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Setting

exact results in QFT are highly desirable but rare

¢ supersymmetry has proven a very successful theoretical tool

e.g. non-renormalization theorems, moduli space of vacua, ...

¢ |n the last few years: many new exact results

based on the technique of supersymmetric localization

¢ In this talk, we will see a particularly interesting example



Ovutline

@ supersymmetry in curved space and localization

@  partition function on Hopf surfaces

®  comparison with the index and Casimir energy

@  gravity duals

Based on 1402.2278 with D. Martelli

1405.5144 with B. Assel and D. Martelli



QFT path integral

/ DP O 5% - gives a non-perturbative definition of a QFT

® hard to compute: A infinite-dimensional D® (x)
/\ integrand oscilates  e“S!%!

A both IR and UV divergent

® it becomes more tractable :

< in Euclidean signature  e*°®l — ¢—SI®]

2 on compact manifolds : finite radius acts as an IR regulator

® dramatic simplification in supersymmetric QFT

¢ improved UV behavior

¢ localization : infinite-dimensional path integral
reduces to a finite-dmensional one



Localization

® \Vith some assumptions,

the supersymmetric path integral can be deformed so that

¢ itis dominated by simple supersymmetric configurations ®

¢ saddle point approximation becomes exact
=?» huge simplification !

é )

_S[®o] 1
Z = | D®, e 5o —
Sdet kinetic operator for  P|

often 9 = const, so DPy — dPg
- J

® In the last years the exact partition function has been
computed for many theories on various geometries, in
different dimensions.

Many applications.




Partition function with sources

Need to place our field theory on a Riemannian manifold by preserving susy

® Couple it to background fields :

S[®; A, 90] = Sol®]+ | (Aps" + 9" T +...)

\ ! \

background  background conserved  energy-momentum
gauge field  curved metric | current tensor |
| . |
supermultiplet

® Partition function :

Z[Aluguu] = /DfI)e_S[(I)5Amguu]

® can compute a specific set of correlators :

log Z[A] = (5*) log Z[g] = (Tuw)



Supersymmetric backgrounds

® \Which curved backgrounds preserve supersymmetry?

For a four-dimensional N=1 theory with an R-symmetry

Klare, Tomasiello, Zaffaroni; Dumitrescu, Festuccia, Seiberg ‘12

( )
¢ one supercharge < complex manifold with Hermitian metric

¢ two supercharges (of opposite R-charge) =» complex isometry K

other background fields, including A, coupling to R-current,
fixed by supersymmetry

Focus on second case : localization more powerful
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® compatible metric still very general :

ds® = Q*(p)d7? + f%(p)dp® + mr;(p)derdes I,J=1,2
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Localization on Hopf surfaces

® Consider partition function of an Euclidean theory on H, 4 , with
¢ vector multiplet for general gauge group

¢ (charged) chiral multiplets, with superpotential

® Adding a suitable susy-exact deformation term,
dynamical gauge field A = const

path integral localizes {
all other fields vanishing

® Integral over all field fluctuations around this localization locus

Sdet kinetic operator for d P|

Compute it building on 3d results Alday, Martelli, Richmond, Sparks

¢ susy = many cancellations between eigenvalues

# left with oo product over 3 integers (from Fourier modes on U(1)3 )

¢ regularized using triple Gamma and zeta functions



Localization on Hopf surfaces

Result :
ZIH. 1 = e-Fwa PIP)C(A30)"C 0 (2%,p) 0 ( Le("(pa)*, P,
[Hp.al le ” IW)| TL Zﬂzzae]‘_£+ (=%:P) I;ngJ ’ (pq) ’ i
prefactor supersymmetric index Z(p, q)

Witten index tr(—1)7, refined by fugacites p, g

counts certain BPS states

® General arguments show that Z is a holomorphic function of the complex
structure parameters and does not depend on Hermitian metric

Closset, Dumitrescu, Festuccia, KomargodsKi

® Z[Hp,q] conjectured to compute Z(p,q)

-» we have explicitly checked this. Found an exira contribution 7 (p, q)



