Standard model Higgs boson results in boson decay modes using the ATLAS detector

Elodie Tiouchichine CPPM, Aix-Marseille University, CNRS/IN2P3

On behalf of the ATLAS collaboration

SUSY2014 Manchester July 21-26 2014

Introduction

LHC & ATLAS performance:

- Excellent performance of the LHC machine and ATLAS detector during the whole Run I
 - 90 / 95 % of data recorded good for physics in 2011 / 2012
- Results presented in this talk are based on 2011 and 2012 data at s^{1/2} = 7 and 8 TeV L ~ 25 fb⁻¹

Outlook:

- Latest results on : H → yy and H → ZZ* → 4I which include improvements on: * Modeling of the geometry of the detector,
 - * Energy calibration of photons, electrons and muons
 - * Methods used for the measurement of the properties...
- $H \rightarrow WW^* \rightarrow I \nu I \nu$ results and search for $H \rightarrow Z y$

$H \rightarrow \gamma\gamma$: Event selection & Backgrounds

Event selection

- 2 high energy isolated photons, cut-based ID(2012) and MVA ID(2011)
- High rejection against jets thanks to fine EM granularity

Background

- SM irreducible diphoton \rightarrow 75%
- Reducible y jet & jet jet fake \rightarrow 25%
 - \rightarrow Extracted from sideband

Categorization for mass measurement

• 10 categories depending on: η_v , P_{T_1}

converted photon \rightarrow 20% reduction on expected statistical uncertainty w.r.t analysis with no categories

Improved energy-scale calibrations for photons

New MVA calibration

 \rightarrow improve resolution on m_w by 10 %

- in situ using Z → e+ e- events,
 validation using Z → lly (for photons)
- Typically 0.2-0.6%, depending on the category for the photon energy scale uncertainty

$H \rightarrow yy$: Mass & signal strength measurement

Modeling

- Signal model Crystall Ball + Gaussian
- Background:
 - Exponential (high pt categories \rightarrow 4 categories)
 - Exponential of a 2^m order polynomial

Mass measurement method

Simultaneous unbinned fit of the mass distribution m. over the 10 categories with parameter of interest: Higgs boson mass $M_{_{\rm u}}$ and signal strength μ

Mass results

- M = 125.98 ± 0.42(stat) ± 0.28(syst) GeV
- Previous (Phys.Lett B726 88 (2013)):

- Stat. Unc increased (mainly due to statistical) fluctuation)
- Syst. Unc. Reduced by a factor of 2.5, completely dominated by energy scale syst.

Signal strength (µ) results

• $\mu = \sigma_{obs} / \sigma_{SM}$ ATLAS m_H = 125.5 GeV Analysis $H \rightarrow \gamma \gamma$ optimized to measure μ in Low p. High p. individual 2 iet hig mass (VB production mode VH categories

$H \rightarrow \gamma\gamma$: Fiducial & differential cross section (XS)

6

- Measurement of 7 fiducial XS and 12 differential XS as a function of Higgs boson kinematic variables & jets multiplicity,
- Signal extraction using Maximum likelihood fit of the m_w mass spectrum + yield corrected for detector effects.
- Test theoretical modeling of Higgs boson production mechanisms

2012 DATA ~ 20.3 fb⁻¹

Fiducial region definition

★ 2 isolated photons ★ $\gamma_1 (\gamma_2) P_{\tau} > 0.35 (0.25) \times m_{\gamma_1}$ ★ $|\eta_{\gamma}| < 2.37$

Differential XS results

Fiducial XS results

$H \rightarrow ZZ^* \rightarrow 4I$: Event selection & Backgrounds

7

Event selection Background 2 same flavor and opposite sign pairs SM ZZ → Monte Carlo simulation → 4e, 4µ, 2µ2e, 2e2µ Z+jets, ttbar \rightarrow estimated using ■ Electron ID likelihood → reducible background data-driven methods reduced by a factor of 2 w.r.t cut-based selection 1.005_F ATLAS Combined fit of track momentum and calorimeter 1.004Ē $Z \rightarrow uu$ CB muons |η|<2.5 $\circ Y \rightarrow \mu\mu$ cluster energy of electrons for E_{-} < 30 GeV 1.003 $J/\psi \rightarrow uu$ 1.002 \rightarrow improves mass resolution ~ 4% 1.001 FSR and leading Z mass constraint correction for the 0.999 $m_{\mu} \rightarrow \text{improves mass resolution} \sim 15\%$ 0.998 0.997 - Data 2012, √s=8 TeV **Electron /muon energy scale** 0.996 $L = 20.3 \text{ fb}^{-1}$ 0.995 New MVA calibration + in situ 10 10^{2} [GeV <p_> using $Z \rightarrow e+e$ -events 0.02 Validation using J/Psi හ ග 0.015 Electrons, |n|<0.60 (for electrons) Calibration uncertainty 0.01 \rightarrow the total syst. unc. is 0.005 0.05% on electron energy scale -0.005 New muon MC p_T correction -0.01F → Momentum scale Syst. -0.015 ATLAS √s=8 TeV, Unc. Of 0.04% in barrel and 10 20 30 40 50 60 0.2% for ln die Tiouchichine E₊ [GeV]

