Effect of interaction terms on particle production due to time-varying mass

[work in progress]
Seishi Enomoto (Univ. of Warsaw)
Collaborators : Olga Fuksińska (Univ. of Warsaw) Zygmunt Lalak (Univ. of Warsaw)

Outline

1. Introduction
2. How to calculate particle number
3. Calculation of particle number
4. Summary

1. Introduction

Particle production from vacuum

It is known that a varying background causes production of particles
\square Oscillating Electric field \rightarrow pair production of electrons
[E. Brezin and C. Itzykson, Phys. Rev. D 2,1191 (1970)]
Changing metric \rightarrow gravitational particle production
[L. Parker, Phys. Rev. 183, 1057 (1969)]
[L. H. Ford, Phys. Rev. D 35, 2955 (1987)]
\square Oscillating inflaton \rightarrow (p)reheating
[L. Kofman, A. D. Linde, A. A. Starobinsky, Phys. Rev. Lett. 73, 3195 (1994)] [L. Kofman, A. D. Linde, A. A. Starobinsky, Phys. Rev. D 56, 3258 (1997)]

- etc...
\square Example of scalar particle production

\square Let us consider : $\mathcal{L}_{i n t}=-\frac{1}{2} g^{2}|\phi|^{2} \chi^{2}$
ϕ : complex scalar field (classical)
χ : real scalar particle (quantum)
\square If ϕ goes near the origin, χ particles are produced
- Because
\rightarrow mass of $\chi\left(m_{\chi}=g \phi\right)$ becomes small around $|\phi|=0$
\rightarrow kinetic energy of ϕ converts to χ particles
\square produced occupation number :

$$
n_{\chi k}=V \cdot \exp \left[-\pi \frac{k^{2}+g^{2} \mu^{2}}{g v}\right]
$$

[L. Kofman, A. D. Linde, X. Liu, A. Maloney, L. McAllister and E. Silverstein, JHEP 0405, 030 (2004)].

\square Our interests

1. How about supersymmetric model?
\square What is the role of the superpartner of the background field?
2. How do (quantum) interaction terms affect particle production?
\square Usually production rates are calculated in the purely classical background
\rightarrow We would like to estimate the contribution of the quantum interaction term

\square Our interests

1. How about supersymmetric model?
\square What is the role of the superpartner of the background field?
2. How do (quantum) interaction terms affect particle production?
\square Usually production rates are calculated in the purely classical background
\rightarrow We would like to estimate the contribution of the quantum interaction term

\square Our interests

1. How about supersymmetric model?

What is the role of the superpartner of the background field?
2. How do (quantum) interaction terms affect particle production?
\square Usually production rates are calculated in the purely classical background
\rightarrow We would like to estimate the contribution of the quantum interaction term

Model in this talk
\square Super potential :

$$
\Phi=\phi+\sqrt{2} \theta \psi_{\phi}+\theta^{2} F_{\phi}
$$

$$
W=\frac{1}{2} g \Phi X^{2}
$$

$$
\mathrm{X}=\chi+\sqrt{2} \theta \psi_{\chi}+\theta^{2} F_{\chi}
$$

\rightarrow Interaction terms in components:
g : coupling

$$
\left.\mathcal{L}_{i n t}=-g^{2}|\phi|^{2}|\chi|^{2}-\frac{1}{4} g^{2}|\chi|^{4}-g\left(\frac{1}{2} \phi \psi_{\chi} \psi_{\chi}+\psi_{\phi} \psi_{\chi} \chi+\text { (h.c. }\right)\right)
$$

\square Stationary point :
$\chi=\psi_{\phi}=\psi_{\chi}=0$, but ϕ can have any value

■ Masses

$\square \phi \neq 0 \rightarrow \chi, \psi_{\chi}$: mass $=g \phi, \quad \psi_{\phi}$: massless

\square However, ψ_{ϕ} 's mass may be influenced by ϕ through loop effects...?
\square Is quantum part of ϕ also influenced?

