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Coleman-Weinberg (CW) in Electroweak (EW) Theory

Has gained popularity with the recent Higgs-discovery; Why?  
It naturally produces a light scalar compared to the new physics scale	


Requires conformality at the classical level;  
At some scale all dimensionfull couplings vanish	


Spont. sym. breaking through quantum corrections	


Does not solve the hierarchy-problem in reality
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Cutoff is physical, since SM is neither asympt. free nor safe



Manchester, 21-07-2014, Matin Mojaza

Fine-Tuning the Hierarchy Problem 
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I. DEGREES OF (UN)NATURALITY

With the discovery of the Higgs-like particle at CERN it has become imperative to critically

investigate avenues that can lead to a deeper understanding of the phenomenon of mass generation

in the standard model (SM), and that simultaneously are able to predict the scale of new physics.

To be as general as possible we use the renormalisation group (RG) language to identify

and classify the degree of naturality of the SM and its extensions. We start by analysing the

renormalisation of the mass parameter of a simple �4 real scalar field sector embedded in a more

general theory. The Lagrangian terms we wish to discuss can be expressed via the renormalised

mass m, coupling � and the renormalised field �r
1:

L = 1
2

(@µ�r)2 � 1
2

m2�2
r � �4!

�4
r +
�Z

2
(@µ�r)2 � �m

2
�2

r � ��4!
�4

r , (1)

where the last three terms are counter terms needed to subtract the divergences plaguing the bare

parameters (�B, m0, �0). The counter terms are defined as follows

�B ⌘
p

Z�r �Z ⌘ Z � 1 m2 ⌘ m2
0Z � �m �� ⌘ �0Z2 � � . (2)

The leading divergences to be accounted for by counter terms are Z = 1+ f1(�, gi) log ⇤
2

m2
0
+ . . . , and

�m = f2(�, gi)⇤2+. . . , where gi denotes collectively the other renormalised dimensionless couplings

of the theory. Here⇤ is the cuto↵ of the theory. The explicit (e.g. leading order) expressions for the

functions f1 and f2 in terms of the renormalised couplings � and gi are immaterial for the following

discussion. The only quadratically divergent parameter of the theory is the renormalised scalar

mass which reads

m2 = m2
0(1 + f1(�, gi) log

⇤2

m2
0

) � f2(�, gi)⇤2 . (3)

The expression above exemplifies the unnaturality of generic scalar field theories at the quantum

level. The problem being that even in the absence of an explicit mass term at the bare Lagrangian

level a mass operator re-emerges via quantum corrections, living naturally at the highest energy

scale of the theory⇤. Depending on where the cuto↵ energy scale is, compared to the physical value

of the mass m the couplings � and gi must be fine-tuned to achieve the value of m. Furthermore

for the pure �4-theory, � goes to zero when ⇤/m goes to infinity, i.e. the theory becomes non-

interacting.

1 We impose a Z2 symmetry which will be automatic when requiring the theory to be conformal at the classical level

later.
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Cutoff regularized scalar sector

Coleman-Weinberg Potential

m2(µ0) ⇡ 0, �(µ0) ⇡ 0 V (�c) ⇡ V1(�c) = A1�
4
c +B1�

4
c ln

�2
c

µ2
0

,

m2
CW =

d2V

d�2

���
h�ci

= 8B1h�2
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h�2
ci

µ2
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= �1

2
� A1

B1
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Without fine-tuning:

m2
0 = 0, m2

CW = 8B1h�2
ci � f2(�, gi)⇤
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Perturbative Natural Conformality

Coleman-Weinberg without fine-tuning;  
Perturbative Natural Conformality (PNC)	


Veltman meets Coleman-Weinberg;  
Set f2 = 0 at the same perturbative order as the CW-analysis	


1. Classical Conformality and tree-level flatness

6

Weinberg [31].

Consider a theory with a number of weakly-coupled real scalar fields �i, with i counting the

scalars. It is convenient to renormalise their masses at the origin of the scalar-field space to be

zero. The renormalised, scale-invariant, tree-level scalar potential then reads:

V0(�i) =
�i jkl

24
�i� j�k�l + fermionic and vectorial contributions + c.t. (4)

where c.t. stands for counter terms and �i jkl are renormalized quartic couplings. The scalar fields

are renormalised at the scale µ0 such that here they are elementary; i.e. have zero anomalous

dimensions. In general the theory will also contain gauge and Yukawa couplings. We denote

these globally by g and y, respectively. Consistent perturbation theory requires

�i jkl ⇠ g2 ⇠ y2 ⌧ 1 , (5)

for any non-zero �i jkl. Thus the e↵ective potential is, in general, dominated by the tree-level

potential. The way in which loop corrections can shift the global minimum to a non-zero point

in scalar field space, is if the tree-level potential has flat directions in field space, ni, within

the perturbative regime of Eq. (5). The renormalisation condition (i.e. here the starting point of

perturbation theory) we must therefore impose on the set of quartic couplings to make a viable CW

analysis, is to constrain the parameter space of the couplings to a subspace, where the renormalised

tree-level potential does have flat directions. This fixes the renormalisation scale µ to a specific

value µ0, given by the renormalisation condition on the quartic couplings. Taking ui to be a unit

vector in field space, the flat directions can be found by solving the problem:

min(�i jkluiujukul)
���
uiui=1 = 0 . (6)

If a solution ui = ni exists, then �i = ni� is a flat direction of the tree-level potential, along which

the CW analysis can consistently be made. Thus the renormalisation condition on the quartic

couplings read:

�i jkl(µ0)ninjnknl ⇡ 0 . (7)

By using ⇡ it is implied that the condition has to be satisfied at least to the order g4 in the quartic

couplings, that is, the renormalisation condition can be relaxed to the level:

�i jkl(µ0)ninjnknl ⇠ O(g4) . (8)
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2. Quantum corrections retaining conformality  
Delayed Naturalness
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Anything beyond this is not a viable setup to study the CW mechanism3.

