

BSM Primary Effects

Rick Sandeepan Gupta (IFAE, Barcelona)

in collaboration with A. Pomarol and F. Riva (arxiv: 1405.0181)

& J. Elias-Miro, C. Grojean, D Marzocca (arxiv: 1312.2928)

I. BSM Primary effects

with A. Pomarol and F. Riva (arxiv: 1405.0181)

II. RG-induced constraints on BSM Primaries

with J. Elias-Miro, C. Grojean, D Marzocca (arxiv: 1312.2928)

 The absence at the LHC of new states beyond the SM (BSM) suggests that the new-physics scale must be heavier than the electroweak (EW) scale and we can write:

$$\mathcal{L}_{\text{eff}} = \frac{\Lambda^4}{g_*^2} \mathcal{L}\left(\frac{D_{\mu}}{\Lambda} , \frac{g_*H}{\Lambda} , \frac{g_*f_{L,R}}{\Lambda^{3/2}} , \frac{gF_{\mu\nu}}{\Lambda^2}\right) \simeq \mathcal{L}_4 + \mathcal{L}_6 + \cdots$$

No of measurements >No of couplings/parameters at a fixed order => Predictions relating different measurements. Predictions from L₄ (the SM lagrangian) well known and tested:

 The absence at the LHC of new states beyond the SM (BSM) suggests that the new-physics scale must be heavier than the electroweak (EW) scale and we can write:

$$\mathcal{L}_{\text{eff}} = \frac{\Lambda^4}{g_*^2} \mathcal{L}\left(\frac{D_{\mu}}{\Lambda} , \frac{g_*H}{\Lambda} , \frac{g_*f_{L,R}}{\Lambda^{3/2}} , \frac{gF_{\mu\nu}}{\Lambda^2}\right) \simeq \mathcal{L}_4 + \mathcal{L}_6 + \cdots$$

 No of measurements >No of couplings/parameters at a fixed order => Predictions relating different measurements. Predictions from L₄ (the SM lagrangian) well known and tested:

$$m_W = m_Z c_{\theta_W}$$
 $Y_f = \sqrt{2} m_f / v$ etc

+

Main Goal: What are the predictions from \mathcal{L}_6 ? For eg. which (non SM) Higgs interactions are already constrained by EWPT and TGC data and which are still independent?

- 18 quantities best constrain the important deformations in \mathcal{L}_6
- We call these BSM Primaries. (see also Pomarol & Riva, 2013, Elias-Miro, Espinosa, Masso & Pomarol, 2013)

Higgs (8) Physics	$\begin{array}{c} h \rightarrow \gamma \gamma, \ h \rightarrow \gamma Z, \ h \rightarrow gg \\ h \rightarrow VV, h \rightarrow ff, pp \rightarrow h^* \rightarrow hh \end{array}$	$hA_{\mu\nu}A^{\mu\nu}, hA_{\mu\nu}Z^{\mu\nu} hG_{\mu\nu}G^{\mu\nu}$ $hW^{+\mu}W^{-}_{\mu}, h\bar{f}f, h^{3}$
EWPT (7) Data	$Z \rightarrow ff$ (2 can be traded for S,T)	$Z_{\mu}f_{L,R}^{-}\gamma^{\mu}f_{L,R}$
TGC (3) Data	$ee \rightarrow WW$	$g_{1}^{Z}c_{\theta_{W}}Z^{\mu}\left(W^{+\nu}\hat{W}_{\mu\nu}^{-}-W^{-\nu}\hat{W}_{\mu\nu}^{+}\right) \\ \kappa_{\gamma}s_{\theta_{W}}\hat{A}^{\mu\nu}W_{\mu}^{+}W_{\nu}^{-} \\ \lambda_{\gamma}s_{\theta_{W}}\hat{A}^{\mu\nu}\hat{W}_{\mu}^{-\rho}\hat{W}_{\rho\nu}^{+}$

(18 is not considering four fermions and MFV suppressed and CPV deformations)

+ BSM Primaries

- 18 quantities best constrain the important deformations in \mathcal{L}_6
- We call these BSM Primaries. (see also Pomarol & Riva, 2013, Elias-Miro, Espinosa, Masso & Pomarol, 2013)

(18 is not considering four fermions and MFV suppressed and CPV deformations)

+ Correlated deformations

 $hA_{\mu\nu}A^{\mu\nu}, hA_{\mu\nu}Z^{\mu\nu} hG_{\mu\nu}G^{\mu\nu}$ $hW^{+\mu}W^{-}_{\mu}, h\bar{f}f, h^{3}$

 $Z_{\mu}\bar{f}_{L,R}\gamma^{\mu}f_{L,R}$

$$g_{1}^{Z} c_{\theta_{W}} Z^{\mu} \left(W^{+\nu} \hat{W}_{\mu\nu}^{-} - W^{-\nu} \hat{W}_{\mu\nu}^{+} \right) \\ \kappa_{\gamma} s_{\theta_{W}} \hat{A}^{\mu\nu} W_{\mu}^{+} W_{\nu}^{-} \\ \lambda_{\gamma} s_{\theta_{W}} \hat{A}^{\mu\nu} \hat{W}_{\mu}^{-\rho} \hat{W}_{\rho\nu}^{+}$$

Primary Deformations

Primary Deformations Correlated Deformations

```
+ BSM Primary directions
```

- Cannot generate only BSM primary deformation and no other deformation :

- In other words just the BSM primary itself is not a dim-6 operator.
 There will be other terms from the operator.
- BSM primary directions must be mutually orthogonal. For eg. the above terms must not contribute to other 17 primaries like $h \rightarrow \gamma \gamma$.

- We will take a bottom up approach to construct the dim-6 Lagrangian by building up these BSM Primary directions (operators in disguise) corresponding to each BSM Primary.
- The dim-6 Lagrangian would be the sum of all these Primary directions.

 Zff coupling deformations more general (beyond universal theories) and physical than S and T parameters.

3 dim-6 structures for 4 possible W/Z-couplings to leptons Wcouplings related to Z-couplings at dim-6 level

 Zff coupling deformations more general (beyond universal theories) and physical than S and T parameters.

3 dim-6 structures for 4 possible W/Z-couplings to leptons Wcouplings related to Z-couplings at dim-6 level

+ Deviation from gauge coupling universality

W/Z couplings can be *individually* altered by operators having product of currents:

$$\Delta \mathcal{L}_{ee}^{V} = \delta g_{eR}^{Z} \frac{\hat{h}^{2}}{v^{2}} Z^{\mu} \bar{e}_{R} \gamma_{\mu} e_{R}$$
(15) Leptons
+ $\delta g_{eL}^{Z} \frac{\hat{h}^{2}}{v^{2}} \left[Z^{\mu} \bar{e}_{L} \gamma_{\mu} e_{L} + \frac{c_{\theta W}}{\sqrt{2}} (W^{+\mu} \bar{\nu_{L}} \gamma_{\mu} e_{L} + \text{h.c.}) \right]$ Correlated
Primary + $\delta g_{\nu L}^{Z} \frac{\hat{h}^{2}}{v^{2}} \left[Z^{\mu} \bar{\nu}_{L} \gamma_{\mu} \nu_{L} + \frac{c_{\theta W}}{\sqrt{2}} (W^{+\mu} \bar{\nu_{L}} \gamma_{\mu} e_{L} + \text{h.c.}) \right]$ Correlated
interaction

$$\begin{split} \Delta \mathcal{L}_{qq}^{V} &= \delta g_{\boldsymbol{u}\boldsymbol{R}}^{\boldsymbol{Z}} \frac{\hat{h}^{2}}{v^{2}} Z^{\mu} \bar{u}_{R} \gamma_{\mu} u_{R} + \delta g_{\boldsymbol{d}\boldsymbol{R}}^{\boldsymbol{Z}} \frac{\hat{h}^{2}}{v^{2}} Z^{\mu} \bar{d}_{R} \gamma_{\mu} d_{R} \qquad \text{Quarks} \\ &+ \delta g_{\boldsymbol{d}\boldsymbol{L}}^{\boldsymbol{Z}} \frac{\hat{h}^{2}}{v^{2}} \left[Z^{\mu} \bar{d}_{L} \gamma_{\mu} d_{L} - \frac{c_{\theta W}}{\sqrt{2}} (W^{+\mu} \bar{u}_{L} \gamma_{\mu} d_{L} + \text{h.c.}) \right] \\ &+ \delta g_{\boldsymbol{u}\boldsymbol{L}}^{\boldsymbol{Z}} \frac{\hat{h}^{2}}{v^{2}} \left[Z^{\mu} \bar{u}_{L} \gamma_{\mu} u_{L} + \frac{c_{\theta W}}{\sqrt{2}} (W^{+\mu} \bar{u}_{L} \gamma_{\mu} d_{L} + \text{h.c.}) \right] \end{split}$$

+ *S* and *T*?

