operatorname{tr} R^{3}-5 \operatorname{tr} R\right) \quad R: \underset{\text { R-charge }}{\text { fermionic }}\right.
$$

- appears to be physical (non-removable by supersymmetric local 4d counterterm)
- limit of large $S^{1} \rightarrow$ yields a supersymmetric Casimir energy
- related to anomalies?
- dominates Z at large $N \rightarrow$ prediction for dual supergravity solutions

Gravity duals

$$
\begin{aligned}
& \text { AdS/CFT master equation (at large } \mathrm{N} \text {) } \\
& \qquad \mathrm{e}^{-S_{\text {gravity }}\left[M_{5}\right]}=Z\left[M_{4}\right]
\end{aligned}
$$

$M_{4}=\partial M_{5} \quad$ QFT background fields \Leftrightarrow gravity boundary conditions
\rightarrow holographic evaluation of the QFT partition function
\rightarrow can make highly non-trivial tests of AdS/CFT and gain useful insight for field theory computations

- When $\partial M_{5}=\mathcal{H}_{p, q}$, our prediction from localization (at large N):

$$
S_{5 \mathrm{~d} \text { sugra }}\left[M_{5}\right]=\frac{\pi^{2}}{54 G_{5}} \frac{\left(b_{1}+b_{2}\right)^{3}}{b_{1} b_{2}}
$$

New supergravity solution

We took a first step :

- considered $S^{1} \times S_{\text {squashed }}^{3}$

more symmetry $U(1) x U(1) x U(1) \rightarrow S U(2) x U(1) x U(1)$
- studied 5d supergravity susy equations with these boundary conditions

New supergravity solution

found a new one-parameter family of solutions

- regular
- no horizon

- family parameterized by squashing of $S^{\mathbf{3}}$

- $S_{\text {gravity }} \sim \frac{r_{S^{1}}}{r_{S_{\text {Hopf }}^{1}}}+\ldots \longleftarrow$ counterterms
agrees with field theory formula with $b_{1}=b_{2}$
need better understanding of supersymmetric holographic renormalization

Conclusions

- I presented an explicit computation of the partition function of $\mathrm{N}=1$ gauge theories on a Hopf surface $\mathcal{H}_{p, q}$, allowing for a general metric

$$
\text { Find: } \quad Z\left[\mathcal{H}_{p, q}\right]=\mathrm{e}^{-\mathcal{F}(p, q)} \mathcal{I}(p, q)
$$

- First holographic check by constructing a new supergravity solution
- $\mathcal{F}(p, q) \quad$ involves supersymmetric Casimir energy

It would be interesting :

- to explore more its meaning in field theory
- to retrieve it in full generality in a holographic setup
\rightarrow refine our understanding of gauge/gravity correspondence
... thank you for your attention

Extra slides

localization

fields Φ, (Euclidean) action $S[\Phi]$

$$
Z=\int \mathcal{D} \Phi e^{-S[\Phi]}=?
$$

supersymmetry Q such that $Q S=0$
introduce a fermionic term $V[\Phi]: \quad Q(Q V)=0$
deformed partition function $\quad Z(t)=\int \mathcal{D} \Phi e^{-S[\Phi]-t Q V[\Phi]}$
independent of t :

$$
\begin{aligned}
& \frac{d}{d t} Z(t)=- \int \mathcal{D} \Phi Q V e^{-S-t Q V}=-\int \mathcal{D} \Phi Q\left(V e^{-S-t Q V}\right)=0 \\
& \rightarrow Z(t=0)=Z(t \rightarrow \infty)
\end{aligned}
$$

if $\left.Q \boldsymbol{V}\right|_{\text {bosonic }} \geq \mathbf{0}$, then dominant contribution at large t is from $\left.Q V\right|_{\text {bos }}=\mathbf{0}$
$t \rightarrow \infty$: saddle point approximation becomes exact

localization

typical choice : $\quad V=\int d^{4} x \sqrt{g}\left[(Q \psi)^{\dagger} \psi+\psi^{\dagger}\left(Q \psi^{\dagger}\right)^{\dagger}\right] \quad \psi$ fermions

$$
\left.Q V\right|_{\text {bosonic }}=\int d^{4} x \sqrt{g}\left(|Q \psi|^{2}+\left|Q \psi^{\dagger}\right|^{2}\right) \geq 0
$$

saddle points \Leftrightarrow supersymmetric configurations $Q \psi=0 \quad Q \psi^{\dagger}=0 \quad \star$

$$
\begin{array}{lr}
\Phi=\Phi_{0}+\frac{1}{\sqrt{t}} \delta \Phi+\% . & \psi=\psi^{\dagger}=0 \\
\text { solving } \star \begin{array}{l}
\text { fluctuation }
\end{array} \\
& Z=\int \mathcal{D} \Phi_{0} e^{-S\left[\Phi_{0}\right]} \frac{1}{\operatorname{Sdet}[\text { kinetic operator for } \delta \Phi]}
\end{array}
$$

often $\Phi_{0}=$ const, so $\mathcal{D} \Phi_{0} \rightarrow d \Phi_{0}$
\rightarrow infinite-dimensional integral localizes to a finite one

minimal $d=5$ gauged supergravity

- the simplest $d=5$ sugra with AdS vacuum
\bullet field content $\quad g_{\mu \nu}, A_{\mu}, \psi_{\mu}$
- bosonic lagrangian:

$$
\mathcal{L}_{\text {sugra }}=\left(R+12-\frac{1}{3} F^{2}\right) * 1-\frac{8}{27} A \wedge F \wedge F
$$

\bullet susy condition $\delta \psi_{\mu}=0$:

$$
\begin{aligned}
& {\left[\nabla_{\mu}^{A}-\frac{1}{2} \gamma_{\mu}-\frac{i}{12}\left(\gamma_{\mu}^{\nu \rho}-4 \delta_{\mu}^{\nu} \gamma^{\rho}\right) \boldsymbol{F}_{\nu \rho}\right] \epsilon=0} \\
& \nabla^{A}:=\nabla-i A
\end{aligned}
$$

- any solution lifts to type IIB supergravity on a Sasaki-Einstein ${ }_{5}$