Equations of Motion for field operators :

$$
\begin{aligned}
\phi: & 0=\left(\partial^{2}+g^{2}|\chi|^{2}\right) \phi+\frac{1}{2} g \psi_{\chi}^{\dagger} \psi_{\chi}^{\dagger} \\
\chi: & 0=\left(\partial^{2}+g^{2}|\phi|^{2}+\frac{1}{2} g^{2}|\chi|^{2}\right) \chi+g \psi_{\phi}^{\dagger} \psi_{\chi}^{\dagger} \\
\psi_{\phi}: & 0=\bar{\sigma}^{\mu} \partial_{\mu} \psi_{\phi}+i g \chi^{*} \psi_{\chi}^{\dagger} \\
\psi_{\chi}: & 0=\bar{\sigma}^{\mu} \partial_{\mu} \psi_{\chi}+i g \phi^{*} \psi_{\chi}^{\dagger}+i g \chi^{*} \psi_{\phi}^{\dagger}
\end{aligned}
$$

How do we calculate produced particle number including interaction term ?

2. How to calculate particle number

Definition of (occupation) number :

$$
n_{k}=\left\langle 0^{\text {in }}\right| a_{\mathbf{k}}^{\text {out } \dagger} a_{\mathbf{k}}^{\text {out }}\left|0^{\text {in }}\right\rangle
$$

\rightarrow Information about in-state (@ far past) and out-state (@ far future) of field needs for the calculation

How are they related to each other?

\rightarrow Asymptotic field expansion
\square An example with a scalar field
\square Operator field equation : $0=\left(\partial^{2}+M^{2}\right) \Psi+J$
\square Commutation relation : $\left[\Psi(\mathbf{x}), \dot{\Psi}^{*}(\mathbf{y})\right]=i \delta^{3}(\mathbf{x}-\mathbf{y})$
\rightarrow Formal solution (Yang-Feldman equations)

$$
\Psi(x)=\sqrt{Z} \Psi^{\mathrm{as}}(x)-i Z \int_{t^{\mathrm{as}}}^{x^{0}} d y^{0} \int d^{3} y\left[\Psi^{\mathrm{as}}(x), \Psi^{\mathrm{as}, *}(y)\right] J(y)
$$

Z : some const.

$$
\begin{gathered}
\Psi^{\text {as }}: \text { asymptotic field } \\
0=\left(\partial^{2}+M^{2}\right) \Psi^{\text {as }}
\end{gathered}
$$

\square If we take $t^{a s}=t^{\text {in }}=-\infty$ or $t^{a s}=t^{\text {out }}=+\infty$,

$$
\Psi^{\text {out }}\left(x^{\text {out }}\right)=\Psi^{\text {in }}\left(x^{\text {out }}\right)-i \sqrt{Z} \int d^{4} y\left[\Psi^{\text {in }}\left(x^{\mathrm{out}}\right), \Psi^{\text {in }}(y)\right] J(y)
$$

\square An example with a scalar field (mass) (source term)
\square Operator field equation: $0=\left(\partial^{2}+M^{2}\right) \Psi+J$
\square Commutation relation : $\left[\Psi(\mathbf{x}), \dot{\Psi}^{*}(\mathbf{y})\right]=i \delta^{3}(\mathbf{x}-\mathbf{y})$
\rightarrow Formal solution (Yang-Feldman equations)

$$
\Psi(x)=\sqrt{Z} \Psi^{\text {as }}(x)-i Z \int_{t^{\text {as }}}^{x^{0}} d y^{0} \int d^{3} y\left[\Psi^{\mathrm{as}}(x), \Psi^{\text {as }, *}(y)\right] J(y)
$$