• *S* and *T* are linear combinations of above parameters:

$$\begin{split} \Delta \mathcal{L}_{\hat{S}} &= \hat{S} \, \frac{g s_{\theta_W}^2}{c_{\theta_W}^3} \frac{\hat{h}^2}{v^2} \, Z_\mu \left[J_Z^\mu - c_{\theta_W}^2 J_{em}^\mu + \frac{g}{c_{\theta_W}} \frac{\hat{h}^2}{4} Z^\mu \right] \\ \Delta \mathcal{L}_T &= -\frac{\hat{T}}{2} \frac{\hat{h}^4}{v^4} m_Z^2 Z^\mu Z_\mu \, . \end{split}$$

• In our parametrization we have eliminated all corrections to propagators (using EoM) so there is a one to one correspondence between our δg_f^Z and the Z partial widths.

Deviation from gauge coupling universality

• A shift $s_{\theta_W}^2 \rightarrow s_{\theta_W}^2 (1 + 2\delta g_1^Z c_{\theta_W}^2 \hat{h}^2 / v^2)$ keeping *e* constant in the fermion –Higgs sector of SM lagrangian gives:

$$\begin{split} \Delta \mathcal{L}_{g_1^Z} &= \delta g_1^Z c_{\theta_W}^2 \frac{\hat{h}^2}{v^2} \bigg[\frac{e^2 \hat{h}^2}{4c_{\theta_W}^4} Z^\mu Z_\mu \\ &- g(W_\mu^- J_\mu^\mu + \text{h.c.}) - \frac{g c_{2\theta_W}}{c_{\theta_W}^3} Z_\mu J_Z^\mu - 2e t_{\theta_W} Z_\mu J_{em}^\mu \bigg] \end{split}$$

- For $\hat{h} = v$ this shift is just a redefinition of $s_{\theta_W}^2$.
- Opposite shift $s_{\theta_W}^2 \rightarrow s_{\theta_W}^2 (1 2\delta g_1^Z c_{\theta_W}^2)$ in only pure gauge sector gives TGC and QGCs:

$$ig \delta g_1^Z c_{\theta_W} Z^\mu \left(W^{-\nu} W^+_{\mu\nu} - W^{+\nu} W^-_{\mu\nu} \right) + QGCs$$

+ Deviation from gauge coupling universality

• A shift $s_{\theta_W}^2 \rightarrow s_{\theta_W}^2 (1 + 2\delta g_1^Z c_{\theta_W}^2 \hat{h}^2 / v^2)$ keeping *e* constant in the fermion –Higgs sector of SM lagrangian gives:

$$\Delta \mathcal{L}_{g_1^Z} = \delta g_1^Z c_{\theta_W}^2 \frac{\hat{h}^2}{v^2} \left[\frac{e^2 \hat{h}^2}{4c_{\theta_W}^4} Z^{\mu} Z^{\mu} -g(W_{\mu}^- J^{\mu}_{\mu} + \text{h.c.}) - \frac{gc_{2\theta_W}}{c_{\theta_W}^3} Z_{\mu} J_Z^{\mu} - 2et_{\theta_W} Z_{\mu} J_{em}^{\mu} \right]$$

= For $\hat{h} = v$ this shift is just a redefinition of $s_{\theta_W}^2$.
= Opposite shift $s_{\theta_W}^2 \rightarrow s_{\theta_W}^2 (1 - 2\delta g_1^Z c_{\theta_W}^2)$ in only pure gauge sector gives TGC and QGCs:
 $\delta g_1^Z \rightarrow \frac{\delta g^{ZWW}}{g_{SM}^{ZWW}} = \frac{\delta g^{WWWW}}{2c_{\theta_W}^2 g_{SM}^{WWWW}} = \frac{\delta g^{ZZWW}}{2g_{SM}^{ZZWW}} = \frac{\delta g^{\gamma ZWW}}{g_{SM}^{\gamma ZWW}}$

+ Other TGC primary directions

• Notice that the deformation below contains the $\delta \kappa_{\gamma}$ TGC: $\hat{h}^2 \eta^a W^a_{\mu\nu} B^{\mu\nu} =$ $\hat{h}^2 \left[\hat{W}^3_{\mu\nu} B^{\mu\nu} + 2igc_{\theta_W} W^-_{\mu} W^+_{\nu} (A^{\mu\nu} - t_{\theta_W} Z^{\mu\nu}) \right]$

$$-\frac{g'\hat{h}^2}{2gv^2}W^3_{\mu\nu}B^{\mu\nu} = \frac{\Delta\mathcal{L}_{\hat{S}}}{\hat{S}} - \frac{\Delta\mathcal{L}_{\gamma\gamma}^h}{4\kappa_{\gamma\gamma}} - \frac{c_{2\theta_W}\Delta\mathcal{L}_{Z\gamma}^h}{4\kappa_{Z\gamma}} + \frac{\Delta\mathcal{L}_{\kappa_{\gamma}}}{\delta\kappa_{\gamma}}$$

• We find a combination that does not contribute to other primaries but only to $\delta \kappa_{\gamma}$:

$$\begin{split} \Delta \mathcal{L}_{\kappa_{\gamma}} &= \frac{\delta \kappa_{\gamma}}{v^{2}} \Big[i e \hat{h}^{2} (A_{\mu\nu} - t_{\theta_{W}} Z_{\mu\nu}) W^{+\mu} W^{-\nu} \\ &+ Z_{\nu} \partial_{\mu} \hat{h}^{2} (t_{\theta_{W}} A^{\mu\nu} - t_{\theta_{W}}^{2} Z^{\mu\nu}) + \frac{(\hat{h}^{2} - v^{2})}{2} \\ &\times \Big(t_{\theta_{W}} Z_{\mu\nu} A^{\mu\nu} + \frac{c_{2\theta_{W}}}{2c_{\theta_{W}}^{2}} Z_{\mu\nu} Z^{\mu\nu} + W^{+}_{\mu\nu} W^{-\mu\nu} \Big) \Big] \end{split}$$

+ Other TGC primary directions

• Finally we also have:

$$\Delta \mathcal{L}_{\lambda_{\gamma}} = \frac{i\lambda_{\gamma}}{m_W^2} \left[(eA^{\mu\nu} + gc_{\theta_W} Z^{\mu\nu}) W_{\nu}^{-\rho} W_{\rho\mu}^+ \right]$$

+ Relation to Higgs physics

All Primary deformations considered so far have been of the form

+ Relation to Higgs physics

All Primary deformations considered so far have been of the form

Modifications in $h \rightarrow Zff$ related to $Z \rightarrow ff$

+ Relation to Higgs physics

All Primary deformations considered so far have been of the form

Modifications in $h \rightarrow Zff$ related to $Z \rightarrow ff$

Contributions to Higgs physics already constrained by TGC, EWPT!

Any unconstrained BSM effect in Higgs physics?

• Yes! Deformations of the form:

+ Higgs Primary directions

+ Remaining deformations:

 Other deformations include four-fermion deformations CP- violating deformations and:

$$\begin{split} \Delta \mathcal{L}_{R}^{W} &= \delta g_{R}^{W} \frac{\hbar^{2}}{v^{2}} W_{\mu}^{+} \bar{u}_{R} \gamma^{\mu} d_{R} + \text{h.c.}, \\ \Delta \mathcal{L}_{\text{dipole}}^{V} &= \frac{Y_{q} \hat{h}}{m_{W}^{2}} \Big[\delta \kappa_{q}^{G} \bar{q}_{L} T^{A} \sigma^{\mu\nu} q_{R} G_{\mu\nu}^{A} \\ &+ \delta \kappa_{q}^{A} (T_{3} \bar{q}_{L} \sigma^{\mu\nu} q_{R} A_{\mu\nu} + \frac{s_{\theta W}}{\sqrt{2}} \bar{u}_{L} \sigma^{\mu\nu} d_{R} W_{\mu\nu}^{+}) \\ &+ \delta \kappa_{q}^{Z} (T_{3} \bar{q}_{L} \sigma^{\mu\nu} q_{R} Z_{\mu\nu} + \frac{c_{\theta W}}{\sqrt{2}} \bar{u}_{L} \sigma^{\mu\nu} d_{R} W_{\mu\nu}^{+}) + \text{h.c.} \Big] \\ \Delta \mathcal{L}_{3G} &= \kappa_{3G} \epsilon_{ABC} G_{\mu}^{A\nu} G_{\nu\rho}^{B} G^{C \rho\mu} \end{split}$$

• 18 quantities best constrain all deformations in \mathcal{L}_6 .

• We call these **BSM** Primaries.