Now, consider the one-loop correction to the e↵ective potential in the Landau gauge on some

classical background �c = ui�i, with ui a unit vector:

V1(�c) =
1
2

Z
d4k

(2⇡)4 Str
h

ln(k2 +M2(�c))
i
+ c.t. (9)

where M2(�c) is the background dependent mass matrix and we defined the supertrace

Str ⌘
X

scalars

� 2
X

Weyl f ermions

+ 3
X

vectors
. (10)

We consider the theory to be a low-energy description valid up to some scale⇤ and regularize the

integral in the UV with a hard cuto↵ at k = ⇤. Furthermore one must assume �c , 0 such that the

integral does not diverge in the IR. The one-loop contribution is then straightforwardly computed

and after an expansion in M2(�c)⌧ ⇤2 we find:

V1(�c) =
1

64⇡2 Str
"
⇤4

✓
ln⇤2 � 1

2

◆
+ 2M2(�c)⇤2 +M4(�c)

 
ln

M2(�c)
⇤2 � 1

2

!#
+ c.t. (11)

The first term is the cosmological constant term, which vanishes in a theory with equal number of

bosonic and fermionic degrees of freedom. In this work we will have nothing more to say about

the cosmological constant term and therefore subtract it away from the potential.

The scalar masses are computed from the full potential via m2
i = @

2V/@�2
i . It is the second

term that is responsible for the quadratic divergence of the scalar masses. These divergences can

either be removed by appropriate choices for the counter-terms (fine-tuning), making the theory

unnatural, or vanish identically if @2StrM2(�i)/@�2
i = 0 to all orders due to e.g. symmetry reasons

(such as supersymmetry) and are thus natural theories.

Naturality can be partially achieved, or better said delayed, by imposing the Veltman condi-

tions defined such that, to the same perturbative order used by the CW analysis, the quadratic

divergences appearing from Eq. (11) in the mass of any non-Goldstone scalar must vanish:

1
2
@2Str[M2(�i)]

@�2
i

�����
µ0

= 0 . (12)

This leads to extra constraints on the dimensionless couplings of the theory.

3 In the original paper, Coleman and Weinberg first used scalar electrodynamics in which there is only one quartic

coupling, �. The renormalisation condition they imposed was �(µ0) ⇠ O(e4) where e is the electric charge, consistent

with Eqs. (7) and (8). In the case of multiple quartic couplings the renormalisation condition Eq. (7) should first be

used (together with (5)). This defines the viable parameter space for the CW analysis, and then perturbations of the

order g4 from this hypersurface can be investigated.
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(Veltman Condition)

m2
0 = 0,

m2
CW = 8B1h�2

ci � f2(�, gi)⇤
2
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The PNC Shootout
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PNC vs Standard Model (SM)
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Considering now the CW analysis along any tree-level flat direction � = ni�i, together with the

Veltman conditions, at a chosen renormalisation scale µ0 yields the following one-loop e↵ective

potential

V(�c) = V1(�c) =
1

64⇡2 Str
2
66664M

4(�c) ln
M2(�c)
µ2

0

3
77775 = A�4

c + B�4
c ln
�2

c

µ2
0

, (13)

where we set the counter terms to properly renormalise the couplings

@4V
@�4

c

������
M2(�c)=µ2e�25/6

= �i jkl(µ)ninjnknl , (14)

and used that �i jkl(µ0)ninjnknl = 0. The scaling factor e�25/6 is chosen only to simplify Eq. (13) and

corresponds to the renormalization choice made in [31].

In a classically scale-invariant theory, all masses will be proportional to �c and thus we can

write M2(�c) =W2�2
c , such that in Eq. (13):

A =
1

64⇡2 StrW4 ln W2 , B =
1

64⇡2 StrW4 . (15)

The non-trivial stationary point of the e↵ective potential is at:

log
h�2

ci
µ2

0

= �1
2
� A

B
, (16)

and since both functions A and B appear at one loop we have that �c ⇠ µ0 and therefore perturba-

tion theory is valid, as expected by construction. If the extremum corresponds to the ground state

of the theory we have for the scalar fluctuation, along the classical flat direction, a positive mass

squared which reads

m2
CW = 8Bh�2

ci . (17)

The masses of the other non-Goldstone scalars arise at tree-level and are positive as well [31].

III. PNC MODELS

Having set up the stage for PNC we move on to examine specific models.

A. Standard Model

In the SM the renormalised tree-level potential, including the gauge and Yukawa terms, reads

VSM
0 = �

⇣
H†H

⌘2 � 1
2

0
BBBB@g

2W+
µW�µ +

g2 + g02

2
ZµZµ

1
CCCCAH†H + yt(t̄L, 0)

⇣
i�2H⇤

⌘
tR + h.c. + c.t. , (18)

9

where we have set the renormalised mass to zero and neglected the Yukawa couplings to the

leptons and light quarks (with respect to the top-quark).

To compute the Veltman condition for the Higgs mass, we expand the Higgs doublet around

the electroweak background: H = 1p
2
(⇡2 + i⇡1, v+ h� i⇡3), and compute the mass-matrix, keeping

only the h-dependent part, which is what will remain in the Veltman condition for h:

M2(h)
h2 = diag

⇢
3�, �, �, �,

1
4

g2,
1
4

g2,
1
4

(g2 + g02),
1
2

y2
t ,

1
2

y2
t

�
, (19)

where the entries correspond respectively to the mass of the Higgs boson, the three (would be)

Goldstone bosons, the W+, W� and Z vector bosons and two top quark color multiplets in the

Weyl basis. Then from Eq. (12) follows Veltman’s condition for the Higgs mass:

1
2
@2Str[M2(h)]
@h2

�����
µ0

= 6�(µ0) +
9
4

g2(µ0) +
3
4

g02(µ0) � 6y2
t (µ0) = 0 . (20)

Note that this condition is independent of the vev and that once the vacuum is generated, the

Veltman conditions for the Goldstone directions disappear.