An example with a scalar field

$\square \Psi^{\text {as }}$ is free particle, so we can expand with plane waves as

$$
\Psi^{\mathrm{as}}(x)=\int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \mathbf{k} \cdot \mathrm{x}}\left(\Psi_{k}^{\mathrm{as}}\left(x^{0}\right) a_{\mathbf{k}}^{\mathrm{as}}+\Psi_{k}^{\mathrm{as} *}\left(x^{0}\right) b_{-\mathbf{k}}^{\mathrm{as} \dagger}\right)
$$

```
plane wave
```

$$
\begin{gathered}
\text { (time dependent) wave func. } \\
0=\ddot{\Psi}_{k}^{\text {as }}+\left(\mathbf{k}^{2}+M^{2}\right) \Psi_{k}^{\text {as }}
\end{gathered}
$$

which comes from conditions

$$
\left.\left[a_{\mathbf{k}}^{\mathrm{as}}, a_{\mathbf{k}^{\prime}}^{\mathrm{as} \dagger}\right]=(2 \pi)^{3} \delta^{3}\left(\mathbf{k}-\mathbf{k}^{\prime}\right), Z\left[\Psi^{\text {as }}(\mathbf{x}), \Psi^{\text {as }}(\mathbf{y})\right]_{t \rightarrow t^{\text {as }}}=i \hbar \delta^{3}(\mathbf{x}-\mathbf{y})\right]
$$

$$
a_{\mathbf{k}}^{\mathrm{as}}=-i Z \int d^{3} x e^{-i \mathbf{k} \cdot \mathrm{x}}\left(\dot{\Psi}_{k}^{\mathrm{as} *} \Psi^{\mathrm{as}}-\Psi_{k}^{\mathrm{as} *} \dot{\Psi}^{\mathrm{as}}\right)
$$

\square An example with a scalar field
\square Relation between $a_{\mathbf{k}}^{\text {in }}$ and $a_{\mathbf{k}}^{\text {out }}$

$$
a_{\mathbf{k}}^{\text {out }}=-i Z \int d^{3} x e^{-i \mathbf{k} \cdot \mathbf{x}}\left(\dot{\Psi}_{k}^{\text {out* }} \Psi^{\text {out }}-\Psi_{k}^{\text {out } *} \Psi^{\text {out }}\right)
$$

$$
\Psi^{\text {out }}\left(x^{\mathrm{out}}\right)=\Psi^{\mathrm{in}}\left(x^{\mathrm{out}}\right)-i \sqrt{Z} \int d^{4} y\left[\Psi^{\mathrm{in}}\left(x^{\mathrm{out}}\right), \Psi^{\mathrm{in}, *}(y)\right] J(y)
$$

$$
a_{\mathbf{k}}^{\mathrm{out}}=\alpha_{k} a_{\mathbf{k}}^{\mathrm{in}}+\beta_{k} a_{-\mathbf{k}}^{\mathrm{in} \dagger}-i \sqrt{Z} \int d^{4} x e^{-i \mathbf{k} \cdot x}\left(\alpha_{k} \Psi_{k}^{\mathrm{in} *}-\beta_{k} \Psi_{k}^{\mathrm{in}}\right) J(y)
$$

$$
\begin{aligned}
& \text { (usual) Bogoliubov tf low } \\
& \begin{aligned}
\alpha_{k} & \equiv-i Z\left(\dot{\Psi}_{k}^{\text {out } *} \Psi_{k}^{\text {in }}-\Psi_{k}^{\text {out } *} \dot{\Psi}_{k}^{\text {in }}\right) \\
\beta_{k} & \equiv-i Z\left(\dot{\Psi}_{k}^{\text {out } *} \Psi_{k}^{\text {in } *}-\Psi_{k}^{\text {out } *} \dot{\Psi}_{k}^{\text {in } *}\right)
\end{aligned}
\end{aligned}
$$