Higgs (8) Physics	$\begin{array}{c} h \rightarrow \gamma \gamma, \ h \rightarrow \gamma Z, \ h \rightarrow gg \\ h \rightarrow VV, h \rightarrow ff, pp \rightarrow h^* \rightarrow hh \end{array}$	$hA_{\mu\nu}A^{\mu\nu}, hA_{\mu\nu}Z^{\mu\nu} hG_{\mu\nu}G^{\mu\nu}$ $hW^{+\mu}W^{-}_{\mu}, h\bar{f}f, h^{3}$
EWPT (7) Data	$Z \rightarrow ff$ (2 can be traded for S,T)	$Z_{\mu}f_{L,R}^{-}\gamma^{\mu}f_{L,R}$
TGC (3) Data	$ee \rightarrow WW$	$g_1^Z c_{\theta_W} Z^{\mu} \left(W^{+\nu} \hat{W}^{\mu\nu} - W^{-\nu} \hat{W}^+_{\mu\nu} \right) \\ \kappa_{\gamma} s_{\theta_W} \hat{A}^{\mu\nu} W^+_{\mu} W^{\nu} \\ \lambda_{\gamma} s_{\theta_W} \hat{A}^{\mu\nu} \hat{W}^{-\rho}_{\mu} \hat{W}^+_{\rho\nu}$

(18 is not considering four fermions and MFV suppressed and CPV deformations)

Higgs Primaries (8) $\Delta \mathcal{L}_{GG}^{h} = \kappa_{GG} \left(\frac{h}{v} + \frac{h^{2}}{2v^{2}} \right) G_{\mu\nu}^{A} G^{A\mu\nu}$ $\Delta \mathcal{L}_{ff}^{h} = \delta g_{ff}^{h} \left(h \bar{f}_{L} f_{R} + h.c. \right) \left(1 + \frac{3h}{2v} + \frac{h^{2}}{2v^{2}} \right)$ $\Delta \mathcal{L}_{3h} = \delta g_{3h} h^{3} \left(1 + \frac{3h}{2v} + \frac{3h^{2}}{4v^{2}} + \frac{h^{3}}{8v^{3}} \right) ,$

$$\Delta \mathcal{L}_{VV}^{h} = \delta g_{VV}^{h} \left[h \left(W^{+\mu} W_{\mu}^{-} + \frac{Z^{\mu} Z_{\mu}}{2c_{\theta_{W}}^{2}} \right) \left(1 + \frac{2h}{v} + \frac{4h^{2}}{3v^{2}} + \frac{h^{3}}{3v^{3}} \right) + \frac{m_{h}^{2}}{12m_{W}^{2}} \left(\frac{h^{4}}{v} + \frac{3h^{5}}{4v^{2}} + \frac{h^{6}}{8v^{3}} \right) + \frac{m_{f}}{4m_{W}^{2}} \left(\frac{h^{2}}{v} + \frac{h^{3}}{3v^{2}} \right) \left(\bar{f}_{L} f_{R} + \text{h.c.} \right) \right],$$

$$\Delta \mathcal{L}_{\gamma\gamma}^{h} = 4\kappa_{\gamma\gamma}s_{\theta_{W}}^{2}\left(\frac{n}{v} + \frac{n^{2}}{2v^{2}}\right)\left[A_{\mu\nu}A^{\mu\nu} + Z_{\mu\nu}Z^{\mu\nu} + 2W_{\mu\nu}^{+}W^{-\mu\nu}\right],$$

$$\Delta \mathcal{L}_{Z\gamma}^{h} = 4\kappa_{Z\gamma}\left(\frac{h}{v} + \frac{h^{2}}{2v^{2}}\right)\left[t_{\theta_{W}}A_{\mu\nu}Z^{\mu\nu} + \frac{c_{2\theta_{W}}}{2c_{\theta_{W}}^{2}}Z_{\mu\nu}Z^{\mu\nu} + W_{\mu\nu}^{+}W^{-\mu\nu}\right].$$

EWPT Primaries(7)

$$\begin{split} \Delta \mathcal{L}_{ee}^{V} &= \delta \boldsymbol{g}_{eR}^{Z} \frac{\hat{h}^{2}}{v^{2}} Z^{\mu} \bar{e}_{R} \gamma_{\mu} e_{R} \\ &+ \delta \boldsymbol{g}_{eL}^{Z} \frac{\hat{h}^{2}}{v^{2}} \left[Z^{\mu} \bar{e}_{L} \gamma_{\mu} e_{L} - \frac{c_{\theta W}}{\sqrt{2}} (W^{+\mu} \bar{\nu_{L}} \gamma_{\mu} e_{L} + \text{h.c.}) \right. \\ &+ \delta \boldsymbol{g}_{\boldsymbol{\nu L}}^{Z} \frac{\hat{h}^{2}}{v^{2}} \left[Z^{\mu} \bar{\nu}_{L} \gamma_{\mu} \nu_{L} + \frac{c_{\theta W}}{\sqrt{2}} (W^{+\mu} \bar{\nu_{L}} \gamma_{\mu} e_{L} + \text{h.c.}) \right] \end{split}$$

$$\begin{split} \Delta \mathcal{L}_{qq}^{V} &= \delta g_{\boldsymbol{u}\boldsymbol{R}}^{\boldsymbol{Z}} \frac{\hat{h}^{2}}{v^{2}} Z^{\mu} \bar{u}_{R} \gamma_{\mu} u_{R} + \delta g_{\boldsymbol{d}\boldsymbol{R}}^{\boldsymbol{Z}} \frac{\hat{h}^{2}}{v^{2}} Z^{\mu} \bar{d}_{R} \gamma_{\mu} d_{R} \\ &+ \delta g_{\boldsymbol{d}\boldsymbol{L}}^{\boldsymbol{Z}} \frac{\hat{h}^{2}}{v^{2}} \left[Z^{\mu} \bar{d}_{L} \gamma_{\mu} d_{L} - \frac{c_{\theta_{W}}}{\sqrt{2}} (W^{+\mu} \bar{u}_{L} \gamma_{\mu} d_{L} + \text{h.c.}) \right] \\ &+ \delta g_{\boldsymbol{u}\boldsymbol{L}}^{\boldsymbol{Z}} \frac{\hat{h}^{2}}{v^{2}} \left[Z^{\mu} \bar{u}_{L} \gamma_{\mu} u_{L} + \frac{c_{\theta_{W}}}{\sqrt{2}} (W^{+\mu} \bar{u}_{L} \gamma_{\mu} d_{L} + \text{h.c.}) \right] \end{split}$$

$$\begin{aligned} \mathbf{TGC \ Primaries} \ (\mathbf{3}) \\ \Delta \mathcal{L}_{g_1^Z} &= \delta g_1^Z c_{\theta_W}^2 \frac{\hat{h}^2}{v^2} \bigg[\frac{e^2 \hat{h}^2}{4c_{\theta_W}^4} Z^{\mu} Z_{\mu} \\ -g(W_{\mu}^- J_{-}^{\mu} + \text{h.c.}) - \frac{g c_{2\theta_W}}{c_{\theta_W}^3} Z_{\mu} J_Z^{\mu} - 2e t_{\theta_W} Z_{\mu} J_{em}^{\mu} \bigg] \\ \Delta \mathcal{L}_{\kappa_{\gamma}} &= \frac{\delta \kappa_{\gamma}}{v^2} \bigg[i e \hat{h}^2 (A_{\mu\nu} - t_{\theta_W} Z_{\mu\nu}) W^{+\mu} W^{-\nu} \\ &+ Z_{\nu} \partial_{\mu} \hat{h}^2 (t_{\theta_W} A^{\mu\nu} - t_{\theta_W}^2 Z^{\mu\nu}) + \frac{(\hat{h}^2 - v^2)}{2} \\ &\times \Big(t_{\theta_W} Z_{\mu\nu} A^{\mu\nu} + \frac{c_{2\theta_W}}{2 z^2} Z_{\mu\nu} Z^{\mu\nu} + W_{\mu\nu}^+ W^{-\mu\nu} \Big) \bigg] \\ \Delta \mathcal{L}_{\lambda_{\gamma}} &= \frac{i \lambda_{\gamma}}{m_W^2} \big[(e A^{\mu\nu} + g c_{\theta_W} Z^{\mu\nu}) W_{\nu}^{-\rho} W_{\rho\mu}^+ \big] \end{aligned}$$

+ Dimension 6 lagrangian

So we have finally constructed the dim-6 lagrangian in a bottom up way (not starting from operators but from measurable deformations):

$$\begin{split} \Delta \mathscr{L}_{\text{BSM}} &= \Delta \mathscr{L}_{\gamma\gamma}^{h} + \Delta \mathscr{L}_{Z\gamma}^{h} + \Delta \mathscr{L}_{GG}^{h} + \Delta \mathscr{L}_{ff}^{h} + \Delta \mathscr{L}_{3h} + \Delta \mathscr{L}_{VV}^{h} + \Delta \mathscr{L}_{ee}^{V} + \Delta \mathscr{L}_{qq}^{V} \\ &+ \Delta \mathscr{L}_{g_{1}^{Z}}^{Z} + \Delta \mathscr{L}_{\kappa_{\gamma}} + \Delta \mathscr{L}_{\lambda_{\gamma}} + \Delta \mathscr{L}_{3G} + \Delta \mathscr{L}_{4f} + \Delta \mathscr{L}_{MFV}^{V} + \Delta \mathscr{L}_{CPV} \,. \end{split}$$

All physical processes, eg. h->Vff, pp->Vh, VV->h etc can be computed as a function of the BSM primary parameters using the above Lagrangian.

+ Dimension 6 lagrangian

So we have finally constructed the dim-6 lagrangian in a bottom up way (not starting from operators but from measurable deformations):

All physical processes, eg. h->Vff, pp->Vh, VV->h etc can be computed as a function of the BSM primary parameters using the above Lagrangian.

