

1. Introduction

Particle production from vacuum

It is known that a varying background causes production of particles

Oscillating Electric field \rightarrow pair production of electrons

[E. Brezin and C. Itzykson, Phys. Rev. D 2,1191 (1970)]

- Changing metric \rightarrow gravitational particle production [L. Parker, *Phys. Rev.* **183**, 1057 (1969)]
 - [L. H. Ford, Phys. Rev. D 35, 2955 (1987)]

Oscillating inflaton \rightarrow (p)reheating

[L. Kofman, A. D. Linde, A. A. Starobinsky, *Phys. Rev. Lett.* **73**, 3195 (1994)]
 [L. Kofman, A. D. Linde, A. A. Starobinsky, *Phys. Rev.* **D 56**, 3258 (1997)]

If ϕ goes near the origin, χ particles are produced

Because

→ mass of χ ($m_{\chi} = g\phi$) becomes small around $|\phi| = 0$

 \rightarrow kinetic energy of ϕ converts to χ particles

produced occupation number :

$$n_{\chi k} = V \cdot \exp\left[-\pi \frac{k^2 + g^2 \mu^2}{gv}\right]$$

[L. Kofman, A. D. Linde, X. Liu, A. Maloney,L. McAllister and E. Silverstein,JHEP 0405, 030 (2004)].

2014/07/25

Re φ

 m_{χ}

X

 $\operatorname{Im} \phi$

μ

Our interests

1. How about supersymmetric model?

What is the role of the superpartner of the background field?

- 2. How do (quantum) interaction terms affect particle production?
 - Usually production rates are calculated in the purely classical background
 - \rightarrow We would like to estimate the contribution of the quantum interaction term

Our interests

1. How about supersymmetric model?

What is the role of the superpartner of the background field?

- 2. How do (quantum) interaction terms affect particle production?
 - Usually production rates are calculated in the purely classical background
 - \rightarrow We would like to estimate the contribution of the quantum interaction term

Our interests

1. How about supersymmetric model?

What is the role of the superpartner of the background field?

- 2. How do (quantum) interaction terms affect particle production?
 - Usually production rates are calculated in the purely classical background
 - \rightarrow We would like to estimate the contribution of the quantum interaction term

Model in this talk

Super potential :

$$W = \frac{1}{2}g\Phi X^{2}$$

$$W = \frac{1}{2}g\Phi X^{2}$$

$$X = \chi + \sqrt{2}\theta\psi_{\chi} + \theta^{2}F_{\chi}$$

$$g : \text{coupling}$$

$$\mathcal{L}_{int} = -g^{2}|\phi|^{2}|\chi|^{2} - \frac{1}{4}g^{2}|\chi|^{4} - g\left(\frac{1}{2}\phi\psi_{\chi}\psi_{\chi} + \psi_{\phi}\psi_{\chi}\chi + (h.c.)\right)$$
Stationary point :

$$\chi = \psi_{\phi} = \psi_{\chi} = 0, \text{ but } \phi \text{ can have } any \text{ value}$$

$$Masses \qquad \text{Production} \qquad \text{impossible} \qquad \text{Im } \phi \neq \phi$$

$$\Phi = 0 \rightarrow \chi, \ \psi_{\chi}: \text{ mass} = g\phi, \ \psi_{\phi}: \text{ massless}$$

However, ψ_{ϕ} 's mass may be influenced by ϕ through loop effects...? Is quantum part of ϕ also influenced? Equations of Motion for field operators :

2. How to calculate particle number

Definition of (occupation) number :

 $n_k = \left< 0^{\rm in} \left| a_{\mathbf{k}}^{\rm out\dagger} a_{\mathbf{k}}^{\rm out} \right| 0^{\rm in} \right>$

→ Information about in-state (@ far past) and out-state (@ far future) of field needs for the calculation

How are they related to each other?

(in-state) (out-state)

 \rightarrow Asymptotic field expansion

- Operator field equation : $0 = (\partial^2 + M^2)\Psi + J$
- Commutation relation : $[\Psi(\mathbf{x}), \dot{\Psi}^*(\mathbf{y})] = i\delta^3(\mathbf{x} \mathbf{y})$

→ Formal solution (*Yang-Feldman equations*)

$$\Psi(x) = \sqrt{Z}\Psi^{as}(x) - iZ \int_{t^{as}}^{x^0} dy^0 \int d^3y \left[\Psi^{as}(x), \Psi^{as,*}(y)\right] J(y)$$

$$Z : \text{ some const.} \qquad \Psi^{as} : \text{ asymptotic field} \\ 0 = (\partial^2 + M^2)\Psi^{as} \qquad J(y) \qquad \Psi^{as}(x) \qquad \Psi^{as}(x)$$

