$\begin{array}{c} \mathcal{M} easurement \ of \ \mathcal{H} iggs \ \mathcal{C} ouplings \ and \ their \ \mathcal{I} mplications \ for \\ \mathcal{N} ew \ \mathcal{P} hysics \ \mathcal{S} cales \end{array}$

Milada Margarete Mühlleitner (KIT) Coll. with Englert, Freitas, Plehn, Rauch, Spira and Walz

SUSY 2014 University of Manchester 21-26 July 2014

What Can We Learn From Higgs Physics?

 \mathscr{B} Is it *the* Standard Model *Higgs* boson?

$\mathcal{D}etermination \ of \ the \ \mathcal{H}iggs \ \mathcal{B}oson \ \mathcal{C}ouplings$

Strategy

Combination of the production and decay channels \Rightarrow decay rates, absolute couplings

$\mathcal{D}etermination \ of \ the \ \mathcal{H}iggs \ \mathcal{B}oson \ \mathcal{C}ouplings$

Strategy

Combination of the production and decay channels \Rightarrow decay rates, absolute couplings

$$\sigma_{\mathsf{prod}}(H) \times \mathsf{BR}(H \to XX) \sim \Gamma_{\mathsf{prod}} \times \frac{\Gamma_{\mathsf{decay}}}{\Gamma_{\mathsf{tot}}}$$

Coupling measurement at the LHC

- * Determination of total width impossible w/o further assumptions
- * Not all final states are accessible
- $*\,\,\Rightarrow\, {\rm Only}$ ratios of couplings can be measured
- $*\,\Rightarrow$ Perform fits to reduced signal strengths μ

 $\mu = \frac{\sigma \times \mathsf{BR}}{(\sigma \times \mathsf{BR})_{\mathsf{SM}}}$

M.M.Mühlleitner, 22 July 2014, SUSY 2014, University of Manchester

Experimental Status: Couplings

CMS-PAS-HIG-13-005

M.M.Mühlleitner, 22 July 2014, SUSY 2014, University of Manchester

$\mathcal{W}hat \ \mathcal{C}an \ \mathcal{W}e \ \mathcal{L}earn \ \mathcal{F}rom \ \mathcal{C}oupling \ \mathcal{M}easurements?$

- The Standard Model Higgs Boson
 - $\diamond~$ Test relation $g_{hXX} \sim m_X$ predicted by Higgs mechanism

• Deviations from SM couplings — New Physics

- modified Higgs properties through mixing effects with other scalars or mixture between elementary and composite state in case of a composite particle (partial compositeness)
- modified Higgs properties through loop effects or effective low-energy operators (strong interaction)

 \mathcal{W} hat is the \mathcal{S} cale of \mathcal{N} ew \mathcal{P} hysics that can be \mathcal{P} robed?

$\mathcal{T} \textbf{heoretical} ~ \mathcal{A} \textbf{pproach to} ~ \mathcal{C} \textbf{oupling} ~ \mathcal{E} \textbf{xtraction}$

Theoretical approach couplings extracted from experimental $\mu = (\sigma \times BR)/(\sigma \times BR)_{SM}$ values

- $\ast \ \Rightarrow$ Need Lagrangian to define the meaning of the couplings
- * Effective Lagrangian w/ modified Higgs couplings \rightarrow signal rates \rightarrow fit to experimental μ values

General Coupling Modification

- * absolute value and tensor structure
- $* \Rightarrow$ determination of couplings and CP properties cannot be treated separately in general
- * \rightsquigarrow change of distributions \leftrightarrow no simple rescaling of MC predictions
- $* \Rightarrow \mathsf{LHC} \ \mathsf{Higgs} \ \mathsf{XS} \ \mathsf{WG}: \ \mathsf{interim} \ \mathsf{framework}$

\diamond For further work, see:

D.Carmi, A.Falkowski, E.Kuflik, T.Volansky; D.Carmi, A.Falkowski, E.Kuflik, T.Volansky, J.Zupan; A.Azatov, R.Contino, J.Galloway; Espinosa, Grojean, MMM, Trott; P.Giardino, K.Kannike, M.Raidal, A.Strumia; J.Ellis, T.You; M.Klute, R.Lafaye, T.Plehn, M.Rauch, D.Zerwas; M.Montull, F.Riva; I.Low, J.Lykken, G.Shaugnessy; T.Corbett, O.Eboli, J.González-Fraile, M.C. González-Garcia; Banerjee, Mukhopadhyay, Mukhopadhyaya; Cao eal; Bélanger, Dumont, Ellwanger, Gunion, Kraml; ...