+ Dimension 6 lagrangian

So we have finally constructed the dim-6 lagrangian in a bottom up way (not starting from operators but from measurable deformations):

$$\begin{split} \Delta \mathscr{L}_{\text{BSM}} &= \Delta \mathscr{L}_{\gamma\gamma}^{h} + \Delta \mathscr{L}_{Z\gamma}^{h} + \Delta \mathscr{L}_{GG}^{h} + \Delta \mathscr{L}_{ff}^{h} + \Delta \mathscr{L}_{3h} + \Delta \mathscr{L}_{VV}^{h} + \Delta \mathscr{L}_{ee}^{V} + \Delta \mathscr{L}_{qq}^{V} \\ &+ \Delta \mathscr{L}_{g_{1}^{Z}}^{Z} + \overline{\Delta} \mathscr{L}_{\kappa_{\gamma}} + \Delta \mathscr{L}_{\lambda_{\gamma}} + \Delta \mathscr{L}_{3G} + \Delta \mathscr{L}_{4f} + \Delta \mathscr{L}_{MFV}^{V} + \Delta \mathscr{L}_{CPV}^{V} \,. \end{split}$$

 All physical processes, eg. h->Vff, pp->Vh, VV->h etc can be computed as a function of the BSM primary parameters using the above Lagrangian.

The relevant primaries (ignoring ones constrained at per-mille level) are:

$$\Delta \mathcal{L}_{Z\gamma}^{h} = 4\kappa_{Z\gamma} \left(\frac{h}{v} + \frac{h^{2}}{2v^{2}} \right) \left[t_{\theta_{W}} A_{\mu\nu} Z^{\mu\nu} \qquad \Delta \mathcal{L}_{g_{1}^{Z}} = \underbrace{\delta g_{1}^{Z} c_{\theta_{W}}^{2}}_{v^{2}} \left[\frac{e^{2}\hat{h}^{2}}{4c_{\theta_{W}}^{4}} Z^{\mu} Z_{\mu} \right] \right] \\ = \underbrace{\delta \mathcal{L}_{g_{1}^{Z}}}_{2c_{\theta_{W}}^{2}} Z_{\mu\nu} Z^{\mu\nu} + W_{\mu\nu}^{+} W^{-\mu\nu} \right] \cdot \qquad -g(W_{\mu}^{-}J_{-}^{\mu} + h.c.) - \underbrace{gc_{\theta_{W}}}_{c_{\theta_{W}}^{2}} Z_{\mu}J_{Z}^{\mu} - 2et_{\theta_{W}} Z_{\mu}J_{em}^{\mu}} \right) \\ \Delta \mathcal{L}_{\kappa\gamma} = \underbrace{\delta \kappa_{\gamma}}_{v^{2}} \left[ie\hat{h}^{2} (A_{\mu\nu} - t_{\theta_{W}} Z_{\mu\nu}) W^{+\mu} W^{-\nu} \right] (24) \\ + \underbrace{\delta \nu}_{\theta_{W}} \hat{h}^{2} (t_{\theta_{W}} A^{\mu\nu} - t_{\theta_{W}}^{2} Z^{\mu\nu}) + \frac{(\hat{h}^{2} - v^{2})}{2} \\ \times \left(t_{\theta_{W}} Z_{\mu\nu} A^{\mu\nu} + \underbrace{c_{Z\theta_{W}}}_{2c_{\theta_{W}}^{2}} Z_{\mu\nu} Z^{\mu\nu} W^{-\mu\nu} \right) \right]$$

Gupta, Liu, Pomarol, Riva (in preparation)

Gupta, Liu, Pomarol, Riva (in preparation)
Prediction for any BSM Process in terms of BSM primaries (at dim-6)

 $\begin{array}{cccc} h A_{\mu\nu} A^{\mu\nu}, \ h A_{\mu\nu} Z^{\mu\nu} \ h G_{\mu\nu} G^{\mu\nu} \\ h W^{+\mu} W^{-}_{\mu}, \ h \bar{f} f, \ h^{3} \end{array}$

 $Z_{\mu}\bar{f}_{L,R}\gamma^{\mu}f_{L,R}$

as a function of:

$$g_{1}^{Z}c_{\theta_{W}}Z^{\mu}\left(W^{+\nu}\hat{W}_{\mu\nu}^{-}-W^{-\nu}\hat{W}_{\mu\nu}^{+}\right) \\ \kappa_{\gamma}s_{\theta_{W}}\hat{A}^{\mu\nu}W_{\mu}^{+}W_{\nu}^{-} \\ \lambda_{\gamma}s_{\theta_{W}}\hat{A}^{\mu\nu}\hat{W}_{\mu}^{-\rho}\hat{W}_{\rho\nu}^{+}$$

Gupta, Liu, Pomarol, Riva (in preparation)

W/Z

+ A Hierarchy of Constraints

These parameters can be identified with the Wilson coefficients of dim-6 operators c_i (mw). (Pomarol & Riva 2013)

+ A Hierarchy of Constraints

 $\delta g_{ff}^h \delta g_{3h} \delta g_{VV}^h$ $\mathcal{O}(1)$ $egin{array}{ccc} \kappa_{Z\gamma} \ \delta g_1^Z & \delta \kappa_\gamma & \lambda_\gamma \end{array}$ percent level $\begin{array}{cccc} \kappa_{\gamma\gamma} & \kappa_{GG} \\ \delta g^{Z}_{eR} & \delta g^{Z}_{eL} & \delta g^{Z}_{\nu L} \\ \delta g^{Z}_{uR} & \delta g^{Z}_{dR} & \delta g^{Z}_{uL} & \delta g^{Z}_{dL} \end{array}$ permille level

These parameters can be identified with the Wilson coefficients of dim-6 operators ci (mw). (Pomarol & Riva 2013)

+ RG-induced Constraints (diphoton example)

BSM matching scale Λ

 $c_1(\Lambda), c_2(\Lambda), \dots c_i(\Lambda)$

Theoretically important; To constrain these need to

know RG running.

Experimental Observable scale m_H ~ m_W Jenkins, Grojean, Manohar, Trott (2013)

Elias-Miro, Espinosa, Masso, Pomarol (2013)

+ RG-induced Constraints (diphoton example)

Experimental Observable scale $m_{\text{H}} \sim m_{\text{W}}$

Jenkins, Grojean, Manohar, Trott (2013) Elias-Miro, Espinosa, Masso, Pomarol (2013)

But aren't these effects one loop suppressed and thus unimportant ?

+ RG-induced Constraints (diphoton example)

 $\hat{c}_{\gamma\gamma}(m_h) = \hat{c}_{\gamma\gamma}(\Lambda) - \frac{1}{16\pi^2} \left[\left(\frac{3}{2}g^2 - 2\lambda \right) \hat{c}_{\kappa\gamma} + 3g^2 \hat{c}_{\lambda\gamma} \right] \log \left(\frac{\Lambda}{m_h} \right)$ One loop suppression

Constrained per mille level

 $<\epsilon_{h\gamma\gamma}$

Assuming no tuning/correlation between the RHS contributions we derive RG-induced bounds: Constrained only at 10 % level thus allowed to be much larger than bound on $h \gamma \gamma$. This and the log enhancement can compensate for the loop factor.

$$\left|\hat{c}_{\kappa\gamma}\right| < \Delta_{FT} \frac{16\pi^2}{\log\left(\Lambda/m_h\right)} \left| \left(\frac{3}{2}g^2 - 2\lambda\right)^{-1} \right| \epsilon_{h\gamma\gamma} , \quad \left|\hat{c}_{\lambda\gamma}\right| < \Delta_{FT} \frac{16\pi^2}{\log\left(\Lambda/m_h\right)} \left| \frac{1}{3g^2} \right| \epsilon_{h\gamma\gamma} \right| \leq \Delta_{FT} \frac{16\pi^2}{\log\left(\Lambda/m_h\right)} \left| \frac{1}{3g^2} \right| \epsilon_{h\gamma\gamma} + \left| \frac{1}{2g^2} \right| \epsilon_$$

+ A Hierarchy of Constraints

These parameters can be identified with the Wilson coefficients of dim-6 operators c_i (mw). (Pomarol & Riva 2013)

+

	\hat{c}_S	\hat{c}_T	\hat{c}_Y	\hat{c}_{W}	$\hat{c}_{\gamma\gamma}$
$\gamma_{\hat{c}_S}$	$\frac{1}{3}g'^2 + 6y_t^2$	$-\frac{g^2}{2}$	$\frac{1}{8}g^{\prime 2}\left(147 - 106\frac{g^{\prime 2}}{g^2}\right)$	$\frac{1}{8}\left(77g^2 + 58g'^2\right)$	$16e^{2}$
$\gamma_{\hat{c}_T}$	$-9g^{\prime 2}-24t_{ heta W}^2\lambda$	$\frac{9}{2}g^2 + 12y_t^2 + 12\lambda$	$\frac{9}{2}g'^2 + 12t^2_{\theta_W}(g'^2 + \lambda)$	$\frac{9}{2}g'^{2}$	0
$\gamma_{\hat{c}_Y}$	$-\frac{2}{3}g'^2$	0	$\frac{94}{3}g'^2$	0	0
$\gamma_{\hat{c}_W}$	0	0	$rac{53}{12}g'^2\left(1\!-\!3t_{ heta_W}^2 ight)$	$\frac{331}{12}g^2 + \frac{29}{4}g'^2$	0
Yêm	0	0	0	0 .	$-\frac{9}{2}g^2 - \frac{3}{2}g'^2 + 6y_t^2 + 12\lambda$
$\gamma_{\hat{c}_H}$	$18g'^2 - t^2_{\theta_W}(9g'^2 + 24\lambda)$	$-9g^2 + \frac{9}{2}g'^2 + 12\lambda$	$t_{\theta_W}^2 \left(\frac{-141}{4} g^2 + 12\lambda \right)$	$\frac{63}{2}g^2 + \frac{51}{4}g'^2 + 72\lambda$	0
Yêyz	0	0	0	0	0
$\gamma_{\hat{c}_{kZ}}$	0	0	0	0	$-16e^{2}$
$\gamma_{\hat{c}_{gZ}}$	$-\frac{g'^2}{6c_{\theta_W}^2}$	$\frac{g^2}{12c_{\theta_W}^2}$	$\frac{g'^2}{8c_{\theta_W}^2}(106t_{\theta_W}^2-29)$ -	$-\frac{1}{8c_{\theta_W}^2}(79g^2+58g'^2)$	0
$\gamma_{\hat{c}_{\lambda\gamma}}$	0	0	0	0	0