To generate the vev through the CW mechanism, we must assume the tree-level potential to be

flat at the same scale µ0 at which the Veltman condition is imposed:

�(µ0) ⇡ 0 . (21)

The Veltman condition under this constraint reduces to:

3g2(µ0) + g02(µ0) � 8y2
t (µ0) = 0 . (22)

Requiring this relation to hold, while using µ0 ⇠ v ⇡ 246 GeV and keeping m2
W = v2g2(µ0)/4 and

m2
Z = v2(g2(µ0) + g02(µ0))/4 at their physical value, leads to a too light top quark mass [32]:

4m2
t = m2

Z + 2m2
W =) mt ⇡ 73 GeV . (23)

The Higgs mass is induced at one-loop, which is given by (17) and reads

m2
h =

3
8⇡2

h 1
16

⇣
3g4 + 2g2g02 + g04

⌘
+ 4�2 � y4

t

i
v2

µ=µ0
=

3
512⇡2

⇣
3g4 + 2g2g02 + 3g04

⌘
v2 =) mh ⇡ 5 GeV . (24)

This example shows that the PNC conditions are quite constraining. In fact, as it is well-known,

working with only one of the conditions, either Veltman’s condition or the CW condition, one

would in the first case find a too large Higgs mass and the second case a too low Higgs mass. The

example also shows the predictive power of a PNC-like model, which here predicts (wrongly)

both the top and Higgs mass.

9
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The Veltman condition under this constraint reduces to:

3g2(µ0) + g02(µ0) � 8y2
t (µ0) = 0 . (22)

Requiring this relation to hold, while using µ0 ⇠ v ⇡ 246 GeV and keeping m2
W = v2g2(µ0)/4 and

m2
Z = v2(g2(µ0) + g02(µ0))/4 at their physical value, leads to a too light top quark mass [32]:

4m2
t = m2

Z + 2m2
W =) mt ⇡ 73 GeV . (23)

The Higgs mass is induced at one-loop, which is given by (17) and reads

m2
h =

3
8⇡2

h 1
16

⇣
3g4 + 2g2g02 + g04

⌘
+ 4�2 � y4

t

i
v2

µ=µ0
=

3
512⇡2

⇣
3g4 + 2g2g02 + 3g04

⌘
v2 =) mh ⇡ 5 GeV . (24)

This example shows that the PNC conditions are quite constraining. In fact, as it is well-known,

working with only one of the conditions, either Veltman’s condition or the CW condition, one

would in the first case find a too large Higgs mass and the second case a too low Higgs mass. The

example also shows the predictive power of a PNC-like model, which here predicts (wrongly)

both the top and Higgs mass.

SM without mass term is classically conformal

Breaking EW spont. and the delaying naturalness scale yields

CW:

Veltman:
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Considering now the CW analysis along any tree-level flat direction � = ni�i, together with the

Veltman conditions, at a chosen renormalisation scale µ0 yields the following one-loop e↵ective

potential

V(�c) = V1(�c) =
1

64⇡2 Str
2
66664M

4(�c) ln
M2(�c)
µ2

0

3
77775 = A�4

c + B�4
c ln
�2

c

µ2
0

, (13)

where we set the counter terms to properly renormalise the couplings

@4V
@�4

c

������
M2(�c)=µ2e�25/6

= �i jkl(µ)ninjnknl , (14)

and used that �i jkl(µ0)ninjnknl = 0. The scaling factor e�25/6 is chosen only to simplify Eq. (13) and

corresponds to the renormalization choice made in [31].

In a classically scale-invariant theory, all masses will be proportional to �c and thus we can

write M2(�c) =W2�2
c , such that in Eq. (13):

A =
1

64⇡2 StrW4 ln W2 , B =
1

64⇡2 StrW4 . (15)

The non-trivial stationary point of the e↵ective potential is at:

log
h�2

ci
µ2

0

= �1
2
� A

B
, (16)

and since both functions A and B appear at one loop we have that �c ⇠ µ0 and therefore perturba-

tion theory is valid, as expected by construction. If the extremum corresponds to the ground state

of the theory we have for the scalar fluctuation, along the classical flat direction, a positive mass

squared which reads

m2
CW = 8Bh�2

ci . (17)

The masses of the other non-Goldstone scalars arise at tree-level and are positive as well [31].

III. PNC MODELS

Having set up the stage for PNC we move on to examine specific models.

A. Standard Model

In the SM the renormalised tree-level potential, including the gauge and Yukawa terms, reads

VSM
0 = �

⇣
H†H

⌘2 � 1
2

0
BBBB@g

2W+
µW�µ +

g2 + g02

2
ZµZµ

1
CCCCAH†H + yt(t̄L, 0)

⇣
i�2H⇤

⌘
tR + h.c. + c.t. , (18)

9

where we have set the renormalised mass to zero and neglected the Yukawa couplings to the

leptons and light quarks (with respect to the top-quark).