(I) \mathcal{N} on- \mathcal{L} inear \mathcal{E} ffective \mathcal{L} agrangian

 \diamond Field content: SM with scalar field h; SM: $\kappa_i = 1, \overline{\kappa}_i = 0$ Contino eal '10,'12; Azatov eal; Alonso eal; Brivio eal; Elias-Miró eal; Isidori eal; Buchalla eal

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} h \ \partial^{\mu} h - \frac{1}{2} m_{h}^{2} h^{2} - \kappa_{3} \left(\frac{m_{h}^{2}}{2v} \right) h^{3} - \sum_{\psi=u,d,l} m_{\psi^{(i)}} \bar{\psi}^{(i)} \psi^{(i)} \left(1 + \kappa_{\psi} \frac{h}{v} + \ldots \right)$$

+ $m_{W}^{2} W_{\mu}^{+} W^{-\mu} \left(1 + 2\kappa_{W} \frac{h}{v} + \ldots \right) + \frac{1}{2} m_{Z}^{2} Z_{\mu} Z^{\mu} \left(1 + 2\kappa_{Z} \frac{h}{v} + \ldots \right) + \ldots$
+ $\left(\frac{\bar{\kappa}_{WW} \alpha}{\pi} W_{\mu\nu}^{+} W^{-\mu\nu} + \frac{\bar{\kappa}_{ZZ} \alpha}{2\pi} Z_{\mu\nu} Z^{\mu\nu} + \frac{\bar{\kappa}_{Z\gamma} \alpha}{\pi} Z_{\mu\nu} \gamma^{\mu\nu} + \frac{\bar{\kappa}_{\gamma} \alpha}{2\pi} \gamma_{\mu\nu} \gamma^{\mu\nu} + \frac{\bar{\kappa}_{g} \alpha_{s}}{12\pi} G_{\mu\nu}^{a} G^{a\mu\nu} \right) \frac{h}{v}$
+ $\left(\left(\bar{\kappa}_{W\partial W} W_{\nu}^{-} D_{\mu} W^{+\mu\nu} + h.c. \right) + \bar{\kappa}_{Z\partial Z} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + \bar{\kappa}_{Z\partial\gamma} Z_{\nu} \partial_{\mu} \gamma^{\mu\nu} \right) \frac{h}{v} + \ldots$

 \diamond **Remarks:** * Valid for *h* being singlet or doublet

* $\overline{\kappa}_{g,\gamma,Z\gamma}$ parametrize new physics in the hgg, $h\gamma\gamma$ and $hZ\gamma$ loop couplings

Status: Coupling Scale Factor Measurements

CMS Collaboration

ATLAS-CONF-2014-009

(II) Effective Lagrangian for a Light Higgs-Like Scalar

• Natural Mechanisms for EWSB suggest

- $\diamond~$ New physics at some scale $\Lambda \sim \mathcal{O}({\rm TeV})$
- $\diamond~$ New physics generates deviations in SM Higgs physics
- Convenient framework for model-independent analysis: Effective Lagrangian Approach

Burgess, Schnitzer; Leung eal; Buchmüller, Wyler; Grzadkowski eal; Hagiwara, Ishihara, Szalapski, Zeppenfeld; Giudice eal

- * assume few basic principles (e.g. field content, SM gauge symmetries)
- * parametrize SM deviations by higher-dimensional operators built of SM fields
- $*\,$ Operators = low-energy remnants of heavy NP integrated out at Λ \Rightarrow
- $\ast~$ Operators suppressed by scale Λ
- Example: $SU(3) \times SU(2) \times U(1)$ invariance \rightsquigarrow leading NP effects described by D = 6 operators

$$\mathcal{L}_{\mathsf{eff}} = \sum_n rac{f_n}{\Lambda^2} \mathcal{O}_n$$

$\mathcal{S} cales \ \mathcal{P} robed \ \mathcal{I} n \ \mathcal{C} oupling \ \mathcal{M} easurements$

• Use expansions in higher dimensional operators to describe coupling deviation \sim

 $g_{hXX} = g_{hXX}^{\mathsf{SM}}[1+\Delta] : \Delta = \mathcal{O}(v^2/\Lambda^2)$

 $\Lambda \gg v = {\rm characteristic}$ scale of Beyond the SM Physics

[caveat: non-decouplings effects]