	\hat{c}_{H}	$\hat{c}_{\gamma Z}$	$\hat{c}_{\kappa\gamma}$	\hat{c}_{gZ}	$\hat{c}_{\lambda\gamma}$
$\gamma_{\hat{c}_S}$	$-\frac{1}{6}g^2$	$4(g^2 - g'^2)$	$-\frac{11}{2}g^2 - \frac{1}{6}g'^2 - 4\lambda$	$c^2_{ heta_W} \left(9g^2 - rac{1}{3}g'^2 ight)$	$-2g^{2}$
$\gamma_{\hat{c}_T}$	$\frac{3}{2}g'^{2}$	0	$-9g'^2 - 24t^2_{\theta_W}\lambda$	$24s_{\theta_W}^2\lambda$	0
$\gamma_{\hat{c}_Y}$	0	0	$-\frac{2}{3}g'^2$	$\frac{2}{3}e^{2}$	0
$\gamma_{\hat{c}W}$	0	0	0	$-\frac{2}{3}c_{ heta_W}^2g^2$	0
Yan	0	0	$\frac{3}{2}g^2 - 2\lambda$	0	$3g^2$
$\gamma_{\hat{c}_H}$	$-\frac{9}{2}g^2 - 3g'^2 + 12y_t^2 + 24\lambda$	0	$9g^{\prime 2}(2-t_{\theta_W}^2)-24t_{\theta_W}^2\lambda \qquad 9(t_{\theta_W}^2)$	$g^{\prime 2} s_{\theta_W}^2 - g^2 c_{\theta_W}^2 - 24\lambda (6c_{\theta_W}^2 - s_{\theta_W}^2)$) 0
Yêyz	0 –	$\frac{7}{2}g^2 - \frac{1}{2}g'^2 + 6y_t^2 + 12\lambda$	$c_{\theta_W}^2(2g^2-2\lambda) - s_{\theta_W}^2(g^2-2\lambda)$	0	$\frac{g^2}{2}(11c_{\theta_W}^2-s_{\theta_W}^2)$
Yêrry	0	$4(g^2 - g'^2)$	$\frac{11}{2}g^2 + \frac{g'^2}{2} + 6y_t^2 + 4\lambda$	0	$2g^2$
$\gamma_{\hat{c}_{gZ}}$	$\frac{g^2}{12c_{\theta_W}^2}$	0	$\frac{g'^2}{6c_{\theta_W}^2}$	$\frac{17}{2}g^2 - \frac{g'^2}{6} + 6y_t^2$	0
$\gamma_{\hat{c}_{\lambda\gamma}}$	0	0	0	0	$\frac{53}{3}g^{2}$

+

	0.9	0.003	-0.03	-0.08	-0.02	-0.02	-0.04	0.05	-0.01	0.001	Ĉs
	0.03	0.8	-0.02	-0.009	0	0	-0.03	0.01	0	-0.003	\hat{c}_{I}
	0.001	0	0.9	0	0	0	-0.001	0.001	0	0	ĉy
	0	0	-0.001	0.8	0	0	0	-0.003	0	0	ĉи
\sim	0	0	0	0	0.9	0	0.006	0	0.02	0	ĉγ
	0	0	0	0	0	0.9	0.007	0	0.03	0	\hat{c}_{γ}
	0	0	0	0	-0.02	-0.02	0.9	0	-0.01	0	ĉκ
	0.0004	-0.0007	-0.0004	0.1	0	0	-0.0004	0.9	0	-0.0007	\hat{c}_{g}
	0	0	0	0	0	0	0	0	0.9	0	\hat{c}_{λ}
	-0.02	0.03	0.01	-0.4	0	0	0.02	-0.3	0	0.8	Ĝ
								1		-	-

(4

•We focus on the part of the matrix, where weakly bound couplings contribute to strongly bound couplings.

+ Numerical Results

Coupling	Direct Constraint	RG-induced Constraint
$\hat{c}_S(m_t)$	$[-1,2] imes 10^{-3} \ [31]$	-
$\hat{c}_T(m_t)$	$[-1,2] imes 10^{-3} \ [31]$	-
$\hat{c}_Y(m_t)$	$[-3,3]\times 10^{-3} \ [22]$	-
$\hat{c}_W(m_t)$	$[-2,2] imes 10^{-3} \ [22]$	-
$\hat{c}_{\gamma\gamma}(m_t)$	$[-1,2] imes 10^{-3} \ [18]$	-
$\hat{c}_{\gamma Z}(m_t)$	$[-0.6,1]\times 10^{-2}~[18]$	$[-2,6] imes 10^{-2}$
$\hat{c}_{\kappa\gamma}(m_t)$	$[-10,7] \times 10^{-2}$ [27]	$[-5,2] \times 10^{-2}$
$\hat{c}_{gZ}(m_t)$	$[-4,2]\times 10^{-2} \ [{\bf 27}]$	$[-3,1] imes 10^{-2}$
$\hat{c}_{\lambda\gamma}(m_t)$	$[-6,2]\times 10^{-2} \ [27]$	$[-2,8]\times 10^{-2}$
$\hat{c}_H(m_t)$	$[-6,5] \times 10^{-1}$ [32]	$[-2, 0.5] imes 10^{-1}$

- We assume that there is no tuning/correlation among different contributions so that each RG-induced term in the RGE is smaller than the bound. This gives us new RG-induced constraints.
- We get bounds on some TGC and on C_H mainly from their RG-induced contribution to {S, T, W, Y} that are stronger than the direct bounds.

+ Numerical Results

Coupling	Direct Constraint	RG-induced Constraint
$\hat{c}_S(m_t)$	$[-1,2] imes 10^{-3} \ [31]$	-
$\hat{c}_T(m_t)$	$[-1,2] imes 10^{-3} \ [31]$	-
$\hat{c}_Y(m_t)$	$[-3,3] imes 10^{-3} \ [22]$	-
$\hat{c}_W(m_t)$	$[-2,2] imes 10^{-3} \ [22]$	-
$\hat{c}_{\gamma\gamma}(m_t)$	$[-1,2]\times 10^{-3} \ [18]$	-
$\hat{c}_{\gamma Z}(m_t)$	$[-0.6,1]\times 10^{-2}~[18]$	$\left[-2,6 ight] imes10^{-2}$
$\hat{c}_{\kappa\gamma}(m_t)$	$[-10,7] \times 10^{-2} \ [27]$	$[-5,2] \times 10^{-2}$
$\hat{c}_{gZ}(m_t)$	$[-4,2]\times 10^{-2} \ [{\bf 27}]$	$[-3,1] imes 10^{-2}$
$\hat{c}_{\lambda\gamma}(m_t)$	$[-6,2] \times 10^{-2} \ [27]$	$[-2,8] \times 10^{-2}$
$\hat{c}_H(m_t)$	$[-6,5] \times 10^{-1}$ [32]	$[-2, 0.5] \times 10^{-1}$

We get bounds on some TGC and on C_H mainly from their RG-induced contribution to {S, T, W, Y} that are stronger than the direct bounds.

- We present an efficient choice of independent primary BSM deformations. All other deformations are generated in a correlated way and we derive these correlations.
- Barring 4-fermions and CPV and MFV deformations, there are 18 BSM Primary effects: 8 Higgs primaries, 7 EWPT primaries and 3 TGC Primaries.
- Predictioins: W coupling deviations not independent of Z coupling deviations. All hVff deformations constrained by EWPT and TGC; all QGC constrained by the g1Z TGC.
- We find that RG-induced constraints on the hVV and TGC primaries due to mixing with the $H \gamma \gamma$ and S-parameter primary directions can be stronger to (or of the same order as) tree level constraints.

+ Part II: RG-induced constraints

- We calculate the one-loop anomalous dimension matrix for 13 bosonic dimension-6 operators relevant for electroweak (including TGC) and Higgs physics.
- New RG-induced bounds, stronger than the direct constraints, on a universal shift of the Higgs couplings and the anomalous triple gauge couplings.