To compute the Veltman condition for the Higgs mass, we expand the Higgs doublet around

the electroweak background: H = 1p
2
(⇡2 + i⇡1, v+ h� i⇡3), and compute the mass-matrix, keeping

only the h-dependent part, which is what will remain in the Veltman condition for h:

M2(h)
h2 = diag

⇢
3�, �, �, �,

1
4

g2,
1
4

g2,
1
4

(g2 + g02),
1
2

y2
t ,

1
2

y2
t

�
, (19)

where the entries correspond respectively to the mass of the Higgs boson, the three (would be)

Goldstone bosons, the W+, W� and Z vector bosons and two top quark color multiplets in the

Weyl basis. Then from Eq. (12) follows Veltman’s condition for the Higgs mass:

1
2
@2Str[M2(h)]
@h2

�����
µ0

= 6�(µ0) +
9
4

g2(µ0) +
3
4

g02(µ0) � 6y2
t (µ0) = 0 . (20)

Note that this condition is independent of the vev and that once the vacuum is generated, the

Veltman conditions for the Goldstone directions disappear.

To generate the vev through the CW mechanism, we must assume the tree-level potential to be

flat at the same scale µ0 at which the Veltman condition is imposed:

�(µ0) ⇡ 0 . (21)

The Veltman condition under this constraint reduces to:

3g2(µ0) + g02(µ0) � 8y2
t (µ0) = 0 . (22)

Requiring this relation to hold, while using µ0 ⇠ v ⇡ 246 GeV and keeping m2
W = v2g2(µ0)/4 and

m2
Z = v2(g2(µ0) + g02(µ0))/4 at their physical value, leads to a too light top quark mass [32]:

4m2
t = m2

Z + 2m2
W =) mt ⇡ 73 GeV . (23)

The Higgs mass is induced at one-loop, which is given by (17) and reads

m2
h =

3
8⇡2

h 1
16

⇣
3g4 + 2g2g02 + g04

⌘
+ 4�2 � y4

t

i
v2

µ=µ0
=

3
512⇡2

⇣
3g4 + 2g2g02 + 3g04

⌘
v2 =) mh ⇡ 5 GeV . (24)

This example shows that the PNC conditions are quite constraining. In fact, as it is well-known,

working with only one of the conditions, either Veltman’s condition or the CW condition, one

would in the first case find a too large Higgs mass and the second case a too low Higgs mass. The

example also shows the predictive power of a PNC-like model, which here predicts (wrongly)

both the top and Higgs mass.
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This example shows that the PNC conditions are quite constraining. In fact, as it is well-known,

working with only one of the conditions, either Veltman’s condition or the CW condition, one

would in the first case find a too large Higgs mass and the second case a too low Higgs mass. The

example also shows the predictive power of a PNC-like model, which here predicts (wrongly)

both the top and Higgs mass.

SM without mass term is classically conformal

Breaking EW spont. and the delaying naturalness scale yields

Doesn’t work… as we already knew

CW:

Veltman:
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Considering the moduli, <H> ≠ 0 , <S> ≠ 0

10

B. SM + singlet scalar

We next consider the simplest conformal extension of the SM, where a real scalar singlet S is

added. The CW phenomenon in this model has been studied in Ref. [4, 5]. Here, we review and

extend the analysis by considering the additional constraints imposed by the Veltman condition.

The requirement of classical conformality together with renormalisability leads to the following

Z2 symmetric potential

V0 = VSM
0 + �HSH†HS2 +

�S

4
S4 + c.t. (25)

The constraint from requiring the potential to be bounded from below is found by completing the

square and reads:

� � 0 , �S � 0 , and if �HS < 0 : ��S � �2
HS . (26)

Before proceeding to the one-loop CW analysis, we impose the Veltman conditions on the

couplings to cancel the quadratic divergences at one loop. The Veltman condition for S is simple

to compute and reads:

1
2
@2Str[M2(S)]
@S2

�����
µ0

= 3�S(µ0) + 4�HS(µ0) = 0 . (27)

We observe immediately that this condition can only be satisfied if�HS < 0. The Veltman condition

for the Higgs doublet is derived as described in the previous section. The mass matrix in Eq. (19)

now has an additional entry from the field S, which is simply �HS. The Veltman condition for the

Higgs field h thus reads:

1
2
@2Str[M2(h)]
@h2

�����
µ0

= 6�(µ0) +
9
4

g2(µ0) +
3
4

g02(µ0) � 6y2
t (µ0) + �HS(µ0) = 0 . (28)

We note that there are no further one loop Veltman conditions once the electroweak vacuum is

generated, since the remaining three scalar degrees of freedom will turn into Goldstone fields.

Moreover, in the H and S basis there are no o↵-diagonal quadratic divergences at one loop.

We next consider the one-loop CW analysis under the above two constraints as a mechanism to

generate the electroweak vacuum radiatively. To study the possible classical moduli of the scalar

potential, it is su�cient to consider the Higgs doublet in a unitary gauge, where it reduces to one

degree of freedom. It is then useful to reparametrize the scalar fields in terms of polar coordinates:

H =
rp
2

0
BBBBBBB@

0

cos!

1
CCCCCCCA
, S = r sin! , (29)
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9
4

g2(µ0) +
3
4

g02(µ0) � 6y2
t (µ0) + �HS(µ0) = 0 . (28)

We note that there are no further one loop Veltman conditions once the electroweak vacuum is

generated, since the remaining three scalar degrees of freedom will turn into Goldstone fields.

Moreover, in the H and S basis there are no o↵-diagonal quadratic divergences at one loop.

We next consider the one-loop CW analysis under the above two constraints as a mechanism to

generate the electroweak vacuum radiatively. To study the possible classical moduli of the scalar

potential, it is su�cient to consider the Higgs doublet in a unitary gauge, where it reduces to one

degree of freedom. It is then useful to reparametrize the scalar fields in terms of polar coordinates:

H =
rp
2

0
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0

cos!

1
CCCCCCCA
, S = r sin! , (29)
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such that the tree-level potential of the scalar sector simplifies to:

V0 =
r4

4

⇣
� cos4! + �S sin4! + 2�HS sin2! cos2!