Interaction effects

$$
\begin{gathered}
\Psi_{k}^{\text {in }}=\alpha_{k} \Psi_{k}^{\text {out }}+\beta_{k} \Psi_{k}^{\text {out } * ~} \\
\Psi_{k}^{\text {out }}=\alpha_{k}^{*} \Psi_{k}^{\text {in }}-\beta_{k}^{*} \Psi_{k}^{\text {in } * ~} \\
\left|\alpha_{k}\right|^{2}-\left|\beta_{k}\right|^{2}=1
\end{gathered}
$$

\square An example with a scalar field

- Produced (occupation) number :

$$
\begin{aligned}
n_{k} & =\left\langle 0^{\text {in }}\right| a_{\mathbf{k}}^{\text {out } \dagger} a_{\mathbf{k}}^{\text {out }}\left|0^{\text {in }}\right\rangle \\
& \left.=\left|\left(\beta_{k} a_{-\mathbf{k}}^{\text {in } \dagger}-i \sqrt{Z} \int d^{4} x e^{-i \mathbf{k} \cdot \mathbf{x}}\left(\alpha_{k} \Psi_{k}^{\text {in } *}-\beta_{k} \Psi_{k}^{\text {in }}\right) J\right)\right| 0^{\text {in }}\right\rangle\left.\right|^{2} \\
& =\left\{\begin{array}{cc}
V \cdot\left|\beta_{k}\right|^{2}+\cdots \\
\left.0+Z\left|\int d^{4} x e^{-i \mathbf{k} \cdot \mathbf{x}} \Psi_{k}^{\text {in } *} J\right| 0^{\text {in }}\right\rangle\left.\right|^{2}+\cdots & \left(\beta_{k} \neq 0\right)
\end{array} \beta_{k}=0\right)
\end{aligned}
$$

\rightarrow Particles can be produced even if $\beta_{k}=0$!

3. Calculation of particle number

Equation of Motion (again) :

Solutions for Asymptotic fields

- Assuming $\langle\phi\rangle=\langle\phi\rangle(t)$ for simplicity, then

$$
\phi^{\mathrm{as}}=\left\langle\phi^{\mathrm{as}}\right\rangle+\int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \mathbf{k} \cdot \mathrm{x}}\left(\phi_{k}^{\mathrm{as}} a_{\phi \mathbf{k}}^{\mathrm{as}}+\phi_{k}^{\mathrm{as} *} b_{\phi-\mathbf{k}}^{\mathrm{as} \dagger}\right)
$$

$$
0=\partial^{2} \phi^{\mathrm{as}} \quad \sqrt{Z_{\phi}}\left\langle\phi^{\mathrm{in}}\right\rangle=\underline{v t+i \mu}, \quad \sqrt{Z_{\phi}} \phi_{k}^{\text {in }}=\sqrt{Z_{\phi}} \phi_{k}^{\text {out }}=\frac{1}{\sqrt{2|\mathbf{k}|}} e^{-i|\mathbf{k}| t}
$$

$$
\boldsymbol{\phi}_{k}^{\text {out }}=\alpha_{k}^{*} \boldsymbol{\phi}_{k}^{\mathrm{in}}-\beta_{k}^{*} \boldsymbol{\phi}_{k}^{\mathrm{in} *}
$$

$$
\text { (valid for }|t| \gtrsim 1 / \sqrt{g v} \text {) }
$$

$$
=\left(\partial^{2}+g^{2}|\langle\phi\rangle|^{2}\right) \chi^{\text {as }}
$$

(analytic continuation) $\rightarrow \beta_{\chi k} \sim-i \exp \left[-\pi \frac{k^{2}+g^{2} \mu^{2}}{2 g v}\right]$

- Solutions for Asymptotic fields
eigen spinor for helicity op. :

$$
k^{i} \bar{\sigma}^{i} e_{\mathbf{k}}^{ \pm}= \pm|\mathbf{k}| \bar{\sigma}^{0} e_{\mathbf{k}}^{ \pm}
$$