$H \rightarrow ZZ^* \rightarrow 4I$: Mass & signal strength measurement

m_{4/} [GeV]

BDT_{zz*} output ATLAS $H \rightarrow ZZ^* \rightarrow 4l$ 0.1 anal (m = 124.5 GeV u = 1.66) \s = 7 TeV: Ldt = 4.5 fb Background ZZ*, Z+jets \s = 8 TeV: Ldt = 20.3 0.08 0.06 0.5 0.04 0 0.02 -0.5 110 115 130 135 120 125 140 m_{4/} [GeV]

Mass results

- M₁ = 124.51 ± 0.52(stat) ± 0.06(syst) GeV
- Previous (Phys.Lett B726 88 (2013)):

Signal strength results

Categ	orize into VBF, VH and ggF using BDT:
μ_{ggF}	$1.66 \stackrel{+0.45}{_{-0.41}}$ (stat) $\stackrel{+0.25}{_{-0.15}}$ (syst)
$\mu_{_{VBF}}$	$0.26 \stackrel{+1.60}{_{-0.91}} (\text{stat}) \stackrel{+0.36}{_{-0.23}} (\text{syst})$
μ	$1.44 \stackrel{+0.34}{_{-0.31}}$ (stat) $\stackrel{+0.21}{_{-0.11}}$ (syst)

$H \rightarrow ZZ^* \rightarrow 4I$: Fiducial & differential XS

- Measurement of fiducial XS and differential cross section as a function of kinematic variables of the 4-leptons and jets multiplicity of pp → H → ZZ → 4l.
 Chandard LL, ZZ, Al calaction with signal avtraction in
- Standard H → ZZ → 4l selection with signal extraction in m₄ = [118-129] GeV using Maximum likelihood fit of the m₄ mass spectrum + yield corrected for detector effects.

2012 DATA ~ 20.3 fb⁻¹

Fiducial region definition

Replicate the analysis selection

Fiducial XS results

Differential XS results

Conclusion

- Statistically limited
- But no significant deviation from any of the tested predictions is observed

Width measurements: $H \rightarrow \gamma\gamma \& H \rightarrow ZZ^*$

Direct limit

- Set from the observed width of the invariant mass peak assuming no interference with background processes
- Limited by resolution of the detector
- H → yy: 95% CL: Γ_H < 5.0 GeV (expected limit 6.2 GeV for μ = 1)
- $H \rightarrow ZZ^* \rightarrow 4I$: using a per event error method,
 - Observed limit on total width $\Gamma_1 < 2.6$ GeV at 95% CL,
 - Expected limit of 3.5 GeV for μ = 1.7, 6.2 GeV for μ = 1

Indirect limit

 Using off-shell Higgs boson signal strength in the H → ZZ → 4l and H → ZZ → 2l 2v final states
 Observed (expected) 95% confidence level upper limit on Γ_H /Γ_HSM in the range 4.8–7.7 (7.0–12.0)

$H \rightarrow WW^* \rightarrow IvIv$: Results

 $m_{\rm T}$ [GeV]

(a)

$H \rightarrow Zy$: Event selection & Backgrounds

Reducible Z+jet

```
Fitted to the data
mass spectrum
(sidebands)
```

- 10 categories depending on:
- S^{1/2}, lepton flavor, p_{T_1} , $\Delta \eta_{T_2}$

Results

- Results consistent with SM hypothesis in mass range [115, 170]
- Higgs boson of 125.5 GeV upper observed (expected)limit at 95% CL is 11 (9) times SM expectation

Conclusions

- Higgs boson discovered through the combination of the following channels: $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^* \rightarrow 4I$, $H \rightarrow WW^* \rightarrow IvIv$
- Latest updated results presented in this talk for H → yy and H → ZZ* → 4I:
 Including new calibration and analysis improvements.
 - Systematic uncertainty on the mass results:
 - Reduced by a factor of 2.5 for $H \rightarrow \gamma \gamma$ channel
 - Negligible using the $H \rightarrow ZZ^* \rightarrow 4I$ channel
- Coupling, spin CP, differential cross section → All compatible with SM expectations
- No observation in the search for $H \rightarrow Z\gamma$, compatible with SM hypothesis.