• Scales to be probed in Mixing Effects

LHC coupling precision: $4 - 15\% \rightarrow \Lambda = 640 \text{ GeV}...1.2 \text{ TeV}$ HL-LHC coupling precision: $2 - 10\% \rightarrow \Lambda = 780 \text{ GeV}...1.7 \text{ TeV}$

• Scales to be probed in Loop Effects

additional loop suppression factor $\rightsquigarrow \Delta = \frac{v^2}{16\pi^2\Lambda^2}$

 \Rightarrow for $\Delta=0.02$ scale probed: $\Lambda\approx 140~{\rm GeV}$

Coupling Accuracies

Englert eal

coupling	LHC	HL-LHC	LC	HL-LC	HL-LHC + HL-LC	
hWW	0.09	0.08	0.011	0.006	0.005	
hZZ	0.11	0.08	0.008	0.005	0.004	
htt	0.15	0.12	0.040	0.017	0.015	
hbb	0.20	0.16	0.023	0.012	0.011	
h au au	0.11	0.09	0.033	0.017	0.015	
$h\gamma\gamma$	0.20	0.15	0.083	0.035	0.024	
hgg	0.30	0.08	0.054	0.028	0.024	
h_{invis}			0.008	0.004	0.004	

- * accuracy at 68% CL; deviations: $g = g_{\rm SM} [1 \pm \Delta]$
- * LHC/HL-LHC: $\int {\cal L} = 300~{\rm fb}^{-1}$ and 3000 ${\rm fb}^{-1}$
- * LC/HL-LC: 250+500 GeV/250+500 GeV+1 TeV, $\int \mathcal{L} = 250 + 500 \text{ fb}^{-1}/1150 + 1600 + 2500 \text{ fb}^{-1}$

$\mathcal{E} \textit{ffective } \mathcal{N} \textit{ew } \mathcal{P} \textit{hysics } \mathcal{S} \textit{cales}$

\mathcal{E} ffective \mathcal{N} ew \mathcal{P} hysics \mathcal{S} cales (loop, coupling factors factored out)

• Effective New Physics scales Λ_* extracted from coupling measurements

Λ_* [TeV]	LHC	HL-LHC	LC	HL-LC	HL-LHC + HL-LC	
hWW	0.82	0.87	2.35	3.18	3.48	
hZZ	0.74	0.87	2.75	3.48	3.89	
htt	0.45	0.50	0.87	1.34	1.42	
hbb	0.39	0.44	1.15	1.59	1.66	
h au au	0.52	0.58	0.96	1.34	1.42	
hgg	0.55	1.07	1.30	1.80	1.95	
$h\gamma\gamma$	0.15	0.18	0.24	0.36	0.44	

Loop-induced couplings to gluons and photons contain only the contribution of the contact terms

Composite Higgs Boson

Kaplan,Georgi; Dimopoulos eal; Dugan eal

- Bound state from a Strongly Interacting Sector not much above weak scale
- How can we obtain a light composite Higgs?

 $\mathcal{G}/\mathcal{H}_1$: contains Higgs boson as Nambu-Goldstone Boson

• Continuous interpolation between the SM and Technicolor:

$$\xi = 0 \text{ SM limit} \quad \longleftarrow \quad \xi = \frac{v^2}{f^2} = \frac{(\text{weak scale})^2}{(\text{strong coupling scale})^2} \quad \longrightarrow \quad \xi = 1 \text{ "Technicolor" limit}$$

strong sector resonances decouple, except boson

boson deccouples, vector resonances like in TC

• No hierarchy problem EWSB potential generated at one-loop through gauge and top loops

Strongly \mathcal{I} nteracting \mathcal{L} ight \mathcal{H} iggs ($S\mathcal{ILH}$)

• SILH Lagrangian: first term of an expansion in $\xi = v^2/f^2$ [f: typical scale of strong sector] Higgs couplings modified in terms of ξ Giudice,Grojean,Pomarol,Rattazzi

Englert, Freitas, MMM, Plehn, Rauch, Spira, Walz

ξ	LHC	HL-LHC	LC	HL-LC	HL-LHC+HL-LC	
universal	0.076	0.051	0.008	0.0052	0.0052	
non-universal	0.068	0.015	0.0023	0.0019	0.0019	
f [TeV]						
universal	0.89	1.09	2.82	3.41	3.41	
non-universal	0.94	1.98	5.13	5.65	5.65	

universal: fermions in spinorial representation non-universal: fermions in fundamental representation Agashe,Contino,Pomarol Contino,Da Rold,Pomarol