(mass) (source term)

If we take
$$t^{as} = t^{in} = -\infty$$
 or $t^{as} = t^{out} = +\infty$,

$$\Psi^{\text{out}}(x^{\text{out}}) = \Psi^{\text{in}}(x^{\text{out}}) - i\sqrt{Z} \int d^4y \left[\Psi^{\text{in}}(x^{\text{out}}), \Psi^{\text{in}}(y)\right] J(y)$$

(mass) (source term)

- Operator field equation : $0 = (\partial^2 + M^2)\Psi + J$
- Commutation relation : $[\Psi(\mathbf{x}), \dot{\Psi}^*(\mathbf{y})] = i\delta^3(\mathbf{x} \mathbf{y})$

→ Formal solution (*Yang-Feldman equations*)

Relation between $a_{\mathbf{k}}^{\mathrm{in}}$ and $a_{\mathbf{k}}^{\mathrm{out}}$

$$a_{\mathbf{k}}^{\text{out}} = -iZ \int d^{3}x \ e^{-i\mathbf{k}\cdot\mathbf{x}} \left(\dot{\Psi}_{k}^{\text{out}*} \Psi^{\text{out}} - \Psi_{k}^{\text{out}*} \Psi^{\text{out}} \right)$$
$$\leftarrow \Psi^{\text{out}}(x^{\text{out}}) = \Psi^{\text{in}}(x^{\text{out}}) - i\sqrt{Z} \int d^{4}y \left[\Psi^{\text{in}}(x^{\text{out}}), \Psi^{\text{in},*}(y) \right] J(y)$$

$$a_{\mathbf{k}}^{\text{out}} = \alpha_{k}a_{\mathbf{k}}^{\text{in}} + \beta_{k}a_{-\mathbf{k}}^{\text{in}\dagger} - i\sqrt{Z} \int d^{4}x \ e^{-i\mathbf{k}\cdot\mathbf{x}} \left(\alpha_{k}\Psi_{k}^{\text{in}*} - \beta_{k}\Psi_{k}^{\text{in}}\right) J(y)$$

$$(\text{usual) Bogoliubov tf low}$$

$$Interaction effects$$

$$\alpha_{k} \equiv -iZ \left(\dot{\Psi}_{k}^{\text{out}*}\Psi_{k}^{\text{in}} - \Psi_{k}^{\text{out}*}\dot{\Psi}_{k}^{\text{in}}\right)$$

$$\beta_{k} \equiv -iZ \left(\dot{\Psi}_{k}^{\text{out}*}\Psi_{k}^{\text{in}*} - \Psi_{k}^{\text{out}*}\dot{\Psi}_{k}^{\text{in}*}\right)$$

$$\Psi_{k}^{\text{out}} = \alpha_{k}\Psi_{k}^{\text{out}} + \beta_{k}\Psi_{k}^{\text{out}*}$$

$$|\alpha_{k}|^{2} - |\beta_{k}|^{2} = 1$$

Produced (occupation) number :

$$n_{k} = \langle 0^{\text{in}} | a_{\mathbf{k}}^{\text{out}} a_{\mathbf{k}}^{\text{out}} | 0^{\text{in}} \rangle$$

$$= \left| \left(\beta_{k} a_{-\mathbf{k}}^{\text{in}\dagger} - i\sqrt{Z} \int d^{4}x \ e^{-i\mathbf{k}\cdot\mathbf{x}} \left(\alpha_{k} \Psi_{k}^{\text{in}*} - \beta_{k} \Psi_{k}^{\text{in}} \right) J \right) | 0^{\text{in}} \rangle \right|^{2}$$

$$= \left\{ \begin{array}{c} V \cdot |\beta_{k}|^{2} + \cdots & \left[\beta_{k} \neq 0 \right] \\ 0 & + Z \left| \int d^{4}x \ e^{-i\mathbf{k}\cdot\mathbf{x}} \Psi_{k}^{\text{in}*} J \left| 0^{\text{in}} \right\rangle \right|^{2} + \cdots & \left[\beta_{k} \neq 0 \right] \\ \beta_{k} = 0 \end{array} \right\}$$

 \rightarrow Particles can be produced even if $\beta_k = 0$!

