

THE LUX DARK MATTER SEARCHAARON MANALAYSAYfor the LUX collaborationUCDAVISUNIVERSITY OF CALIFORNIA

SUSY2014: The 22nd International Conference on Supersymmetry and Unification of Fundamental Interactions 25 July, 2014, Manchester, United Kingdom

The LUX Collaboration

Richard Gaitskell Simon Fiorucci Monica Pangilinan Jeremy Chapman **David Malling James Verbus** Samuel Chung Chan **Dongqing Huang**

Thomas Shutt	PI, Professor
Dan Akerib	PI, Professor
Karen Gibson	Postdoc
Tomasz Biesiadzinski	Postdoc
Wing H To	Postdoc
Adam Bradley	Graduate Student
Patrick Phelps	Graduate Student
Chang Lee	Graduate Student
Kati Pech	Graduate Student

PI, Professor

Postdoc

Research Associate

Graduate Student

Graduate Student

Graduate Student

Graduate Student

Graduate Student

Imperial College London

	-	•
Henrique Araujo		PI, Reader
Tim Sumner		Professor
Alastair Currie		Postdoc
Adam Bailey		Graduate Student

Imperial College London

PI, Professor

Postdoc

Postdoc

Postdoc

Postdoc

Assistant Professor

Senior Researcher

Lawrence Berkeley + UC Berkeley CAUP

Bob Jacobsen	PI, Professor
Murdock Gilchriese	Senior Scientist
Kevin Lesko	Senior Scientist
Carlos Hernandez Faham	Postdoc
Victor Gehman	Scientist
Mia Ihm	Graduate Student

Lawrence Livermore

PI, Leader of Adv. Detectors Adam Bernstein Dennis Carr Mechanical Technician Kareem Kazkaz Staff Physicist Peter Sorensen Staff Physicist John Bower Engineer

Isabel Lopes
Jose Pinto da Cunha
Vladimir Solovov
Luiz de Viveiros
Alexander Lindote
Francisco Neves
Claudio Silva

SD School of Mines

Xinhua Bai	PI, Professor
Tyler Liebsch	Graduate Student
Doug Tiedt	Graduate Student

David Taylor Mark Hanhardt

James White †

Robert Webb Rachel Mannino

Clement Sofka

A 1 (C

巫

Texas A&M

PI, Professor PI, Professor Graduate Student Graduate Student UC Davis

Project Engineer

Support Scientist

Mani Tripathi	PI, Professor
Bob Svoboda	Professor
Richard Lander	Professor
Britt Holbrook	Senior Engineer
John Thomson	Senior Machinist
Ray Gerhard	Electronics Engineer
Aaron Manalaysay	Postdoc
Richard Ott	Postdoc
Jeremy Mock	Graduate Student
James Morad	Graduate Student
Nick Walsh	Graduate Student
Michael Woods	Graduate Student
Sergey Uvarov	Graduate Student
Brian Lenardo	Graduate Student

UC Santa Barbara

Harry Nelson	PI, Professor
Mike Witherell	Professor
Dean White	Engineer
Susanne Kyre	Engineer
Carmen Carmona	Postdoc
Curt Nehrkorn	Graduate Student
Scott Haselschwardt	Graduate Student

University College London

Chamkaur Ghag PI, Lecturer Lea Reichhart Postdoc Sally Shaw Graduate Student

SUNY Albany

Matthew Szydagis PI, Professor

University of Edinburgh

PI, Reader Alex Murphy Paolo Beltrame Research Fellow James Dobson Postdoc

University of Maryland

Carter Hall PI, Professor Attila Dobi Graduate Student Graduate Student **Richard Knoche** Jon Balajthy Graduate Student

University of Rochester 0

Frank Wolfs PI, Professor Wojtek Skutski Senior Scientist Eryk Druszkiewicz Graduate Student Mongkol Moongweluwan Graduate Student

Jn	iversity	of South	n D	akota	

PI, Professor
Postdoc
Graduate Student
Graduate Student
*Now at SDSTA

LUX

Large Underground Xenon detector

(a direct-detection search, looking primarily for WIMP dark matter)

WHY USE LIQUID XENON TO LOOK FOR WIMPS?

WHY USE LIQUID XENON?

Large signal

 Scalar WIMP-nucleus interactions lead to an A² enhancement in the differential rate relative to other commonly used detection media.

Natural xenon contains
 ~50% odd isotopes, giving
 high sensitivity to spin dependent interactions.

5

WHY USE LIQUID XENON?

Low background

• Liquid detectors are easy to scale up to large size.

