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Introduction

@ Neutrino Oscillations = Non-zero neutrino masses and mixing.
@ First (and so far only) conclusive ‘experimental’ evidence of BSM Physics.

@ LH neutrinos massless in the SM because
@ No RH counterpart (i.e. no Dirac mass, unlike charged fermions).
@ y; part of SU(2), doublet = No Majorana mass term v] C~1y,.
@ Accidental (B — L)-symmetry. Non-perturbative effects cannot induce neutrino mass.
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Simply adding RH neutrinos (N) requires tiny Yukawa coupling y,, < 10~'2,
A more natural way is by breaking (B — L).
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Three tree-level realizations: Type |, Il, lll Seesaw mechanism.
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@ Three tree-level realizations: Type |, Il, Il Seesaw mechanism.

@ A pertinent question in the LHC era:

Can the seesaw mechanism be tested at the LHC?

Profound implications for Leptogenesis, Dark Matter, Lepton Flavor Violation, Neutrinoless
Double Beta Decay, EDM, Vacuum Stability, etc.

[see e.g., parallel talks by Harz, llakovac, Mitra, Morisi, Niro, Teresi, Weiland.....]



Type-l Seesaw

@ Seesaw messenger: SM-singlet fermions (RH neutrinos).
@ Have a Majorana mass term MyNTC~'N, in addition to the Dirac mass Mp = vy,..
@ In the flavor basis {uf, N3}, leads to the general structure

M, = 0 Mo
v ML My
[ Minkowski '77; Mohapatra, Senjanovi¢ '79; Yanagida '79; Gell-Mann, Ramond, Slansky '79; Schechter, Valle '80]

@ In the seesaw approximation ||| < 1, where £ = MpM), Yand ||¢|| = /Tr(€TE),

o M ~ —MpM,, ' M] is the light neutrino mass matrix.

@ (= MDM/\7 is the heavy-light neutrino mixing. e

@ In a bottom-up approach, no prediction for the seesaw scale.
@ Wide range of possibilities over 20 orders of magnitude (keV - 10'* GeV)!

@ A concrete UV-completion, such as LRSM or SO(10) GUT, could fix this.
[see plenary talk by R. N. Mohapatra]



Two Testable Aspects of Seesaw

Majorana Mass Heavy-light Mixing
. U
LNV: Neutrinoless Double Beta Decay @ LFV(eg,u—ey,u —eete,

1 — econv in nuclei)
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@ Non-unitarity of the PMNS mixing matrix.

@ Sizable contribution to EW precision

observables.
@ Mixed diagram sub-dominant if small @ Do not necessarily prove the Majorana
mixing or due to cancellation effects. nature since a Dirac neutrino can also
@ Does not necessarily probe the give large LFV and non-unitarity effects.

heavy-light mixing.

Low-energy tests of Seesaw at the intensity frontier require synergy between the two aspects.




Direct Test of Seesaw

@ A direct test of both aspects of type-| seesaw at the Energy Frontier.
@ ‘Smoking gun’ signal: pp — W} — EN > Z?;Z?; wr — Kaiég[jj with no £t.

(Note: LFV for a # 3.)

@ Requires both Majorana nature of N at (sub-)TeV scale and ‘large’ heavy-light mixing to

have an observable effect at the LHC.
[A. Pilaftsis, ZPC 55, 275 (1992); A. Datta, M. Guchait and A. Pilaftsis, PRD 50, 3195 (1994); T. Han and B. Zhang, PRL

97, 171804 (2006); F. del Aguila, J. A. Aguilar-Saavedra and R. Pittau, JHEP 0710, 047 (2007)]



Direct Search Limits from LHC 7

CMS 2011
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[CMS Collaboration, PLB 717, 109 (2012); ATLAS Collaboration, ATLAS-CONF-2012-139; see the next talk by Un-ki Yang.]