3. Calculation of particle number

Equation of Motion (again) :

$$\phi : 0 = (\partial^{2} + g^{2}|\chi|^{2})\phi + \frac{1}{2}g\psi_{\chi}^{\dagger}\psi_{\chi}^{\dagger}$$

$$\chi : 0 = (\partial^{2} + g^{2}|\phi|^{2} + \frac{1}{2}g^{2}|\chi|^{2})\chi + g\psi_{\phi}^{\dagger}\psi_{\chi}^{\dagger}$$

$$\psi_{\phi} : 0 = \bar{\sigma}^{\mu}\partial_{\mu}\psi_{\phi} + ig\chi^{*}\psi_{\chi}^{\dagger}$$

$$\psi_{\chi} : 0 = \bar{\sigma}^{\mu}\partial_{\mu}\psi_{\chi} + ig\phi^{*}\psi_{\chi}^{\dagger} + ig\chi^{*}\psi_{\phi}^{\dagger}$$

$$\phi : \underline{\text{macroscopic}}$$

$$\phi : \underline{\text{macroscopic}}$$

$$\chi, \psi_{\phi}, \psi_{\chi} : \underline{\text{microscopic}}$$

$$\varphi^{as} : 0 = \partial^{2}\phi^{as}$$

$$\chi^{as} : 0 = (\partial^{2} + g^{2}|\langle\phi\rangle|^{2})\chi^{as}$$

$$\psi_{\phi}^{as} : 0 = \bar{\sigma}^{\mu}\partial_{\mu}\psi_{\phi}^{as}$$

$$\psi_{\chi}^{as} : 0 = \bar{\sigma}^{\mu}\partial_{\mu}\psi_{\phi}^{as} + ig\langle\phi^{*}\rangle\psi_{\chi}^{as\dagger}$$

Solutions for Asymptotic fields

Solutions for Asymptotic fields
Assuming
$$\langle \phi \rangle = \langle \phi \rangle(t)$$
 for simplicity, then
 $\phi^{as} = \langle \phi^{as} \rangle + \int \frac{d^{3}k}{(2\pi)^{3}} e^{i\mathbf{k}\cdot\mathbf{x}} \left(\phi^{as}_{k} a^{as}_{\phi\mathbf{k}} + \phi^{as*}_{k} b^{as\dagger}_{\phi-\mathbf{k}}\right)$
 $0 = \partial^{2}\phi^{as}$
 $\sqrt{Z_{\phi}} \langle \phi^{in} \rangle = vt + i\mu$, $\sqrt{Z_{\phi}} \phi^{in}_{k} = \sqrt{Z_{\phi}} \phi^{out}_{k} = \frac{1}{\sqrt{2|\mathbf{k}|}} e^{-i|\mathbf{k}|t}$
 $\Rightarrow \beta_{\phi k} = 0$
 $\chi^{as} = \int \frac{d^{3}k}{(2\pi)^{3}} e^{i\mathbf{k}\cdot\mathbf{x}} \left(\chi^{as}_{k} a^{as}_{\chi\mathbf{k}} + \chi^{as*}_{k} b^{as\dagger}_{\chi-\mathbf{k}}\right)$
 $\sqrt{Z_{\chi}} \chi^{in}_{k} \sim \frac{1}{\sqrt{2\omega_{k}}} \exp\left[-i\int^{t} dt' \omega_{k}(t')\right]$ (valid for $|t| \ge 1/\sqrt{gv}$)
 $= (\partial^{2} + g^{2}|\langle \phi \rangle|^{2})\chi^{as}$ $\left(\omega_{k} \equiv \sqrt{\mathbf{k}^{2} + Z_{\phi}g^{2}|\langle \phi \rangle|^{2}}\right)$
(analytic continuation) $\Rightarrow \beta_{\chi k} \sim -i \exp\left[-\pi \frac{k^{2} + g^{2}\mu^{2}}{2gv}\right]$

Solutions for Asymptotic fields

$$\psi_{\phi}^{as} = \int \frac{d^{3}k}{(2\pi)^{3}} e^{i\mathbf{k}\cdot\mathbf{x}} \left(e_{\mathbf{k}}^{+} \psi_{\phi k}^{+,as} a_{\psi \phi \mathbf{k}}^{+as} + e_{\mathbf{k}}^{-} \psi_{\phi k}^{-,as*} a_{\psi \phi - \mathbf{k}}^{-as+} \right)$$

$$\sqrt{Z_{\phi}} \psi_{\phi k}^{\pm,in} = \sqrt{Z_{\phi}} \psi_{\phi k}^{\pm,out} = e^{-i|\mathbf{k}|t} \qquad 0 = \bar{\sigma}^{\mu} \partial_{\mu} \psi_{\phi}^{as}$$

$$\Rightarrow \beta_{\psi \phi k}^{\pm} = 0$$

$$\psi_{\chi}^{as} = \int \frac{d^{3}k}{(2\pi)^{3}} e^{i\mathbf{k}\cdot\mathbf{x}} \sum_{s=\pm} \left(e_{\mathbf{k}}^{s} \psi_{\chi k}^{(+)s,as} a_{\psi \chi \mathbf{k}}^{s} - \sigma^{0} e_{-\mathbf{k}}^{s\dagger} \psi_{\chi k}^{(-)s,as*} a_{\psi \chi - \mathbf{k}}^{s\dagger} \right)$$