- Dual-phase time projection chambers feature 3-D localization of events.
- The combination of these two features permits an ultra-low-background inner region to be defined. In the quietest [central] regions of the detector, one kg of Xe will see on average one BG event in ~200 days in our signal region.

DETECTION TECHNIQUE

- LUX is a dual-phase time projection chamber (like most other liquid-noble DM experiments); essentially a cylinder of LXe.
- Primary scintillation light ("S1") is emitted from the interaction vertex, and recorded by an array of PMTs on top and bottom.
- Electrons emitted from the interaction are drifted by and applied field to the surface and into the gas, where they emit proportional scintillation light ("S2"), also recorded by the PMTs.
- This design permits:
 - Identification of multiple scatters (via S2 count).
 - 3-D localization of each vertex.
 - ER/NR discrimination (via S2/S1)
 - Sensitivity to single electrons.

SANFORD UNDERGROUND **RESEARCH FACILITY**

Davis Campus MAJORANA DEMONSTRATOR Neutrinoless double-beta decay LUXLZ

Large Underground Xenon experiment First and second generation dark matter CUBED Center for Ultra-Low Background Experiments in the Dakotas Low background counting

LUX, located on the 4850 level (~1.5 km underground) in Lead, South Dakota. ~10⁷ reduction in cosmic muon rate.

Aaron Manalaysay UCDAVIS SUSY2014

Third generation dark matter experiment

1 T neutrinoless double-beta decay experiment

Long-Baseline Neutrino Experiment

Low Background Counting

Dual Ion Accelerators for Nuclear Astrophys

Experiment Hall

4850 Level liquid argon

4850 Level DIANA Laboratory

·LBNE

Ross Campus

MAJORANA DEMONSTRATOR

Electroforming laboratory

LUX DETECTOR

The detector and cryostat live inside a
~300 tonne ultra-pure
active water shield.

LUX DETECTOR

- 47cm diameter by 48 cm height dodecagonal "cylinder".
- 370 kg LXe total, 250 kg active region
- 61 PMTs on top, 61 on bottom, specially produced for low radiogenic BGs and VUV sensitivity.
- Xenon was pre-purified via chromatographic separation, reducing residual krypton levels to 3.5±1 ppt (g/g).
- Liquid is continuously recirculated (¼ tonne per day) to maintain chemical purity.
- Ultra-low BG titanium cryostat.

SIGNAL RESPONSE

- The LUX collaboration has pioneered the use of internal, diffuse calibration sources: CH₃T (tritiated methane, for the electronic-recoil (ER) band) and ^{83m}Kr (for position corrections, energy calibration).
- The nuclear-recoil (NR) band is calibrated with external neutron sources (AmBe, ²⁵²Cf).
- ≥99.5% rejection of ER
 events at 50% NR acceptance

THE WIMP SEARCH

- 181 V/cm drift field
- 85.3 live days
- 118 kg fiducial mass
- 160 observed background events.
- Data are analyzed with a 4parameter profile likelihood test.
- p-value of 35% consistent with ER backgrounds.
- PRL 112, 091303 (2014), arXiv:1310.8214

THE WIMP SEARCH

- 181 V/cm drift field
- 85.3 live days
- 118 kg fiducial mass
- 160 observed background events.
- Data are analyzed with a 4parameter profile likelihood analysis.
- p-value of 35% consistent with ER backgrounds.
- PRL 112, 091303 (2014), arXiv:1310.8214
- 7.6x10⁻⁴⁶ cm² at 33 GeV/c²
- That's sub-zeptobarn!

The LUX Dark Matter Search

ENERGY-THRESHOLD ASSUMPTIONS

- $\mathcal{L}_{\rm eff}$ quantifies the linearity between deposited energy and scintillation signal.
- Q_y ("ionization yield") quantifies the linearity between deposited energy and ionization signal.
- Lowest-energy published direct measurement of $\mathcal{L}_{\mathrm{eff}}$ is at 3 keV, and of \mathcal{Q}_y is at 4 keV.
- LUX first results used the unphysically conservative assumption that \mathcal{L}_{eff} and \mathcal{Q}_y drop to zero below 3 keV.
- Gray curve in these plots is the NEST model prediction (pre-3keV cutoff)
- Is there any development on this front since the LUX results?

Assumed cutoff

DIRECT MEASUREMENT OF NR ENERGY SCALE IN LUX

- Measurement made in LUX with a collimated and monochromatic D-D neutron generator.
- Double-scatter events are selected, from which the scattering angle of the first vertex can be determined.
- Kinematics provides the energy deposited at the first scattering vertex, independent of ionization response.