Heavy Neutrino Production at the LHC

@ LHC searches so far considered onIy the s-channel process
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New Dominant Production Channel: N¢* + nj

@ EW processes involving t-channel virtual photons give rise to diffractive processes, e.g.
pp — W'yjj — £*Nj,

which are not negligible, but infrared enhanced. [PSBD, A. Pilaftsis, U. K. Yang, PRL 112, 081801 (2014)]

@ Divergent ‘inclusive’ cross section due to collinear singularity.

@ A non-zero minimum p’T required to make the production cross section finite.

o Low—p’T regime can be accounted for by an effective photon structure function of the proton
(analogous to the Weizsacker-Williams EPA for electrons). [v. M. Budnev, I. F. Ginzburg, G. V.
Meledin and V. G. Serbo, Phys. Rept. 15, 181 (1974); B. A. Kniehl, PLB 254, 267 (1991); S. Frixione, M. L. Mangano, P.
Nason and G. Ridolfi, PLB 319, 339 (1993); M. Drees, R. M. Godbole, M. Nowakowski and S. D. Rindani, PRD 50, 2335
(1994); M. Gliick, C. Pisano and E. Reya, PLB 540, 75 (2002); C. Pisano, EPJC 38, 79 (2004).]



New Dominant Production Channel: N¢* + nj

@ For tagged n-jets (with n > 1), must also include QCD processes involving virtual quarks
and gluons in the t-channel.
@ gg-fusion diagrams give the dominant contribution due to large gluon content of the proton.

l+




Comparison of the Cross Sections for pp — N¢* + nj
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Comparison of the Cross Sections for pp — N¢* + nj
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Improved Upper Limit on light-heavy Neutrino Mixing
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[PSBD, Pilaftsis and Yang, PRL 112, 081801 (2014)]



Improved Upper Limit on light-heavy Neutrino Mixing
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Comment on Direct vs Indirect Limit
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Comment on Direct vs Indirect Limit
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Large Mixing with TeV-scale My

@ In vanilla’ seesaw, for My 2 TeV, we expect € ~ MpMy ' ~ (M, My ")/? < 10-8.
@ Suppresses all mixing effects to an unobservable level.

@ Need special textures of Mp and M), to have ‘large’ mixing effects with TeV-scale My.
[Pilaftsis, Underwood '04; Kersten, Smirnov '07; Xing '09; He, Oh, Tandean, Wen "09; Ibarra, Molinaro, Petcov '10;

Deppisch, Pilaftsis *10; Mitra, Senjanovi¢, Vissani '11]
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@ In the limit ¢;, 6; — 0, the neutrino masses given by M, ~ —MDM,Q1 ME vanish, although
the heavy-light mixing &; ~ m;/M; can be large.

@ Such structures can be naturally guaranteed by some symmetries. [PSBD, Lee, Mohapatra *13]
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One example: [Kersten, Smirnov '07]

my 81 €1 0 M1 0
Mp = me 0o e (Wi[h €,0] K I'T'l,')7 My = M, 0 0
my 03 €3 0 0 Mo,

In the limit ¢;, §; — 0, the neutrino masses given by M, ~ —MDM,Q1 MB vanish, although
the heavy-light mixing &; ~ m;/M; can be large.

Such structures can be naturally guaranteed by some symmetries. [PSBD, Lee, Mohapatra '13]
However, requires quasi-degenerate heavy neutrinos.
Naively expect the LNV signal to be always suppressed.

Exceptions: (i) Resonant enhancement when Amypy ~ Iy. [Bray, Lee, Pilaftsis '07];
(i) in presence of RH gauge currents [PSBD, Mohapatra '13; PSBD, Lee, Mohapatra '13].



Another Natural Low-scale Seesaw

Inverse seesaw mechanism. [Mohapatra, PRL 56, 561 (1986); Mohapatra and Valle, PRD 34, 1642 (1986)]
Two sets of singlet fermions (N, S) with opposite lepton numbers.
In the flavor basis {I/EI NR.o Sﬁﬁ},

0 Mp 0 ;
My = (M) 0 M| and My = MpMy'us My' M+ O(u)
0 My wpus

Smallness of pg natural in the 't Hooft sense, since L-symmetry restored for ug — 0.
Allows for large mixing Vi ~ MDM,J1 without invoking cancellations.
Rich phenomenological implications. [a few PhD Theses!]