• Implementation for Higgs decay widths: eHDECAY

R. Contino, M. Ghezzi, C. Grojean, MMM, M. Spira

URL: http://www.itp.kit.edu/~maggie/eHDECAY/

• Implemented Parametrisations

SILH:	strongly interacting light Higgs boson, $SU(2)$ doublet
MCHM4,5:	minimal composite Higgs models
non-linear:	expansion, allows large couplg deviations from SM

\mathcal{P} rogram eHDECAY

eHDECAY

The program eDHECAY is a modified version of the latest release of HDECAY 5.10. It allows for the calculation of the partial decay widths and branching ratios of a Higgs-like boson within different parametrisations of the Lagrangian: the non-linear Lagrangian, the SILH Lagrangian and the composite Higgs parametrization according to MCHM4 or MCHM5.

Released by: Roberto Contino, Margherita Ghezzi, Christophe Grojean, Margarete Mühlleitner and Michael Spira Program: eHDECAY obtained from extending HDECAY 5.10

When you use this program, please cite the following references:

eHDECAY:R. Contino, M. Ghezzi, C. Grojean, M. Mühlleitner, M. Spira, in arXiv 1303.3876HDECAY:A. Djouadi, J. Kalinowski, M. Spira, Comput.Phys.Commun. 108 (1998) 56An update of HDECAY:A. Djouadi, J. Kalinowski, Margarete Muhlleitner, M. Spira, in arXiv:1003.1643

Informations on the Program:

- Short explanations on the program are given here.
- To be advised about future updates or important modifications, send an E-mail to margherita.ghezzi@roma1.infn.it or margarete.muehlleitner@kit.edu.

Downloading the files needed for eHDECAY:

$\mathcal{M}ixing \ \mathcal{E}ffects: \ \mathcal{H}iggs \ \mathcal{P}ortal$

• Higgs Portal

[Schabinger,Wells; Bowen,Cui,Wells; Foot,Lew,Vokas; Chacko,Goh,Harnik; Barbierie,Gregoire,Hall; Patt,Wilczek; Strassler,Zurek; Barger eal; Lebedev,Lee; Chang,Ng,Wu; Kanemura eal; Bock eal; Binot,van der Bij]

- * Hidden sector with complex structure (e.g. containing DM candidate dark world)
- * Higgs sector communicates widh hidden sector through renormalizable quartic interaction

Higgs Portal : $\mathcal{L}_p = -\eta |\phi_s|^2 |\phi_d|^2 \qquad \phi_s$ SM field, ϕ_d dark Higgs field

* Mass eigen-fields s_1, d_1 mixtures of current fields

 $s_1 = \cos \chi s + \sin \chi d$ $d_1 = -\sin \chi s + \cos \chi d$

* Couplings of SM-like Higgs boson modified universally by mixing angle

$$g_{s_1} = \cos\chi\,g_h^{\mathsf{SM}}$$

${\mathcal B} ounds \ on \ {\mathcal I} nvisible \ {\mathcal W} idth$

* SM Higgs s_1 decays into light dark sector particles $\sim \Gamma_{inv}(s_1)$ * derived limits $\Gamma_{s_1}^{inv}/\Gamma_{tot}^{SM} \leq 0.11...0.18$ (LHC), $\Gamma_{s_1}^{inv}/\Gamma_{tot}^{SM} \leq 0.04...0.11$ (HL-LHC)

\mathcal{M} ixing \mathcal{E} ffects – 2HDM

- ρ -parameter exp close to 1 \rightsquigarrow extensions of Higgs sector by SU(2) singlet or doublet
- **2HDM potential** assuming CP-conservation and global \mathbb{Z}_2 discrete symmetry $[\phi_1 \rightarrow -\phi_1]$ Flores, Sher; Gunion et al; Lee; Branco et al; Gunion, Haber

$$\begin{split} V &= m_{11} |\phi_1|^2 + m_{22}^2 |\phi_2|^2 - m_{12}^2 (\phi_1^{\dagger} \phi_2 + \mathsf{h.c}) + \lambda_1 |\phi_1|^4 + \lambda_2 |\phi_2|^4 \\ &+ \lambda_3 |\phi_1|^2 |\phi_2|^2 + \lambda_4 |\phi_1^{\dagger} \phi_2|^2 + \frac{1}{2} \lambda_5 [(\phi_1^{\dagger} \phi_2)^2 + \mathsf{h.c}] \,. \end{split}$$