$\square \psi_{\phi}^{\mathrm{as}}=\int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \mathbf{k} \cdot \mathrm{x}}\left(e_{\mathbf{k}}^{+} \psi_{\phi k}^{+, \mathrm{as}} a_{\psi_{\phi} \mathbf{k}}^{+\mathrm{as}}+e_{\mathbf{k}}^{-} \psi_{\phi k}^{-, \mathrm{as} *} a_{\psi_{\phi}-\mathbf{k}}^{-\mathrm{as} \dagger}\right)$

$$
\begin{aligned}
& \sqrt{Z_{\phi}} \psi_{\phi k}^{ \pm, \text {in }}=\sqrt{Z_{\phi}} \psi_{\phi k}^{ \pm, \text {out }}=\underline{\underline{e^{-i|\mathbf{k}| t}}} \cdots{ }^{0=\bar{\sigma}^{\mu} \partial_{\mu} \psi_{\phi}^{\text {as }}} \\
\rightarrow & \beta_{\psi_{\phi} k}^{ \pm}=0
\end{aligned}
$$

$\psi_{\chi}^{\mathrm{as}}=\int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \mathbf{k} \cdot \mathbf{x}} \sum_{s= \pm}\left(e_{\mathbf{k}}^{S} \psi_{\chi k}^{(+) s, \mathrm{as}} a_{\psi_{\chi} \mathbf{k}}^{s}-\sigma^{0} e_{-\mathbf{k}}^{s \dagger} \psi_{\chi k}^{(-) s, \mathrm{as} *} a_{\psi_{\chi}-\mathbf{k}}^{s \dagger}\right)$

$$
\sqrt{Z_{\chi}} \psi_{\chi k}^{(\pm) s, \text { in }} \sim \frac{1}{2}\left(\sqrt{1-\frac{g v t}{\omega_{k}}} \pm \sqrt{1+\frac{g v t}{\omega_{k}}} e^{i \theta_{k}^{s}}\right) \exp \left[-i \int^{t} d t^{\prime} \omega_{k}\left(t^{\prime}\right)\right]
$$

$$
0=\bar{\sigma}^{\mu} \partial_{\mu} \psi_{\chi}^{\mathrm{as}}+i g\left\langle\phi^{*}\right\rangle \psi_{\chi}^{\mathrm{ass} \dagger}
$$

$$
\text { (valid for }|t| \gtrsim 1 / \sqrt{g v} \text {) }
$$

$$
\left(\omega_{k} \equiv \sqrt{\mathbf{k}^{2}+Z_{\phi} g^{2}|\langle\phi\rangle|^{2}}, \quad e^{i \theta_{k}^{S}} \equiv \frac{s|\mathbf{k}|-i g \mu}{\sqrt{\mathbf{k}^{2}+g^{2} \mu^{2}}}\right)
$$

(analytic continuation) $\rightarrow \beta_{\psi_{\chi}}^{S} \sim-S \cdot \exp \left[-\pi \frac{k^{2}+g^{2} \mu^{2}}{2 g v}\right]$

\square Produced Particle number

$n_{\chi k}=\left|\beta_{\chi k}\right|^{2}+\cdots=\underline{\exp \left[-\pi \frac{k^{2}+g^{2} \mu^{2}}{g v}\right]+\cdots}$
$\square n_{\psi_{\chi} k}^{s}=\left|\beta_{\psi_{\chi} k}^{s}\right|^{2}+\cdots=\exp \left[-\pi \frac{k^{2}+g^{2} \mu^{2}}{g v}\right]+\cdots$
\rightarrow leading term is obtained
$\square n_{\phi k}=\left|\beta_{\phi k}\right|^{2}+\cdots=0+\cdots$
$\square n_{\psi_{\phi} k}^{s}=\left|\beta_{\psi_{\phi} k}^{s}\right|^{2}+\cdots=0+\underline{\underline{+\cdots}}$
Focus on!
\rightarrow need to calculate next to leading order