Localization on Hopf surfaces

Z[Hp,q = e_j:(p’Q)I(PaQ)

/o N

r N
47 by + bo 47 (by + bg)®
F = — | b b — | 3c— 2

(P, q) 3 ( 1 1+ 02 bibs ) (a —c) A 27 biby (3c a)
\ J
p = e—27rb1 : q = e—27rb2

3 . 1 3 o
a = — (3 trR° — trR), cC = — (9 trR° — 5trR) R : fermionic
32 . b 32 R-charge

SCFT central charges

appears to be physical (non-removable by supersymmetric local 4d counterterm)

imit of large S = vields a supersymmetric Casimir energy

related to anomalies?

* & o o

dominates Z at large N =» prediction for dual supergravity solutions



Gravity duals

AdS/CFT master equation (at large N)

e—Sgravity[M5] — Z[M4]

My = OMs QFT background fields <= gravity boundary conditions
g J

=» holographic evaluation of the QFT partition function

=» can make highly non-trivial tests of AdS/CFT
and gain useful insight for field theory computations

® When OMs = 'H,. 4, our prediction from localization (at large N):

( )

7T2 (bl —|— b2)3
S5dsugra[M5] — 54G5 blbz




New supergravity solution

We took a first step : D.C., Martelli "14

O s

® considered S' x S°

squashed 3
SZ r Ssquashed

more symmetry U(1)xU(1)xU(1) = SU(2)xU(1)xU(1)

® studied 5d supergravity susy equations with these boundary conditions

22? '
277 ¢ ¢

> FS;

squashed

—~

IR UV

>



New supergravity solution
D.C., Martelli ‘14

found a new one-parameter family of solutions

boundary
1 .
¢ regular AdS-like 1
€ no horizon " S?quashed
¢ family parameterized by )
sguashing of §° IR uv

rs1
S _ «— counterterms

® Sgravity ~
rgi
Hopf

agrees with field theory formula with by = b»

A need better understanding of supersymmetric holographic renormalization



Conclusions

® | presented an explicit computation of the partition function of N=1 gauge

theories on a Hopf surface H allowing for a general metric

p.q"

Find.. Z[Hp,q = e_}_(p’q)I(P ,q)

® First holographic check by constructing a new supergravity solution

® 7(p,q) involves supersymmetric Casimir energy

It would be interesting
¢ to explore more its meaning in field theory

¢ toretrieve it in full generality in a holographic setup

=?» refine our understanding of gauge/gravity correspondence



... Lhank you for your altlerntion



Extra slides



localization

fields & , (Euclidean) action S|[®P]

Z = /che—s[‘l’] — ?

supersymmetry ) suchthat QS = 0

introduce a fermionic term V[®] @ Q(QV) = 0

\

deformed partition function  Z(t) = / DP e SP]-tQV[P]
parameter

independent of ¢ :

%Z(t) — —/ch QV e 571V — —/D(I)Q(Ve_s_tQV) = 0

2 Z0=0) = Z{t — o)

if QV |bosonic = 0, then dominant contribution at large ¢ is from QV |p0s = 0

t — oo : saddle point approximation becomes exact



localization

typical choice : V = /d4a3\/§ [(Q¢)T¢+¢T(Q¢T)ﬂ ¥ fermions

QV|bosonic = /d4a:\/§(|cz¢|2+|@¢’f|2) > 0

saddle points € supersymmetric configurations Qv = 0 Q¢ = 0 *

1 Y = ¢T =0
= by + 7 0@ + 4~
solving % fluctuation
r " N
Z = /cho e~ 5ol —
Sdet kinetic operator for § P]
- J

often ®¢3 = const, so D®y — dPg

-» infinite-dimensional integral localizes to a finite one



minimal d=5 gauged supergravity

¢ the simplest d=5 sugra with AdS vacuum

¢ field content guv, Au, VY,

¢ bosonic lagrangian:

Lowgra = (R+12—F?)x1— 2 AAFAF

# susy condition §¢, = 0 :

¢ any solution lifts to type IIB supergravity on a Sasaki-Einsteins