LNV signal of same-sign dileptons suppressed due to small pg.
Opposite-sign dilepton signal swapmed with large SM background (such as pp — Z + nj).
Golden channel is the trilepton signal: [del Aguila, Aguilar-Saavedra '09; Chen, PSBD '11]

Same infrared enhancement effects in the
production cross section for pp — N¢* + nj




Direct Limits on Heavy Dirac Neutrinos

@ Used the CMS model-independent search for anomalous production of multi-lepton events
using the 19.5 fb—' data at /s = 8 TeV LHC. [cMS Collaboration, arXiv:1404.5801 [hep-ex]]
@ Simulated signal events for pp — ¢£¢F ¢£ + nj (with n =0-4) using the same CMS

selection criteria.
@ Put direct constraints on the heavy Dirac neutrino parameter space.

100 200 300 400 500
my (GeV)

[A. Das, PSBD and N. Okada, PLB 735, 364 (2014)]




Conclusion

@ A simple paradigm for neutrino masses: Type-lI Seesaw.
@ Two key aspects: Majorana neutrino mass and Heavy-light neutrino mixing.

@ Can be tested individually at the Intensity Frontier and/or simultaneously at the Energy
Frontier.

@ New heavy neutrino production mechanism gives improved LHC sensitivity due to infrared
enhancement effects.

@ Improved direct limits on heavy neutrino parameter space, which are (at least) comparable
with complementary constraints from indirect searches.

@ Similar infrared enhancement effects can also be applied to other exotic searches at the
LHC, e.g. charged Higgs searches.
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THANK YOU.



pr Distribution of Jets

pT Of jetS(mN=1 00) — leading

80000 — subleading
— 3rd
— 4th

70000

60000

50000

40000

30000

20000

10000

. : | | .
50 100 150 200 250 300 350 400

o



pr Distribution of Jets
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pr Distribution of Jets
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pr Distribution of Jets

P, of jets(mN=600) R

80000 — subleading
— 3rd
— 4th

70000

60000

50000

40000

30000

20000

10000

300 350 400

o
(41}
(=3
—_
(=1
—
w
o
n
(=3
o
n
w
o



n Distribution of the Jets
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n Distribution of the Jets
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n Distribution of the Jets
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n Distribution of the Jets

Eta of jets(mN=600)

— leading
25000 — subleading
r — 3rd
C — 4th
20000_—
15000/
10000 —
) ﬁ %—_
_\ L 1 | I ‘ Ll ‘ | ‘ Ll | Ll | L1 I I L
05

-4 -3 -2 -1 0 1 2 3 4 5



Heavy Neutrino Phase Diagram for LHC
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[C.-Y. Chen, PSBD and R. N. Mohapatra, PRD 88, 033014 (2013)]



Resonant Enhancement of the LNV Signal

@ In the limit of degenerate heavy neutrinos, width effects are important.
@ Need sophisticated field-theoretic formalism, e.g. resummation of self-energy graphs
[Pilaftsis, PRD 56, 5431 (1997); NPB 504, 61 (1997)]

VV:E, Gr:t7 }107 ZO, GO

@ Define an one-loop resummed heavy neutrino propagator:

P - my + ilmfﬁ (p) ilmf12(.¢)

S(p) = ,'Imf21 (p) P — mp + ilmXp(p)

where Im%. is the absorptive part of the heavy neutrino self-energy matrix.
@ Resonant enhancement of the LNV signal when Amy ~ I y. [Bray, Lee, Pilaftsis '07]
@ For instance, for on-shell production of Ny » with 5 = (m2 + m2)/2,

— 2Amy
ALb(8) = —VAy—— + O(Amy/my)  for Amy < Ty.
Y AmE, + T3