+ Operators to Observables

• The 10 EW & Higgs operators can be related to 10 observables:

+ A Hierarchy of Constraints

 $\delta g_{ff}^h \delta g_{3h} \delta g_{VV}^h$

 $\begin{array}{cccc} \kappa_{\gamma\gamma} & \kappa_{GG} \\ \delta g^{Z}_{eR} & \delta g^{Z}_{eL} & \delta g^{Z}_{\nu L} \\ \delta g^{Z}_{uR} & \delta g^{Z}_{dR} & \delta g^{Z}_{uL} & \delta g^{Z}_{dL} \end{array}$

permille level

(Pomarol & Riva 2013)

$$\hat{c}_{i}(m_{h}) = \hat{c}_{i}(\Lambda) - \frac{1}{16\pi^{2}} \hat{\gamma}_{ij} \hat{c}_{j}(\Lambda) \log\left(\frac{\Lambda}{m_{h}}\right)$$

Anomalous dimension matrix: connects Wilson coefficients at BSM scale to those at experimental scale.

• The full anomalous dimension matrix is shown in the next slide:

+

	\hat{c}_S	\hat{c}_T	\hat{c}_Y	\hat{c}_W	$\hat{c}_{\gamma\gamma}$
$\gamma_{\hat{c}_S}$	$\frac{1}{3}g'^2 + 6y_t^2$	$-\frac{g^2}{2}$	$\frac{1}{8}g^{\prime 2}\left(147 - 106\frac{g^{\prime 2}}{g^2}\right)$	$\frac{1}{8}\left(77g^2\!+\!58g'^2\right)$	$16e^{2}$
$\gamma_{\hat{c}_T}$	$-9g^{\prime 2}-24t_{ heta W}^2\lambda$	$\frac{9}{2}g^2 + 12y_t^2 + 12\lambda$	$\frac{9}{2}g'^2 + 12t^2_{\theta_W}(g'^2 + \lambda)$	$\frac{9}{2}g'^{2}$	0
$\gamma_{\hat{c}_Y}$	$-\frac{2}{3}g'^{2}$	0	$\frac{94}{3}g'^2$	0	0
$\gamma_{\hat{c}_W}$	0	0	$rac{53}{12}g'^2\left(1\!-\!3t_{ heta_W}^2 ight)$	$\frac{331}{12}g^2 + \frac{29}{4}g'^2$	0
Yêm	0	0	0	0	$-\frac{9}{2}g^2 - \frac{3}{2}g'^2 + 6y_t^2 + 12\lambda$
$\gamma_{\hat{c}_H}$	$18g'^2 - t^2_{\theta_W}(9g'^2 + 24\lambda)$	$-9g^2 + \frac{9}{2}g'^2 + 12\lambda$	$t_{\theta_W}^2 \left(\frac{141}{4} g'^2 + 12\lambda \right)$	$\frac{63}{2}g^2 + \frac{51}{4}g'^2 + 72\lambda$	0
Yêyz	0	0	0	0	0
$\gamma_{\hat{c}_{kZ}}$	0	0	0	0	$-16e^{2}$
$\gamma_{\hat{c}_{gZ}}$	$-\frac{g'^2}{6c_{ heta W}^2}$	$rac{g^2}{12c_{ heta W}^2}$	$\frac{g'^2}{8c_{\theta_W}^2}(106t_{\theta_W}^2\!-\!29)$ –	$-\frac{1}{8c_{\theta_W}^2}(79g^2+58g'^2)$	0
$\gamma_{\hat{c}_{\lambda\gamma}}$	0	0	0	0	0

+

	\hat{c}_S	\hat{c}_T	\hat{c}_Y	\hat{c}_{W}	$\hat{c}_{\gamma\gamma}$
$\gamma_{\hat{c}_S}$	$\frac{1}{3}g'^2 + 6y_t^2$	$-\frac{g^2}{2}$	$\frac{1}{8}g^{\prime 2}\left(147 - 106\frac{g^{\prime 2}}{g^2}\right)$	$\frac{1}{8}\left(77g^2 + 58g'^2\right)$	$16e^{2}$
$\gamma_{\hat{c}_T}$	$-9g^{\prime 2}-24t_{ heta W}^2\lambda$	$\frac{9}{2}g^2 + 12y_t^2 + 12\lambda$	$\frac{9}{2}g'^2 + 12t^2_{\theta_W}(g'^2 + \lambda)$	$\frac{9}{2}g'^{2}$	0
$\gamma_{\hat{c}_Y}$	$-\frac{2}{3}g'^2$	0	$\frac{94}{3}g'^2$	0	0
$\gamma_{\hat{c}_W}$	0	0	$rac{53}{12}g'^2\left(1\!-\!3t_{ heta_W}^2 ight)$	$\frac{331}{12}g^2 + \frac{29}{4}g'^2$	0
Yêm	0	0	0	0 .	$-\frac{9}{2}g^2 - \frac{3}{2}g'^2 + 6y_t^2 + 12\lambda$
$\gamma_{\hat{c}_H}$	$18g'^2 - t^2_{\theta_W}(9g'^2 + 24\lambda)$	$-9g^2 + \frac{9}{2}g'^2 + 12\lambda$	$t_{\theta_W}^2 \left(\frac{-141}{4} g^2 + 12\lambda \right)$	$\frac{63}{2}g^2 + \frac{51}{4}g'^2 + 72\lambda$	0
Yêyz	0	0	0	0	0
$\gamma_{\hat{c}_{kZ}}$	0	0	0	0	$-16e^{2}$
$\gamma_{\hat{c}_{gZ}}$	$-\frac{g'^2}{6c_{\theta_W}^2}$	$\frac{g^2}{12c_{\theta_W}^2}$	$\frac{g'^2}{8c_{\theta_W}^2}(106t_{\theta_W}^2-29)$ -	$-\frac{1}{8c_{\theta_W}^2}(79g^2+58g'^2)$	0
$\gamma_{\hat{c}_{\lambda\gamma}}$	0	0	0	0	0

	\hat{c}_{H}	$\hat{c}_{\gamma Z}$	$\hat{c}_{\kappa\gamma}$	\hat{c}_{gZ}	$\hat{c}_{\lambda\gamma}$
$\gamma_{\hat{c}_S}$	$-\frac{1}{6}g^2$	$4(g^2 - g'^2)$	$-\frac{11}{2}g^2 - \frac{1}{6}g'^2 - 4\lambda$	$c^2_{ heta_W} \left(9g^2 - rac{1}{3}g'^2 ight)$	$-2g^{2}$
$\gamma_{\hat{c}_T}$	$\frac{3}{2}g'^{2}$	0	$-9g'^2 - 24t^2_{\theta_W}\lambda$	$24s_{\theta_W}^2\lambda$	0
$\gamma_{\hat{c}_Y}$	0	0	$-\frac{2}{3}g'^2$	$\frac{2}{3}e^{2}$	0
$\gamma_{\hat{c}W}$	0	0	0	$-\frac{2}{3}c_{ heta_W}^2g^2$	0
Yan	0	0	$\frac{3}{2}g^2 - 2\lambda$	0	$3g^2$
$\gamma_{\hat{c}_H}$	$-\frac{9}{2}g^2 - 3g'^2 + 12y_t^2 + 24\lambda$	0	$9g^{\prime 2}(2-t_{\theta_W}^2)-24t_{\theta_W}^2\lambda \qquad 9(t_{\theta_W}^2)$	$g^{\prime 2} s_{\theta_W}^2 - g^2 c_{\theta_W}^2 - 24\lambda (6c_{\theta_W}^2 - s_{\theta_W}^2)$) 0
Yêyz	0 –	$\frac{7}{2}g^2 - \frac{1}{2}g'^2 + 6y_t^2 + 12\lambda$	$c_{\theta_W}^2(2g^2-2\lambda) - s_{\theta_W}^2(g^2-2\lambda)$	0	$\frac{g^2}{2}(11c_{\theta_W}^2-s_{\theta_W}^2)$
Yêrry	0	$4(g^2-g'^2)$	$\frac{11}{2}g^2 + \frac{g'^2}{2} + 6y_t^2 + 4\lambda$	0	$2g^2$
$\gamma_{\hat{c}_{gZ}}$	$\frac{g^2}{12c_{\theta_W}^2}$	0	$\frac{g'^2}{6c_{\theta_W}^2}$	$\frac{17}{2}g^2 - \frac{g'^2}{6} + 6y_t^2$	0
$\gamma_{\hat{c}_{\lambda\gamma}}$	0	0	0	0	$\frac{53}{3}g^{2}$

+

	0.9	0.003	-0.03	-0.08	-0.02	-0.02	-0.04	0.05	-0.01	0.001	Ĉs
	0.03	0.8	-0.02	-0.009	0	0	-0.03	0.01	0	-0.003	\hat{c}_{I}
	0.001	0	0.9	0	0	0	-0.001	0.001	0	0	ĉy
	0	0	-0.001	0.8	0	0	0	-0.003	0	0	ĉи
\sim	0	0	0	0	0.9	0	0.006	0	0.02	0	ĉγ
	0	0	0	0	0	0.9	0.007	0	0.03	0	\hat{c}_{γ}
	0	0	0	0	-0.02	-0.02	0.9	0	-0.01	0	ĉκ
	0.0004	-0.0007	-0.0004	0.1	0	0	-0.0004	0.9	0	-0.0007	\hat{c}_{g}
	0	0	0	0	0	0	0	0	0.9	0	\hat{c}_{λ}
	-0.02	0.03	0.01	-0.4	0	0	0.02	-0.3	0	0.8	Ĝ
								ι		-	-

(4

•We focus on the part of the matrix, where weakly bound couplings contribute to strongly bound couplings.