Monochromatic, collimated 2.45 MeV neutrons

DIRECT MEASUREMENT OF NR ENERGY SCALE IN LUX

Assumed cutoff

 Direct, in situ measurement of Q_y indicates continued excellent sensitivity to NR events below 3 keV (these preliminary results extend below 1 keV!).

http://www.pa.ucla.edu/sites/default/files/webform/20140228_jverbus_ucla2014.pdf

J. Verbus, for the LUX collaboration (paper in preparation)

DIRECT MEASUREMENT OF NR ENERGY SCALE IN LUX

Assumed cutoff

- Using the determined Q_y and the measured relationship between ionization and scintillation, the scintillation energy scale can be determined from the same data.
- These data extend the measured scintillation response down to 2 keV.

http://www.pa.ucla.edu/sites/default/files/webform/20140228_jverbus_ucla2014.pdf

J. Verbus, for the LUX collaboration (paper in preparation)

Decreasing this response cutoff from 3 keV to 2 keV provides access to a factor of **70* more signal** at M = 6 GeV

access to a factor of 1000^* more signal at M = 6 GeV

Aaron Manalaysay UCDAVIS SUSY2014

*Before folding in detection efficiencies

Decreasing this response cutoff from 3 keV to 1 keV provides access to a factor <u>1000*</u> more signal at M = 6 GeV

Aaron Manalaysay UCDAVIS SUSY2014

*Before folding in detection efficiencies

THE FUTURE AND LZ

- LUX's first results (85.3 days) were cautious: we chose very conservative assumptions of the detector response.
- Re-analysis in the works, exploiting our improved understanding of LXe's response to low-energy nuclear recoils. This will also feature reduced analysis thresholds.
- LUX is a very versatile detector, capable of much more than just setting limits on "vanilla" WIMP spin-independent interactions:
 - Spin/momentum-dependent searches
 - Inelastic DM
 - Low-mass WIMP searches
 - Solar axions/ALPs
 - Astrophysics-independent limits
 - Hidden-sector searches
- We are currently gearing up for a 300-day search, projecting a factor of x5 increase in sensitivity.

THE FUTURE AND LZ

Next generation, the LUX-ZEPLIN (LZ) experiment, very recently selected as one of three "G2" DM projects! Projected for 2017-2018, 1000-fold sensitivity improvement over LUX.

O DOE, NSF to fund LUX-ZEF	2 +		M
www.sanfordlab.org/news/press	_release/doe-nsf-fund-lux-zeplin-lz-experiment-sanford-lab	▽ ᠿ 倉 ♣	Ξ
Sanfe	ord Underground Research F	acility	
A.			
HOME ABOUT US	NEWS SDSTA LBNL OFFICE BUSINESS SERVICES CAREERS CO	NTACT US	
Science	Environment Health and Safety	Education and Outreach	
DOE, NSF to f	und LUX-ZEPLIN (LZ) experiment at	E You F 8+	
Sanford Lab		Search	
Press Contact:	For Release: July 14, 2014		
Constance Walter Communications Director Office Phone: 605.722.4025 Cell Phone: 605.641.0497 Contact person by email	The Department of Energy and National Science Foundation selected LUX-ZEPLIN or "LZ" as one of three experiments that will be funded in the next-generation dark matter search. LZ will be deployed at the Sanford Lab in Lead, SD.	Subscribe to Deep Thoughts	2

CONCLUSIONS

Thanks for your attention!

- LUX's first results, after only 3 months of running, has immediately set a world record in WIMP sensitivity.
- WIMP-nucleon scalar interactions: minimum exclusion limit of $\sigma < 760$ yoctobarns at $M\chi$ =33 GeV/c².
- Expect a new re-analysis of the 3-month search, updated with input from our new NR energy-scale measurements.
- Currently gearing up for a 300-day run, expect ~x5 increase in sensitivity.
- LUX's future looks bright, with the good news of LZ's selection as one of three G2 projects.

The LUX Dark Matter Search

BACKUP SLIDES

LUX TIMELINE

POSITION RECONSTRUCTION

• 4-6 mm resolution for S2 signals in WIMP-search region

• Improves to ~3 mm at higher energies

BACKGROUNDS

- "DRU" = "differential rate unit", or evts/kg/day/keV
- Backgrounds in LUX are very well constrained by high-energy gamma ray lines.
- Events in the fiducial region are dominated by external gamma rays.
- Internal sources (⁸⁵Kr, ²¹⁴Pb, ¹²⁷Xe) also contribute.
- Full BG study available at arXiv:1403.1299

SCINTILLATION AND IONIZATION SIGNALS

THE FUTURE AND LZ