⌘
+ c.t. (30)

The minima of this potential will be along the ray r in some unit direction n = (cosh!i, sinh!i).
These are found by studying the first and second derivatives of the tree-level potential. The results

are:

0  � < min{�S,�HS} : h!i = 0 , (31)

0  �S < min{�,�HS} : h!i = ⇡
2
, (32)

�p��S  �HS < min{�,�S} : tan2h!i = � � �HS

�S � �HS
. (33)

Considering the CW analysis one can, for the cases �HS > max{�,�S}, also study metastable flat

directions along either ! = ⇡/2 or ! = 0. For h!i = 0 it is clear that only h gets a vev and the

CW analysis follows the SM case. The h!i = ⇡/2 case is similar to that analysis, but does not

lead to electroweak symmetry breaking. In neither case, however, the Veltman conditions can be

satisfied, since Eq. (27) requires �HS < 0. We conclude that in these two cases we cannot satisfy

the PNC conditions.

We analyse now to the third possibility, i.e. Eq. (33) to investigate whether the PNC require-

ments can be satisfied. First, we find the renormalisation condition from Eq. (7), which sets the

tree-level potential to zero along the h!i-direction. It is given by ��S � �2
HS = 0 and can also be

expressed as:

⇣p
�(µ0)�S(µ0) � �HS(µ0)

⌘ ⇣p
�(µ0)�S(µ0) + �HS(µ0)

⌘
= 0 + O(�4) . (34)

From the Veltman condition Eq. (27) we need �HS < 0, and thus setting the first parenthesis to zero

is not viable. We must therefore require the second parenthesis to vanish at the renormalisation

scale µ0:

p
�(µ0)�S(µ0) + �HS(µ0) = 0 + O(�2) . (35)

This relation saturates the stability bound of the potential, given in Eq. (26) and the tree-level

potential at the scale µ0 simplifies to:

V0(µ0) = �
✓
H†H � |�HS|

2�
S2
◆2
+ c.t. (36)

Thus the PNC requirement has lead to an SO(4, 1) symmetric tree-level potential for the scalar

sector.
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Considering the moduli, <H> ≠ 0 , <S> ≠ 0
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B. SM + singlet scalar

We next consider the simplest conformal extension of the SM, where a real scalar singlet S is

added. The CW phenomenon in this model has been studied in Ref. [4, 5]. Here, we review and

extend the analysis by considering the additional constraints imposed by the Veltman condition.

The requirement of classical conformality together with renormalisability leads to the following

Z2 symmetric potential

V0 = VSM
0 + �HSH†HS2 +

�S

4
S4 + c.t. (25)

The constraint from requiring the potential to be bounded from below is found by completing the

square and reads:

� � 0 , �S � 0 , and if �HS < 0 : ��S � �2
HS . (26)

Before proceeding to the one-loop CW analysis, we impose the Veltman conditions on the

couplings to cancel the quadratic divergences at one loop. The Veltman condition for S is simple

to compute and reads:
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We observe immediately that this condition can only be satisfied if�HS < 0. The Veltman condition
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Higgs field h thus reads:
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We note that there are no further one loop Veltman conditions once the electroweak vacuum is

generated, since the remaining three scalar degrees of freedom will turn into Goldstone fields.

Moreover, in the H and S basis there are no o↵-diagonal quadratic divergences at one loop.

We next consider the one-loop CW analysis under the above two constraints as a mechanism to

generate the electroweak vacuum radiatively. To study the possible classical moduli of the scalar

potential, it is su�cient to consider the Higgs doublet in a unitary gauge, where it reduces to one

degree of freedom. It is then useful to reparametrize the scalar fields in terms of polar coordinates:

H =
rp
2

0
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such that the tree-level potential of the scalar sector simplifies to:

V0 =
r4

4

⇣
� cos4! + �S sin4! + 2�HS sin2! cos2!

⌘
+ c.t. (30)

The minima of this potential will be along the ray r in some unit direction n = (cosh!i, sinh!i).
These are found by studying the first and second derivatives of the tree-level potential. The results

are:

0  � < min{�S,�HS} : h!i = 0 , (31)

0  �S < min{�,�HS} : h!i = ⇡
2
, (32)

�p��S  �HS < min{�,�S} : tan2h!i = � � �HS

�S � �HS
. (33)

Considering the CW analysis one can, for the cases �HS > max{�,�S}, also study metastable flat

directions along either ! = ⇡/2 or ! = 0. For h!i = 0 it is clear that only h gets a vev and the

CW analysis follows the SM case. The h!i = ⇡/2 case is similar to that analysis, but does not

lead to electroweak symmetry breaking. In neither case, however, the Veltman conditions can be

satisfied, since Eq. (27) requires �HS < 0. We conclude that in these two cases we cannot satisfy

the PNC conditions.

We analyse now to the third possibility, i.e. Eq. (33) to investigate whether the PNC require-

ments can be satisfied. First, we find the renormalisation condition from Eq. (7), which sets the

tree-level potential to zero along the h!i-direction. It is given by ��S � �2
HS = 0 and can also be

expressed as:

⇣p
�(µ0)�S(µ0) � �HS(µ0)

⌘ ⇣p
�(µ0)�S(µ0) + �HS(µ0)

⌘
= 0 + O(�4) . (34)

From the Veltman condition Eq. (27) we need �HS < 0, and thus setting the first parenthesis to zero

is not viable. We must therefore require the second parenthesis to vanish at the renormalisation

scale µ0:

p
�(µ0)�S(µ0) + �HS(µ0) = 0 + O(�2) . (35)

This relation saturates the stability bound of the potential, given in Eq. (26) and the tree-level

potential at the scale µ0 simplifies to:

V0(µ0) = �
✓
H†H � |�HS|

2�
S2
◆2
+ c.t. (36)

Thus the PNC requirement has lead to an SO(4, 1) symmetric tree-level potential for the scalar

sector.