$$\sqrt{Z_{\chi}} \psi_{\chi k}^{(\pm)s,in} \sim \frac{1}{2} \left(\sqrt{1 - \frac{gvt}{\omega_{k}}} \pm \sqrt{1 + \frac{gvt}{\omega_{k}}} e^{i\theta_{k}^{s}} \right) \exp\left[-i \int^{t} dt' \omega_{k}(t') \right]$$

$$0 = \bar{\sigma}^{\mu} \partial_{\mu} \psi_{\chi}^{as} + ig\langle \phi^{*} \rangle \psi_{\chi}^{as\dagger} \qquad (valid for |t| \ge 1/\sqrt{gv})$$

$$\left(\omega_{k} \equiv \sqrt{\mathbf{k}^{2} + Z_{\phi} g^{2} |\langle \phi \rangle|^{2}}, e^{i\theta_{k}^{s}} \equiv \frac{s|\mathbf{k}| - ig\mu}{\sqrt{\mathbf{k}^{2} + g^{2} \mu^{2}}} \right)$$

$$(analytic continuation) \Rightarrow \beta_{\psi_{\chi} k}^{s} \sim -s \cdot \exp\left[-\pi \frac{k^{2} + g^{2} \mu^{2}}{2gv} \right]$$

Produced Particle number

$$n_{\chi k} = \left|\beta_{\chi k}\right|^{2} + \dots = \exp\left[-\pi \frac{k^{2} + g^{2} \mu^{2}}{g v}\right] + \dots$$
$$n_{\psi_{\chi} k}^{s} = \left|\beta_{\psi_{\chi} k}^{s}\right|^{2} + \dots = \exp\left[-\pi \frac{k^{2} + g^{2} \mu^{2}}{g v}\right] + \dots$$

 \rightarrow leading term is obtained

$$n_{\phi k} = \left|\beta_{\phi k}\right|^{2} + \dots = 0 + \dots$$

$$n_{\psi \phi k}^{s} = \left|\beta_{\psi \phi k}^{s}\right|^{2} + \dots = 0 + \dots$$
Focus on!

 \rightarrow need to calculate next to leading order

Calculation of $n_{\psi_{\phi}k}$

 \rightarrow We estimated in special case $\mathbf{k} = 0$ with *steepest decent method*

Analytical Result

$$n_{\psi\phi k=0}^{s} / V = C \cdot \frac{g^2}{4\pi} \cdot \exp\left[-\pi \frac{g^2 \mu^2}{gv}\right]$$
$$\left(C = \left(\frac{3}{2}\right)^{17/6} \frac{\Gamma(4/3)^2}{(\pi^2 e)^{2/3}} \sim 0.28 \right)$$

(c.f.)
$$n_{\chi k}/V \sim n_{\psi_{\chi} k}^{s}/V \sim \exp\left[-\pi \frac{k^2 + g^2 \mu^2}{gv}\right]$$

Produced number of $\psi_{\pmb{\phi}}$ is suppressed by factor g^2 comparing with χ or ψ_{χ}

This results is consistent with perturbativity

Numerical Results Preliminary $\operatorname{Im} \Phi$ $|\Phi|, \ln n_{\varphi}, \ln n_{\chi}, \ln n_{\psi_{\varphi}}, \ln n_{\psi_{\chi}}$ Re Φ t = 9.8 $n_{\varphi k}, n_{\chi k}, n_{\psi \varphi k}, n_{\psi \chi k}$ t = 9.8 consistent with analytical expected value $\sim 2 \times \exp\left(-\pi \frac{k^2 + g^2 \mu^2}{gv}\right)$ $0.28 \times \frac{g^2}{4\pi} \times$ k

4. Summary

- 1. We constructed the Bogoliubov transformation taking into account interaction effects
- 2. We calculated produced particle's (occupation) number

$$n_{\chi k}/V \sim n_{\psi_{\chi}k}^{s}/V \sim \exp\left[-\pi \frac{k^2 + g^2 \mu^2}{gv}\right]$$
$$n_{\psi_{\phi}k=0}^{s}/V \sim 0.28 \cdot \frac{g^2}{4\pi} \cdot \exp\left[-\pi \frac{g^2 \mu^2}{gv}\right] \neq 0$$

- Massless particle can be produced, however the production is suppressed by the coupling
- $n_{\phi k=0}/V$... now in progress
 - The numerical result shows massless bosonic statistics.
 - It would be interesting to see modification induced by supersymmetry breaking terms
 - this is issue under investigation