• Couplings to fermions

- $\diamond~$ type I: all fermions couple only to $\phi_2;$
- ♦ type II: up-/down-type fermions couple to ϕ_2/ϕ_1 , respectively; → MSSM
- \diamond lepton-specific: quarks couple to ϕ_2 and charged leptons couple to ϕ_1 ;
- \diamond <u>flipped</u>: up-type quarks and leptons couple to ϕ_2 and down-type quarks couple to ϕ_1 .
- Higgs sector after EWSB CP-even neutral: h^0, H^0 , CP-odd neutral; A^0 , charged H^{\pm}

${\mathcal F}it$ to ${\mathcal C}ouplings$ of ${\mathcal A}ligned$ 2HDM

HDECAY for 2- $\mathcal{H}iggs$ - $\mathcal{D}oublet$ - $\mathcal{M}odels$

HDECAY for Two Higgs Doublet Models

This program is a modified version of HDECAY Version 5.11. It allows for the calculation of the partial decay widths and branching ratios in the 2HDM.

Released by: Abdelhak Djouadi, Jan Kalinowski, Margarete Mühlleitner and Michael Spira Program: HDECAY for 2HDM based on HDECAY 5.11

 When you use this program, please cite the following references:

 Manual:
 R. Harlander, M. Muhlleitner, J. Rathsman, M. Spira, O. Stal, arXiv:1312.5571 [hep-ph]

 HDECAY:
 A. Djouadi, J. Kalinowski, M. Spira, Comput.Phys.Commun. 108 (1998) 56

 An update of HDECAY:
 A. Djouadi, J. Kalinowski, Margarete Muhlleitner, M. Spira, in arXiv:1003.1643

Informations on the Program:

- Short explanations on the program are given here.
- To be advised about future updates or important modifications concerning the 2HDM version, send an E-mail to margarete.muehlleitner@kit.edu.
- · Modifs/corrected bugs are indicated explicitly in this file.

Downloading the files needed for HDECAY for 2HDM:

• <u>hdecay2hdm.tar.gz</u> contains the program package files: the input file hdecay.in; hdecay.f, dmb.f, elw.f, feynhiggs.f, haber.f, hgaga.f, hgg.f, hsqsq.f, susylha.f; a makefile for the compilation.

$\mathcal{F}urther \text{ } 2\text{-}\mathcal{H}iggs\text{-}\mathcal{D}oublet\text{-}\mathcal{M}odel \ \mathcal{P}rograms$

• Further Programs:

- * Decay program 2HDMC
- * Production program SusHi
- * Production program HIGLU
- Discussion and comparison, see: Harlander, MMM, Rathsman, Spira, Stål, 1312.5571

Eriksson, Rathsman, Stål

Harlander, Liebler, Mantler

Spira

$\mathcal{T}he \ \mathcal{MSSM} \ \mathcal{H}iggs \ \mathcal{S}ector$

Higgs masses

M_h	\lesssim	$140 { m GeV}$		
$M_{A,H,H^{\pm}}$	\sim	$\mathcal{O}(v)1$ TeV		

Ellis et al;Okada et al;Haber,Hempfling; Hoang et al;Carena et al;Heinemeyer et al; Zhang et al;Brignole et al;Harlander et al Degrassi et al;Kant et al;...

Decoupling limit:

 $M_A \sim M_H \sim M_{H^\pm} \gtrsim v$ $M_h \to$ max. value, $\tan\beta$ fixed; h becomes SM-like

Modified couplings with respect to the SM: (decoupling limit Gunion, Haber)

Φ	$g_{\Phi u ar u}$	$g_{\phi d ar d}$	$g_{\Phi VV}$
h	$c_{\alpha}/s_{\beta} \rightarrow 1$	$-s_{\alpha}/c_{\beta} \rightarrow 1$	$s_{\beta-lpha} \rightarrow 1$
H	$s_{lpha}/s_{eta} ightarrow 1/{ m tg}eta$	$c_{lpha}/c_{eta} ightarrow { m tg}eta$	$c_{eta-lpha} o 0$
A	$1/{ m tg}eta$	${ m tg}eta$	0