+ Numerical Results

Coupling	Direct Constraint	RG-induced Constraint
$\hat{c}_S(m_t)$	$[-1,2] imes 10^{-3} \ [31]$	-
$\hat{c}_T(m_t)$	$[-1,2] imes 10^{-3} \ [31]$	-
$\hat{c}_Y(m_t)$	$[-3,3]\times 10^{-3} \ [22]$	-
$\hat{c}_W(m_t)$	$[-2,2] imes 10^{-3} \ [22]$	-
$\hat{c}_{\gamma\gamma}(m_t)$	$[-1,2] imes 10^{-3} \ [18]$	-
$\hat{c}_{\gamma Z}(m_t)$	$[-0.6,1]\times 10^{-2}~[18]$	$[-2,6] imes 10^{-2}$
$\hat{c}_{\kappa\gamma}(m_t)$	$[-10,7] \times 10^{-2}$ [27]	$[-5,2] \times 10^{-2}$
$\hat{c}_{gZ}(m_t)$	$[-4,2]\times 10^{-2} \ [{\bf 27}]$	$[-3,1] imes 10^{-2}$
$\hat{c}_{\lambda\gamma}(m_t)$	$[-6,2]\times 10^{-2} \ [27]$	$[-2,8]\times 10^{-2}$
$\hat{c}_H(m_t)$	$[-6,5] \times 10^{-1}$ [32]	$[-2, 0.5] imes 10^{-1}$

- We assume that there is no tuning/correlation among different contributions so that each RG-induced term in the RGE is smaller than the bound. This gives us new RG-induced constraints.
- We get bounds on some TGC and on C_H mainly from their RG-induced contribution to {S, T, W, Y} that are stronger than the direct bounds.

+ Numerical Results

Coupling	Direct Constraint	RG-induced Constraint
$\hat{c}_S(m_t)$	$[-1,2] imes 10^{-3} \ [31]$	-
$\hat{c}_T(m_t)$	$[-1,2] imes 10^{-3} \ [31]$	-
$\hat{c}_Y(m_t)$	$[-3,3] imes 10^{-3} \ [22]$	-
$\hat{c}_W(m_t)$	$[-2,2] imes 10^{-3} \ [22]$	-
$\hat{c}_{\gamma\gamma}(m_t)$	$[-1,2]\times 10^{-3} \ [18]$	-
$\hat{c}_{\gamma Z}(m_t)$	$[-0.6,1]\times 10^{-2}~[18]$	$[-2,6] imes 10^{-2}$
$\hat{c}_{\kappa\gamma}(m_t)$	$[-10,7] \times 10^{-2} \ [27]$	$[-5,2] \times 10^{-2}$
$\hat{c}_{gZ}(m_t)$	$[-4,2]\times 10^{-2} \ [27]$	$[-3,1] imes 10^{-2}$
$\hat{c}_{\lambda\gamma}(m_t)$	$[-6,2] \times 10^{-2} [27]$	$[-2,8] \times 10^{-2}$
$\hat{c}_H(m_t)$	$[-6,5] \times 10^{-1}$ [32]	$[-2, 0.5] imes 10^{-1}$

We get bounds on some TGC and on C_H mainly from their RG-induced contribution to {S, T, W, Y} that are stronger than the direct bounds.

+ A Hierarchy of Constraints

 $\delta g_{ff}^h \delta g_{3h} \delta g_{VV}^h$

 $\begin{array}{cccc} \kappa_{\gamma\gamma} & \kappa_{GG} \\ \delta g^{Z}_{eR} & \delta g^{Z}_{eL} & \delta g^{Z}_{\nu L} \\ \delta g^{Z}_{uR} & \delta g^{Z}_{dR} & \delta g^{Z}_{uL} & \delta g^{Z}_{dL} \end{array}$

permille level

(Pomarol & Riva 2013)

+ A Hierarchy of Constraints

((1)

permille level

+ RG-effects measurable in future

Direct	Future	$ \hat{c}_{\kappa\gamma} $	$ \hat{c}_{\gamma Z} $	$ \hat{c}_{\lambda\gamma} $	$ \hat{c}_H $	
Measurement	Precision					
$\hat{c}_{\gamma\gamma}$	4×10^{-5} [36]	$6 imes 10^{-3}$	-	$2 imes 10^{-3}$	-	
$\hat{c}_{\gamma Z}$	$3 imes 10^{-4}$ [36]	$4 imes 10^{-2}$	-	$1 imes 10^{-2}$	-	
$\hat{c}_{\kappa\gamma}$	$2 imes 10^{-4}$ [37]	-	1×10^{-2}	1×10^{-2}	-	
\hat{c}_{gZ}	$2 imes 10^{-4}$ [37]	0.4	-	-	0.25	

- Minimum value of the couplings to which direct measurements of the observables in the first column would be sensitive via the one loop RGmixing in the long term.
- A deviation in one BSM primary parameter would induce deviations in other ones in a correlated way.
- If these RG effects are not seen it would mean would mean that some tuning is needed, or it would indicate some UV correlation among Wilson coefficients pointing towards a particular structure of the new physics

+ Part III: Explicit Models

We consider expectations for BSM primary effects in two models:

(1) Composite Models

Giudice, Grojean, Pomarol and Rattazzi (2007)

(2)Integrating out Higgses in SUSY Models

Gupta, Montull, Riva (2012)

+ Composite Models

Strongly Interacting Light Higgs (SILH) Lagrangian:

$$\begin{split} \mathcal{L}_{\text{SILH}} &= \frac{c_H}{2f^2} \partial^{\mu} \left(H^{\dagger} H \right) \partial_{\mu} \left(H^{\dagger} H \right) + \frac{c_T}{2f^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(H^{\dagger} \overleftarrow{D}_{\mu} H \right) \\ &- \frac{c_6 \lambda}{f^2} \left(H^{\dagger} H \right)^3 + \left(\frac{c_y y_f}{f^2} H^{\dagger} H \bar{f}_L H f_R + \text{h.c.} \right) \\ &+ \frac{i c_W g}{2m_{\rho}^2} \left(H^{\dagger} \sigma^i \overleftarrow{D^{\mu}} H \right) \left(D^{\nu} W_{\mu\nu} \right)^i + \frac{i c_B g'}{2m_{\rho}^2} \left(H^{\dagger} \overleftarrow{D^{\mu}} H \right) \left(\partial^{\nu} B_{\mu\nu} \right) \\ &+ \frac{i c_{HW} g}{16\pi^2 f^2} (D^{\mu} H)^{\dagger} \sigma^i (D^{\nu} H) W^i_{\mu\nu} + \frac{i c_{HB} g'}{16\pi^2 f^2} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{c_{\gamma} g'^2}{16\pi^2 f^2} \frac{g^2}{g_{\rho}^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{c_g g_S^2}{16\pi^2 f^2} \frac{y_t^2}{g_{\rho}^2} H^{\dagger} H G^a_{\mu\nu} G^{a\mu\nu}. \end{split}$$

(assumes Higgs is a pseudo Nambu Goldstone Boson of a strong sector)

Giudice, Grojean, Pomarol and Rattazzi (2007)

Integrating out heavy Higgses in SUSY

Supersymmetric models (2HDMS)

$$h = \frac{H}{\langle h \rangle} \begin{pmatrix} b, t \\ \bar{b}, \bar{t} \end{pmatrix}$$

$$c_{y_t} \sim \frac{m_Z^2}{m_H^2} \cot \beta$$

$$c_{y_{d,e}} \sim \frac{m_Z^2}{m_H^2} \tan \beta$$

Integrating out heavy Higgses in SUSY

((1)

permille level

Integrating out heavy Higgses in SUSY

_		

((1)

permille level

+Understanding SUSY Higgs coupling deviations

• Write potential in terms of *h* and *H*, where:

$$h_1^0 = \cos\beta h + \sin\beta H$$

 $h_2^0 = \sin\beta h - \cos\beta H$

• H and h almost mass eigenstates if $\delta_i v^2 / m_H^2 <<1$

has exactly SM couplings as it gives mass to all the particles.

quartics

Gupta, Montull, Riva (2012)

SUSY modifications to raise the Higgs mass would necessarily change Higgs couplings in a correlated way!