Calculation of $n_{\psi_{\phi} k}$

$$
\begin{aligned}
& n_{\psi_{\phi} k}=\left\langle 0^{\text {in }}\right| a_{\psi_{\phi} \mathbf{k}}^{\mathrm{s}, \text { out }} a_{\psi_{\phi} \mathbf{k}}^{\text {s,out }}\left|0^{\text {in }}\right\rangle \\
&\left.=g^{2} Z_{\phi} Z_{\chi}^{2}\left|\int d^{4} x e^{-i \mathbf{k} \cdot \mathbf{x}} \psi_{\phi k}^{\mathrm{in} *} \cdot \chi^{\mathrm{in} *} \cdot e_{\mathbf{k}}^{s \dagger} \psi_{\chi}^{\mathrm{in} \dagger}\right| 0^{\mathrm{in}}\right\rangle\left.\right|^{2}+\cdots \\
& \sim V \cdot g^{2} Z_{\phi} Z_{\chi}^{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r= \pm}\left(1-s r \frac{1}{p k}(1-\mathbf{k}\right. \\
& p
\end{aligned}\left|\int d t \psi_{\phi k}^{\mathrm{in} *} \chi_{|\mathbf{k}+\mathbf{p}|}^{\mathrm{in}} \psi_{\chi p}^{(+) r, \mathrm{in}}\right|^{2} .
$$

$$
\begin{aligned}
& \sqrt{Z_{\phi}} \psi_{\phi k}^{\mathrm{in}}=e^{-i|\mathbf{k}| t} \\
& \sqrt{Z_{\chi}} \chi_{k}^{\mathrm{in}} \sim \frac{1}{\sqrt{2 \omega_{k}}} e^{-i \int^{t} d t^{\prime} \omega_{k}\left(t^{\prime}\right)} \\
& \sqrt{Z_{\chi}} \psi_{\chi k}^{(+) s, \mathrm{in}} \sim \frac{1}{2}\left(\sqrt{1-\frac{g v t}{\omega_{k}}} \pm \sqrt{1+\frac{g v t}{\omega_{k}}} e^{i \theta_{k}^{s}}\right) e^{-i \int^{t} d t^{\prime} \omega_{k}\left(t^{\prime}\right)}
\end{aligned}
$$

\rightarrow We estimated in special case $\mathbf{k}=0$ with steepest decent method

- Analytical Result

$$
\begin{aligned}
& n_{\psi_{\phi} k=0}^{s} / V=C \cdot \frac{g^{2}}{4 \pi} \cdot \exp \left[-\pi \frac{g^{2} \mu^{2}}{g v}\right] \\
& \qquad C=\left(\frac{3}{2}\right)^{17 / 6} \frac{\Gamma(4 / 3)^{2}}{\left(\pi^{2} e\right)^{2 / 3}} \sim 0.28 \\
& \text { (c.f.) } n_{\chi k} / V \sim n_{\psi_{\chi} k}^{s} / V \sim \exp \left[-\pi \frac{k^{2}+g^{2} \mu^{2}}{g v}\right]
\end{aligned}
$$

- Produced number of ψ_{ϕ} is suppressed by factor g^{2} comparing with χ or ψ_{χ}
This results is consistent with perturbativity

\square Numerical Results

4. Summary

1. We constructed the Bogoliubov transformation taking into account interaction effects
2. We calculated produced particle's (occupation) number
$\square n_{\chi k} / V \sim n_{\psi^{k}}^{s} / V \sim \exp \left[-\pi \frac{k^{2}+g^{2} \mu^{2}}{g v}\right]$
$\square n_{\psi_{\phi} k=0}^{s} / V \sim 0.28 \cdot \frac{g^{2}}{4 \pi} \cdot \exp \left[-\pi \frac{g^{2} \mu^{2}}{g v}\right] \neq 0$
Massless particle can be produced, however the production is suppressed by the coupling
$\square n_{\phi k=0} / V$... now in progress
The numerical result shows massless bosonic statistics.

- It would be interesting to see modification induced by supersymmetry breaking terms
- this is issue under investigation