12

Now, it follows from the CW analysis that the one-loop contribution along the tree-level flat

direction h!iwill give a non-trivial vev at some value hri, for parameter values that gives a positive

curvature. The electroweak vev fixes the value of hri through

hri cosh!i = v ⇡ 246 GeV , and we take v ⇡ µ0 . (37)

Rewriting r cosh!i as (v+ h) and r sinh!i as v tanh!i+ s, we parametrize the light and heavy mass

eigenstates by:

� = h cosh!i + s sinh!i , � = s cosh!i � h sinh!i , (38)

which have the tree-level masses:

m2
0,� = 0 , m2

0,� = 2(� � �HS)v2 . (39)

The mass of � emerges at one loop, since it is the field along the tree-level flat direction. Its

one-loop mass is given by Eq. (17) and reads:

m2
1,� =

1
8⇡2

StrM(hri)4

hri4 hri2 = cos2h!i
8⇡2v2 [6m4

W + 3m4
Z +m4

� � 12m4
t ]

= cos2h!i v2

8⇡2

 6
16

g4 +
3

16
(g2 + g02)2 + 4(� � �HS)2 � 12

4
y4

t

�
. (40)

Imposing now the Veltman conditions at the scale µ0, where �2
HS = ��S, we get that

�HS(µ0) = �3
4
�S(µ0) , �S(µ0) =

16
9
�(µ0) , cos2h!i = 4

7
, (41)

�(µ0) =
9
56

⇣
8y2

t (µ0) � 3g2(µ0) � g02(µ0)
⌘
. (42)

Thus, all parameters of the model are fixed from the experimental values of the top-quark mass

and the W and Z boson masses. The renormalization scale is approximately µ0 ⇡ v = 246 GeV.

Using the experimental values for the mass of the top, W and Z at this scale, we get:

m� ⇡ 95 GeV , m� ⇡ 541 GeV . (43)

The state � is to be identified with the Higgs boson and is a mixed state of h and S with mixing

angle h!i ⇡ 0.2⇡, making it mostly h-like. This result implies that the PNC extensions of the SM

with just one real scalar can lead to spectra close to the observed particle masses. In addition

it requires the existence of yet another heavier scalar. It would be interesting to go beyond the

one-loop analysis to investigate whether one can recover the observed value of the Higgs mass.

One should simultaneously also investigate the e↵ects of the mixing angle which will partially

modify the Higgs phenomenology.

This example also shows that quadratic divergences can cancel in a purely scalar sector, due to

an approximate SO(4, 1) symmetry.
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CW:

2 x Veltman:

PNC vs SM + Singlet Scalar + Singlet Fermion

Singlet fermions (sterile neutrinos and/or dark matter)

Considering the SM moduli, <H> ≠ 0 , <S> = 0,

9

where we have set the renormalised mass to zero and neglected the Yukawa couplings to the

leptons and light quarks (with respect to the top-quark).

To compute the Veltman condition for the Higgs mass, we expand the Higgs doublet around

the electroweak background: H = 1p
2
(⇡2 + i⇡1, v+ h� i⇡3), and compute the mass-matrix, keeping

only the h-dependent part, which is what will remain in the Veltman condition for h:

M2(h)
h2 = diag

⇢
3�, �, �, �,

1
4

g2,
1
4

g2,
1
4

(g2 + g02),
1
2

y2
t ,

1
2

y2
t

�
, (19)

where the entries correspond respectively to the mass of the Higgs boson, the three (would be)

Goldstone bosons, the W+, W� and Z vector bosons and two top quark color multiplets in the

Weyl basis. Then from Eq. (12) follows Veltman’s condition for the Higgs mass:

1
2
@2Str[M2(h)]
@h2

�����
µ0

= 6�(µ0) +
9
4

g2(µ0) +
3
4

g02(µ0) � 6y2
t (µ0) = 0 . (20)

Note that this condition is independent of the vev and that once the vacuum is generated, the

Veltman conditions for the Goldstone directions disappear.

To generate the vev through the CW mechanism, we must assume the tree-level potential to be

flat at the same scale µ0 at which the Veltman condition is imposed:

�(µ0) ⇡ 0 . (21)

The Veltman condition under this constraint reduces to:

3g2(µ0) + g02(µ0) � 8y2
t (µ0) = 0 . (22)

Requiring this relation to hold, while using µ0 ⇠ v ⇡ 246 GeV and keeping m2
W = v2g2(µ0)/4 and

m2
Z = v2(g2(µ0) + g02(µ0))/4 at their physical value, leads to a too light top quark mass [32]:

4m2
t = m2

Z + 2m2
W =) mt ⇡ 73 GeV . (23)

The Higgs mass is induced at one-loop, which is given by (17) and reads

m2
h =

3
8⇡2

h 1
16

⇣
3g4 + 2g2g02 + g04

⌘
+ 4�2 � y4

t

i
v2

µ=µ0
=

3
512⇡2

⇣
3g4 + 2g2g02 + 3g04

⌘
v2 =) mh ⇡ 5 GeV . (24)

This example shows that the PNC conditions are quite constraining. In fact, as it is well-known,

working with only one of the conditions, either Veltman’s condition or the CW condition, one

would in the first case find a too large Higgs mass and the second case a too low Higgs mass. The

example also shows the predictive power of a PNC-like model, which here predicts (wrongly)

both the top and Higgs mass.

14

where in the last equalities we used the experimental values for the couplings. Due to the stability

bound we have y(µ0) � 2.35.