- H \rightarrow yy & H \rightarrow ZZ* \rightarrow 4l mass and width: arXiv:1406.3827
- H \rightarrow yy signal strength: Phys. Lett. B 726 (2013) 88
- tt(H \rightarrow yy) signal strength limit: ATLAS-CONF-2014-043
- $H \rightarrow \gamma \gamma XS$: arXiv:1407.4222
- $H \rightarrow ZZ^* \rightarrow 4I$: signal strength: To be submitted to PRD
- H \rightarrow ZZ* \rightarrow 4I XS: ATLAS-CONF-2014-044
- Indirect Width: ATLAS-CONF-2014-042
- $H \rightarrow WW^* \rightarrow I_V I_V$: ATLAS-CONF-2013-030 & PLB 726 (2013) 89-119
- H → Zy: PLB 732C (2014), pp. 8-27

Backup

$H \rightarrow \gamma\gamma$: Mass

arXiv:1406.3827

experiments generated with this measured signal yield. The average expected statistical uncertainty on the mass for $\mu = 1.3$ is 0.35 GeV and the fraction of pseudo-experiments with a statistical error larger than the one observed in data (0.42 GeV) is about 16%. From these pseudo-experiments, the distribution of fitted masses is compared to the input mass value to verify that the average statistical uncertainty provides 68% coverage. In the previous measurement, the expected statistical uncertainty was about 0.33 GeV for $\mu = 1.55$ and the observed statistical uncertainty (0.24 GeV) was better than expected. The change in expected statistical uncertainty mostly comes from the change in the fitted signal strength, which was slightly larger in the previous measurement, as the statistical uncertainty on the mass measurement is inversely proportional to the signal strength. Changes in the mass resolutior and the event categorization also contribute to the change in the expected statistical uncertainty. The increase ir the statistical uncertainty between the previous result and this result is consistent with a statistical fluctuation from changes in the measured masses of individual events. Assuming the SM signal yield ($\mu = 1$), the statistical uncertainty on the mass measurement is expected to be 0.45 GeV.

Theoretical Models

Name	Parton Shower	fiducial region	diff. XS	QCD Precision	Quark mass in loop	EW Prec.
Powheg+Py8	Pythia 8	inclusive	all	NLO(0j) + PS	m _t =∞, m _b =0	-
MINLO HJ	Pythia 8	inclusive 1 jet	all	NLO(0,1j) + PS	m _t =∞, m _b =0	-
MINLO HJJ	Pythia 8	inclusive 2 jets	all	NLO(2j) + PS	mt=∞, mb=0	-
LHC XS	-	inclusive		NNLO+NNLL	finite m _t ,m _b ,m _c	NLO
STWZ (SCET)	-	inclusive		NNLO+NNLL'	m _t =∞, m _b =0	-
HRes	-	inclusive	kinematics of Higgs + decay	NNLO+NNLL	finite m _t ,m _b	-
BLPTW (SCET)	-	1 jet 2 jets		NLO + NNLL' approx. NLO +	mt=∞, mb=0	-
JetVHeto	-	1 jet		(N)NLO + NNLL	finite m _t ,m _b	-

From S. Laplace at ICHEP conference 2014

H → yy: Spin CP

- The standard model Higgs boson spin parity J^P = 0⁺ hypothesis is compared with alternative hypothesis : 0⁻, 1[±], 2⁺
- Polar angular distributions of the 2 photons sensitive to the Higgs boson spin

$H \rightarrow ZZ^* \rightarrow 4I$: Spin cp

- In SM Higgs J^P=0⁺
- Select events in range: 115 GeV< m₁ <150 GeV</p>
- And perform test 0⁻, 1[±], 2[±]using BDT and MELA
 - 5 production and decay angles: θ^* , θ_1 , θ_2 , Φ , Φ_1
 - Kinematic observables: m₁₂, m₃₄

Results

BDT input

variables

- J^{P} compatible with 0+
- 0- ,1+ excluded at 97.8%CL
- 1- and 2+ excluded at 94%CL and 81.8%CL

Higgs coupling measurements

$H \rightarrow WW^* \rightarrow IvIv$: Event selection & Backgrounds

Event selection

- 2 high energy and opposite charge leptons
- Large missing ET

Categorization

- Flavor of the leptons: ee, μμ, eμ
- Jet mulitplicity : 0 /1 jet (ggF),
 >1 jets VBF

Discriminants variables

• Events not fully reconstructed due to 2 v in the final state • $\Delta \phi_{\mu}$, p_{μ} , m_{μ} , $m_{T} = ((E_{T}^{\ell\ell} + E_{T}^{miss})^{2} - |\mathbf{p}_{T}^{\ell\ell} + \mathbf{E}_{T}^{miss}|^{2})^{1/2}$

- SM irreducible WW
- Top quark production
 Data-driven estimation

$H \rightarrow WW^* \rightarrow IvIv$: Results