M.M.Mühlleitner, 22 July 2014, SUSY 2014, University of Manchester

• Partial widths of SM-like light state in the decoupling limit:

$$\begin{split} &\frac{\Gamma_{\text{SUSY}}[h^0 \to VV^*]}{\Gamma_{\text{SM}}[h \to VV^*]} \approx 1 - \frac{m_Z^4 \sin^2 2\beta}{m_{A^0}^4} \left(\cos 2\beta + R_t\right)^2, \\ &\frac{\Gamma_{\text{SUSY}}[h^0 \to uu]}{\Gamma_{\text{SM}}[h \to uu]} \approx 1 + \frac{4m_Z^2 \cos^2 \beta}{m_{A^0}^2} \left(\cos 2\beta + R_t\right), \\ &\frac{\Gamma_{\text{SUSY}}[h^0 \to dd]}{\Gamma_{\text{SM}}[h \to dd]} \approx 1 - \frac{4m_Z^2 \sin^2 \beta}{m_{A^0}^2} \left(\cos 2\beta + R_t\right) \end{split}$$

• SUSY radiative corrections dominated by top/stop loop contributions

$$\begin{aligned} R_t &\approx \frac{3(g^2 + g'^2)}{16\pi^2 \sin^2 \beta} \frac{m_t^4}{m_Z^4} \bigg[\log \frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2} + (A_t - \mu \cot 2\beta) \frac{A_t - \mu \cot \beta}{m_{\tilde{t}_1}^2 - m_{\tilde{t}_2}^2} \log \frac{m_{\tilde{t}_1}^2}{m_{\tilde{t}_2}^2} \\ &+ (A_t^2 - \mu^2 - 2A_t \mu \cot 2\beta) \bigg(\frac{A_t - \mu \cot \beta}{m_{\tilde{t}_1}^2 - m_{\tilde{t}_2}^2} \bigg)^2 \bigg(1 - \frac{m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2}{m_{\tilde{t}_1}^2 - m_{\tilde{t}_2}^2} \log \frac{m_{\tilde{t}_1}}{m_{\tilde{t}_2}^2} \bigg) \bigg] \end{aligned}$$

M.M.Mühlleitner, 22 July 2014, SUSY 2014, University of Manchester

$\mathcal{L}\text{imits on }\mathcal{H}\text{eavy }\mathcal{MSSM} \ \mathcal{M}\text{asses}$

*
$$m_{\tilde{t}_1} m_{\tilde{t}_2} = 1 \text{ TeV}^2$$
, $A_t - \mu \cot \beta \ll m_{\tilde{t}_i}$
* derived limits $m_{A^0} \gtrsim 250 \text{ GeV}$ (LHC),
 $m_{A^0} \gtrsim 280 \text{ GeV} / \gtrsim 380 \text{ GeV}$ (HL-LHC/CMS [1307.7135])

	Scenario/framework	LHC	HL-LHC	LC	HL-LC	MMM,Plehn Rauch Spira Walz	
Mixing effects	Higgs portal	0.23	0.28	0.44	0.56		
	2HDM type-II ($ anetapprox 1$)	0.52	0.58	1.15	1.6		
	2HDM type-II ($\tan\beta \approx 10$)	0.33	0.36	0.7	1.0		
Effective	D = 6 effective operators:						
interactions	hVV	0.78	0.87	2.6	3.3		
	hff	0.45	0.50	1.0	1.4		
	hgg contact	0.55	1.1	1.3	1.8		
	$h\gamma\gamma$ contact	0.15	0.18	0.24	0.36		
	Strong interactions	0.9	1.1–2.0	2.8–5.1	3.4–5.6		
Loop effects	hgg loop effects:						
	scalar triplet	0.16	0.31	0.37	0.52		
	scalar octet	0.39	0.75	0.92	1.3		
	vector octet	1.8	3.5	4.2	5.8		
	$h\gamma\gamma$ loop effects:						
	scalar triplet	0.15	0.18	0.24	0.36		
	scalar octet	0.25	0.29	0.39	0.60		
	vector octet	1.1	1.3	1.8	2.7		
	Vector-like leptons			1.2	1.5		

Higgs precision data can be sensitive to multi-TeV scales,
 beyond the reach of direct LHC searches, unless minimally
 weakly coupled scenario (← complement LHC searches).
 Pattern of deviation carries additional information on BSM physics.
 LHC+LC coupling measurement ~> unique window into BSM.

\mathcal{W} ork has only started!

$\mathcal{T}\mathsf{hank}\ \mathcal{Y}\mathsf{ou}\ \mathcal{F}\mathsf{or}\ \mathcal{Y}\mathsf{our}\ \mathcal{A}\mathsf{ttention}!$