From these constraints we arrive at a prediction for the mass of S and the one-loop mass of the

Higgs:

m2
h =

3
8⇡2

h 1
16

⇣
3g4 + 2g2g02 + g04

⌘
+

1
6
�2

HS � y4
t

i
v2 =) mh ⇡ 83 GeV , (50)

m2
S =

1
2
�HSv2 =) mS ⇡ 383 GeV . (51)

The mass of S is within LHC reach and coincidently it has about the same value used as benchmark

in [33]. The Higgs is lighter than the experimentally observed one. However due to the relatively

large value of �HS, higher order corrections can be relevant. The phenomenological consequences

of the model without requiring conformality but imposing the Veltman conditions are being

investigated in [35].

IV. CONCLUDING WITH AN INTRIGUING PNC CANDIDATE

From the above it is clear that the PNC models are quite constrained and therefore highly

predictive. We conclude by presenting an intriguing model where, at the one-loop level, one finds

an Higgs with the observed value of the mass, while predicting yet another massive scalar around

540 GeV. The model is surprisingly simple, consisting of just another real scalar S and a Weyl

fermion, �. The potential of the theory, together with the Yukawa interaction between S and �, is

V0 = VSM
0 + �HSH†HS2 +

�S

4
S4 + y�S(�� + �̄�̄) + c.t. (52)

Here we are using the Wess-Bagger notation for the Weyl fermion. The scalar sector is the same

as in Eq. (25) and the stability bound is therefore given by Eq. (26). We study the case where the

vev of S vanishes which implies Eq. (31) to hold. The Veltman conditions read

1
2
@2Str[M2(S)]
@S2

�����
µ0

= 3�S(µ0) + 4�HS(µ0) � 8y2
� = 0 , (53)

and

1
2
@2Str[M2(h)]
@h2

�����
µ0

= 6�(µ0) +
9
4

g2(µ0) +
3
4

g02(µ0) � 6y2
t (µ0) + �HS(µ0) = 0 . (54)

The first condition can now be satisfied due to the presence of the Yukawa coupling y� while the

second condition is identical to Eq. (28). For the CW analysis to work, we impose �(µ0) ⇡ 0 and

14

where in the last equalities we used the experimental values for the couplings. Due to the stability

bound we have y(µ0) � 2.35.

From these constraints we arrive at a prediction for the mass of S and the one-loop mass of the

Higgs:

m2
h =

3
8⇡2

h 1
16

⇣
3g4 + 2g2g02 + g04

⌘
+

1
6
�2

HS � y4
t

i
v2 =) mh ⇡ 83 GeV , (50)

m2
S =

1
2
�HSv2 =) mS ⇡ 383 GeV . (51)

The mass of S is within LHC reach and coincidently it has about the same value used as benchmark

in [33]. The Higgs is lighter than the experimentally observed one. However due to the relatively

large value of �HS, higher order corrections can be relevant. The phenomenological consequences

of the model without requiring conformality but imposing the Veltman conditions are being

investigated in [35].

IV. CONCLUDING WITH AN INTRIGUING PNC CANDIDATE

From the above it is clear that the PNC models are quite constrained and therefore highly

predictive. We conclude by presenting an intriguing model where, at the one-loop level, one finds

an Higgs with the observed value of the mass, while predicting yet another massive scalar around

540 GeV. The model is surprisingly simple, consisting of just another real scalar S and a Weyl

fermion, �. The potential of the theory, together with the Yukawa interaction between S and �, is

V0 = VSM
0 + �HSH†HS2 +

�S

4
S4 + y�S(�� + �̄�̄) + c.t. (52)

Here we are using the Wess-Bagger notation for the Weyl fermion. The scalar sector is the same

as in Eq. (25) and the stability bound is therefore given by Eq. (26). We study the case where the

vev of S vanishes which implies Eq. (31) to hold. The Veltman conditions read

1
2
@2Str[M2(S)]
@S2

�����
µ0

= 3�S(µ0) + 4�HS(µ0) � 8y2
� = 0 , (53)

and

1
2
@2Str[M2(h)]
@h2

�����
µ0

= 6�(µ0) +
9
4

g2(µ0) +
3
4

g02(µ0) � 6y2
t (µ0) + �HS(µ0) = 0 . (54)

The first condition can now be satisfied due to the presence of the Yukawa coupling y� while the

second condition is identical to Eq. (28). For the CW analysis to work, we impose �(µ0) ⇡ 0 and

14

where in the last equalities we used the experimental values for the couplings. Due to the stability

bound we have y(µ0) � 2.35.

From these constraints we arrive at a prediction for the mass of S and the one-loop mass of the

Higgs:

m2
h =

3
8⇡2

h 1
16

⇣
3g4 + 2g2g02 + g04

⌘
+

1
6
�2

HS � y4
t

i
v2 =) mh ⇡ 83 GeV , (50)
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�HSv2 =) mS ⇡ 383 GeV . (51)

The mass of S is within LHC reach and coincidently it has about the same value used as benchmark

in [33]. The Higgs is lighter than the experimentally observed one. However due to the relatively

large value of �HS, higher order corrections can be relevant. The phenomenological consequences

of the model without requiring conformality but imposing the Veltman conditions are being

investigated in [35].