+Understanding SUSY Higgs coupling deviations

• As quartics are turned on the lightest mass eigenstate is no longer *h* and the misalignment causes deviations from SM couplings:

$$\Delta V(H_1, H_2) = +\delta_{\lambda}h^4 + \delta h^3 H + \delta_2 h^2 H^2 + \delta_3 h H^3 + \delta_4 H^4$$

changes Higgs couplings wrt SM
by inducing mixing term: *hH*
and causing misalignment of
{*h*,*H*} with the mass eigenstate
basis
$$\Delta m_h^2 = m_h^{obs\,2} - m_Z^2 (\cos 2\beta)^2 \gtrsim (86 \, \text{GeV})^2$$

+Understanding SUSY Higgs coupling deviations

	ΔV	δ_{λ}	δ	
MSSM	$\frac{g^2+g'^2}{8}\left(H_1^0 ^2- H_2^0 ^2\right)^2$	$rac{m_Z^2}{16v^2}(c_{eta}^2-s_{eta}^2)^2$	$rac{m_Z^2}{2v^2}s_eta c_eta(c_eta^2-s_eta^2)$	
Stops (no mixing)	$rac{\lambda}{2} H_2 ^4 = rac{3y_t^4}{8\pi^2}\log[m_{\tilde{t}_1}m_{\tilde{t}_2}/M_t^2] H_2 ^4$	$s_{eta}^4 rac{\lambda_2}{8}$	$-4s_{eta}^3c_{eta}rac{\lambda_2}{8}$	
D-term extension	$\kappa \left(H_1^0 ^2 - H_2^0 ^2 \right)^2$	$\frac{m_Z^2}{16v^2}(c_{\beta}^2-s_{\beta}^2)^2$	$rac{m_Z^2}{2v^2}s_eta c_eta(c_eta^2-s_eta^2)$	$m_Z^2/v^2 ightarrow 4\kappa$
NMSSM	$\lambda^2 H_1^0H_2^0 ^2$	$\frac{\lambda^2}{16} \sin^2 2\beta$	$-\frac{\lambda^2}{8}\sin 4\beta$	

+

All qualitative features of the above plots can be understood using our expansion. Quantitatively it is approximate but works well if *m_A*>350 GeV.

Higgs coupling data more competitive than direct searches in low tan β region

Dashed: Barbieri et al (2012) with latest data Solid lines: our bounds

+ Consistency check: shift invariance

The anomalous dimension of shift invariant combinations of couplings is a function of sift invariant combination of couplin

	сH	C _F	CT	c B	C W
γ_{c_H}	$28\lambda + \frac{3}{2}g^2 - 4\gamma_H$	$\frac{3}{2}\left(2g^2+g'^2\right)-4\lambda$	$8\lambda - 6g^2 - \frac{3}{2}g^{\prime 2}$	$rac{3}{4}g^{\prime 2}\left(g^{\prime 2}+4g^2 ight)$	$\frac{5}{4}g^2\left(3g^2+4{g'}^2\right)-6\lambda g^2$
Yer	$4\lambda - 3g^2$	$\frac{3}{2}\left(5g^2+g'^2\right)+20\lambda-4\gamma_H$	$-4\lambda + 3g^2 - 6g'^2$	$\frac{3}{2}g'^2\left(2g'^2-g^2\right)+6\lambda g'^2$	$\frac{3}{2}g^2\left(6g^2-g'^2\right)+30\lambda g^2$
Yor	3 g 12	$-\frac{3}{2}g'^2$	$12\lambda + \frac{27}{2}g^2 + 3g'^2 - 4\gamma_H$	$-\frac{9}{4}g'^2g^2-6\lambda g'^2$	$-\frac{9}{4}g'^2g^2$
$\gamma \circ_B$	$-\frac{1}{3}$	1	- 5	$\frac{g'^2}{6} + 6y_t^2$	22 2
γ_{\circ_W}	$-\frac{1}{3}$	1 5	$-\frac{1}{3}$	<u>g'2</u>	$\frac{11}{2}g^2 + 6y_t^2$
$\gamma_{e_{2B}}$	o	0	0	$-\frac{2}{3}g'^{2}$	o
$\gamma_{e_{2W}}$	0	0	0	0	$-\frac{2}{5}g^2$

 $\gamma_{C_i} = f(C_j)$

Thus the contribution of cB and cT to γcT must be connected in such a way that they can combine to form C_T

$$\gamma_{C_T} = \gamma_{c_T} - \frac{1}{4} g'^2 (2\gamma_{c_B}) \dots \equiv \# c_T + \# c_B + \# c_{2B} = \frac{1}{6} \left(72\lambda + 5g'^2 + 27g^2 \right) C_T$$

This will connect for eg. the contribut $c_B \rightarrow c_{T,B,2B}$ $c_T \rightarrow c_{T,B,2B}$ which have been computed completely independently.

+ Consistency check: shift invariance

The anomalous dimension of shift invariant combinations of couplings is a function of sift invariant combination of couplin

					n – ۳
	сH	C _F	CT	CB	c W
$\gamma_{c_{H}}$	$28\lambda + \frac{8}{2}g^2 - 4\gamma_H$	$\frac{3}{2}\left(2g^{2}+g^{\prime 2} ight)-4\lambda$	$6\lambda - 6g^2 - \frac{1}{2}g^2$	3 g'2 (g'2 + 4g2)	$\frac{5}{4}g^{2}\left(3g^{2}+4g'^{2}\right)-6\lambda g^{2}$
Yer	$4\lambda - 3g^2$	$\frac{3}{2}(5g^2 + g'^2) + 20\lambda - 4\gamma_H$	$-4\lambda + 3g^2 - 6g^2$	$\frac{3}{2}g^{\prime 2}\left(2g^{\prime 2}-g^{2}\right)+6\lambda g^{\prime 2}$	$\frac{3}{2}g^2\left(6g^2-g'^2\right)+30\lambda g^2$
γ_{c_T}	3 g 12	$-\frac{3}{2}g'^{2}$	$2\lambda + \frac{27}{2}g^2 + 3g'^2 - 4\gamma_H$	$-\frac{9}{4}g'^2g^2-6\lambda g'^2$	$-\frac{9}{4}g'^2g^2$
$\gamma \circ_B$	$-\frac{1}{3}$	1	- 5	$\frac{g'^2}{6} + 6y_t^2$	<u>0</u> 2
Yow	$-\frac{1}{3}$	1	$-\frac{1}{5}$	<u>g'2</u>	$\frac{11}{2}g^2 + 6y_t^2$
$\gamma_{e_{2B}}$	o	0	0	$-\frac{2}{3}g'^2$	o
$\gamma_{c_{2W}}$	0	0			$-\frac{2}{5}g^2$

 $\gamma_{C_i} = f(C_j)$

Thus the contribution of cB and cT to γcT must be connected in such a way that they can combine to form C_T

$$\gamma_{C_T} = \gamma_{c_T} - \frac{1}{4}g'^2(2\gamma_{c_B})... \equiv \#c_T + \#c_B + \#c_{2B} = \frac{1}{6}\left(72\lambda + 5g'^2 + 27g^2\right)C_T$$

This will connect for eg. the contribut $c_B \rightarrow c_{T,B,2B}$ $c_T \rightarrow c_{T,B,2B}$ which have been computed completely independently.

+ Higgs Primary directions

 For the effect from e(ĥ), s_{θw}(ĥ) we write SM Lagrangian with non cannonical kinetic terms (we can get back to SM by A_μ → A_μ - s²_{θw}(v)Z_μ)

 $\mathcal{L}_{\rm EW} = -\frac{1}{4e^2(\hat{h})} \Big(A_{\mu\nu} + s_{\theta_W}^2(\hat{h}) Z_{\mu\nu} \Big)^2 - \frac{c_{\theta_W}^2(h)}{4a^2(\hat{h})} Z_{\mu\nu}^2$ $-\frac{1}{2a^{2}(\hat{h})}W^{+}_{\mu\nu}W^{-\mu\nu} + \frac{\hat{h}^{2}}{2}\left[W^{+}_{\mu}W^{-\mu} + \frac{1}{2}Z^{\mu}Z_{\mu}\right]$ $+ A_{\mu} J^{\mu}_{em} + Z_{\mu} J^{\mu}_{3} + W^{+}_{\mu} J^{\mu}_{+} + W^{-}_{\mu} J^{\mu}_{-} ,$ $e(\hat{h}) = e(1 + \kappa_{\gamma\gamma} \frac{\hat{h}^2}{m^2}), \qquad s_{\theta_W}(\hat{h}) = s_{\theta_W}$ $e(\hat{h}) = e, \qquad s_{\theta_W}^2(\hat{h}) = s_{\theta_W}^2(1 - \kappa_{Z\gamma} \frac{\hbar^2}{m^2})$ $\Delta \mathcal{L}^{h}_{\gamma\gamma} = \kappa_{\gamma\gamma} \left(\frac{h}{v} + \frac{h^2}{2v^2} \right) \left[A_{\mu\nu} A^{\mu\nu} \right]$ $\Delta \mathcal{L}_{Z\gamma}^{h} = \kappa_{Z\gamma} \left(\frac{h}{v} + \frac{h^{2}}{2v^{2}} \right) \left[t_{\theta_{W}} A_{\mu\nu} Z^{\mu\nu} \right]$ $+Z_{\mu\nu}Z^{\mu\nu}+2W^{+}_{\mu\nu}W^{-\mu\nu}$, $+ \frac{c_{2\theta_W}}{2c_{\theta_{\mu\nu}}^2} Z_{\mu\nu} Z^{\mu\nu} + W^+_{\mu\nu} W^{-\mu\nu}$.

Difference in Parametrization

Now we also considered W and Y that have been traded for four-fermions so far.