IV. CONCLUDING WITH AN INTRIGUING PNC CANDIDATE

From the above it is clear that the PNC models are quite constrained and therefore highly

predictive. We conclude by presenting an intriguing model where, at the one-loop level, one finds

an Higgs with the observed value of the mass, while predicting yet another massive scalar around

540 GeV. The model is surprisingly simple, consisting of just another real scalar S and a Weyl

fermion, �. The potential of the theory, together with the Yukawa interaction between S and �, is

V0 = VSM
0 + �HSH†HS2 +

�S

4
S4 + y�S(�� + �̄�̄) + c.t. (52)

Here we are using the Wess-Bagger notation for the Weyl fermion. The scalar sector is the same

as in Eq. (25) and the stability bound is therefore given by Eq. (26). We study the case where the

vev of S vanishes which implies Eq. (31) to hold. The Veltman conditions read
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@2Str[M2(S)]
@S2

�����
µ0

= 3�S(µ0) + 4�HS(µ0) � 8y2
� = 0 , (53)

and
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@2Str[M2(h)]
@h2

�����
µ0

= 6�(µ0) +
9
4

g2(µ0) +
3
4

g02(µ0) � 6y2
t (µ0) + �HS(µ0) = 0 . (54)

The first condition can now be satisfied due to the presence of the Yukawa coupling y� while the

second condition is identical to Eq. (28). For the CW analysis to work, we impose �(µ0) ⇡ 0 and
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CW:

2 x Veltman:

PNC vs SM + Singlet Scalar + Singlet Fermion

Singlet fermions (sterile neutrinos and/or dark matter)

Considering the SM moduli, <H> ≠ 0 , <S> = 0,

9

where we have set the renormalised mass to zero and neglected the Yukawa couplings to the

leptons and light quarks (with respect to the top-quark).
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2
(⇡2 + i⇡1, v+ h� i⇡3), and compute the mass-matrix, keeping

only the h-dependent part, which is what will remain in the Veltman condition for h:

M2(h)
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⇢
3�, �, �, �,

1
4

g2,
1
4

g2,
1
4

(g2 + g02),
1
2

y2
t ,

1
2

y2
t

�
, (19)

where the entries correspond respectively to the mass of the Higgs boson, the three (would be)

Goldstone bosons, the W+, W� and Z vector bosons and two top quark color multiplets in the

Weyl basis. Then from Eq. (12) follows Veltman’s condition for the Higgs mass:
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@2Str[M2(h)]
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�����
µ0

= 6�(µ0) +
9
4

g2(µ0) +
3
4

g02(µ0) � 6y2
t (µ0) = 0 . (20)

Note that this condition is independent of the vev and that once the vacuum is generated, the

Veltman conditions for the Goldstone directions disappear.

To generate the vev through the CW mechanism, we must assume the tree-level potential to be

flat at the same scale µ0 at which the Veltman condition is imposed:

�(µ0) ⇡ 0 . (21)

The Veltman condition under this constraint reduces to:

3g2(µ0) + g02(µ0) � 8y2
t (µ0) = 0 . (22)

Requiring this relation to hold, while using µ0 ⇠ v ⇡ 246 GeV and keeping m2
W = v2g2(µ0)/4 and

m2
Z = v2(g2(µ0) + g02(µ0))/4 at their physical value, leads to a too light top quark mass [32]:

4m2
t = m2

Z + 2m2
W =) mt ⇡ 73 GeV . (23)

The Higgs mass is induced at one-loop, which is given by (17) and reads

m2
h =

3
8⇡2

h 1
16

⇣
3g4 + 2g2g02 + g04

⌘
+ 4�2 � y4

t

i
v2

µ=µ0
=

3
512⇡2

⇣
3g4 + 2g2g02 + 3g04

⌘
v2 =) mh ⇡ 5 GeV . (24)

This example shows that the PNC conditions are quite constraining. In fact, as it is well-known,

working with only one of the conditions, either Veltman’s condition or the CW condition, one

would in the first case find a too large Higgs mass and the second case a too low Higgs mass. The

example also shows the predictive power of a PNC-like model, which here predicts (wrongly)

both the top and Higgs mass.
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The first condition can now be satisfied due to the presence of the Yukawa coupling y� while the

second condition is identical to Eq. (28). For the CW analysis to work, we impose �(µ0) ⇡ 0 and

15

thus the solution to the Veltman conditions are:

�HS(µ0) = 6y2
t (µ0) � 9

4
g2(µ0) � 3

4
g02(µ0)

µ0⇡v⇡ 4.84 , (55)

�S(µ0) =
8
3

y2
�(µ0) � 4

3
�HS(µ0)

µ0⇡v⇡ 8
3

y2
�(µ0) � 6.45 , (56)

where we have used µ0 ⇡ v = 246 GeV and the experimental values for the masses of the top quark

and the W and Z bosons. The second solution sets a lower bound on y� from the stability bound

on �S, i.e. y�(µ0) � 1.55.

From these constraints we arrive at a prediction for the one-loop induced Higgs mass, and for

the tree-level mass of S:

m2
h =

3
8⇡2

h 1
16

⇣
3g4 + 2g2g02 + g04

⌘
� y4

t +
�2

HS
3

i
v2 =) mh ⇡ 126 GeV , (57)

m2
S = �HSv2 =) mS ⇡ 541 GeV . (58)

These PNC predictions do not depend on the specific details of the extra fermionic sector. Given

the relatively large values of the couplings, albeit still in the perturbative regime, it is relevant to

investigate the higher order corrections.

To summarize, we classified the degree of naturality of SM extensions using the renormalisation

group framework, and introduced the concept of perturbative natural conformality (PNC). To

further appreciate the relevance of the PNC conditions we provide, in the Appendix, one last

example featuring a Gauge-Yukawa theory possessing IR fixed points.

We have shown that the PNC framework can be highly predictive and can lead to realistic

extensions of the SM. In particular PNC models have the generic feature to predict new states

within LHC reach. Another generic feature of these models is that the Higgs self-coupling di↵ers

from the SM one.
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Conclusions

Naturalness scale could accidentally be orders of mag. higher	


Requires new physics at LHC	


Simplest realization predicts a dark sector	


Highly constrained!
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