Inclusive SUSY Particle Searches with Jets and E_{τ}^{miss} in ATLAS

Zuzana Rurikova (University of Freiburg) on behalf of the ATLAS collaboration

SUSY 2014 21-26. July 2014

Physics motivation

 Mainly SUSY R-parity conserving scenarios (LSP stable ==> missing Et (MET)) covered by this talk

Many possible sparticle decays ==> necessary to explore many final state signatures in order increase sensitivity to various models

This talk focuses on signatures with jets + MET with or without leptons

Covered analyses

0 lepton + 2-6 jets + MET	arXiv:1405.7875
0 lepton + 7-10 jets +MET	arXiv:1308.1841 (JHEP 10 (2013) 130)
1-2 lepton + jets + MET	ATLAS-CONF-2013-062
2 lepton razor	ATLAS-CONF-2013-89
2 SS leptons/3 leptons	arXiv:1404.2500 (JHEP 06 (2014) 035)
taus + jets + MET	arXiv:1407.0603

- ◆ All based on full 8TeV data sample (L \approx 20 fb⁻¹)
- Interpretations provided in terms of:
 - Complete SUSY models mSUGRA/CMSSM, GGM (general gauge mediation), GMSB, mUED, ...
 - Simplified models various production processes (assuming 100% BRs to a given decay chain)

Search strategy

What's important:

1) discriminating variables which disentangle signal/background (Signal regions SR): $N_{\ell} = N_{jet}$

$$m_{\rm eff}^{\rm inc} = \sum_{i=1}^{N} p_{\rm T,i}^{\ell} + \sum_{j=1}^{M} p_{\rm T,j} + E_{\rm T}^{\rm miss} \qquad m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}E_{\rm T}^{\rm miss}(1 - \cos(\Delta\phi(\vec{\ell}, \boldsymbol{p}_{\rm T}^{\rm miss})))$$

- having SM background (ttbar, W/Z boson, QCD, diboson) under control (dedicated control regions CR kinematically close to SRs)
- ◆ Background estimation: done via transfer factors TF (CR \rightarrow SR) (sys. errors reduced)

semi data-driven: relies on the MC shape, but likelihood fit performed simultanously in all CRs in order to obtain normalization of all background components

 fully data-driven: jet-smearing (multijet background), matrix method for fakes (leptons, photons, b-jets)

<u>0 lepton + 2-6 jets + MET</u>

- Target signals: strong production of first and second generation squarks and gluinos
- "workhorse" SUSY analysis quite universal in its reach

Signal regions:

- defined with inclusive jet multiplicity bins (e, μ veto)
- loose, medium and tight cuts on m_{eff} (incl), MET/m_{eff} or MET/ $\sqrt{H_{T}}$
- 2 SRs with 2 tagged boosted Ws introduced in order to improve sensitivity for models with chargino in decay chain Observed and expected event yields a
- Low jet multiplicity channels dominated by W/Z+jet background, high jet multiplicities by top production
- Multijet background estimated via fully data-driven jet smearing method,
 Z, W, top background constrained via CRs

Observed and expected event yields as function of SR

<u>0 lepton + 2-6 jets + MET</u>

◆ Grids with direct sparticle decays: squark \rightarrow q+LSP, gluino \rightarrow qq+LSP (dominant channels: 2-jet direct squark-squark, 4-jet direct gluino-gluino) Squark-gluino-neutralino model 2800 2600 2400 2200 2000 – – m(γ̃)=0 GeV Exp. limit (±1 σ)=0 GeV Obs. limit (±1 o m $m(\tilde{\gamma}^{0})=395$ GeV Exp. limit $m(\tilde{\chi}^{0})=395 \text{ GeV Obs. limit}$ q $--m(\tilde{\chi}^{\circ})=695$ GeV Exp. limit ■ m(γ̃)=695 GeV Obs. limit 7TeV (4.7fb⁻¹) m($\tilde{\chi}_{1}^{0}$)=0 GeV Obs 1800 1600 $\tilde{\chi}_1^0$ p1400 pATLAS 1200 L dt = 20.3 fb⁻¹, **\s**=8 TeV 1000 0-lepton, 2-6jets 800 1200 1400 1600 1800 2000 2200 2400 800 1000 Gluino mass [GeV] $\tilde{g}\tilde{g}$ production; $\tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0}$ $\widetilde{q}\widetilde{q}$ production; $\widetilde{q} \rightarrow q \widetilde{\chi}$ ∑ə 95_1400 $m^0_{\widetilde{\chi}_1}$ [GeV] -ATLAS 700 ATLAS bserved limit (+1 σ Observed limit (±1 σ Expected limit (±1 σ_{exp} ъ Ч Expected limit ($\pm 1 \sigma_{exp}$) L dt = 20.3 fb⁻¹, I s=8 TeV L dt = 20.3 fb⁻¹, /s=8 TeV 1200 600 Observed limit (4.7 fb⁻¹, 7 TeV) Observed limit (4.7 fb⁻¹, 7 TeV) 0 leptons, 2-6 jets Expected limit (4.7 fb⁻¹, 7 TeV) 0 leptons, 2-6 jets Expected limit (4.7 fb⁻¹, 7 TeV) 1000 500 800 400 8 degenerate q's * 600 300 400 200 - 1 non-degen. q 200 100 0 400 400 600 800 1000 1200 1400 300 500 600 700 800 900 1000 1100 200 Limits for non-degenerate squarks ~ 450 GeV m_a [GeV]

<u>0 lepton + 2-6 jets + MET</u>

 Simplified squark-squark and gluino-gluino grids with one-step decays via chargino: (dominant channels: 5-jet and 6-jet)

0 lepton + 7-10 jets + MET & 2 same sign and 3 lepton + MET

◆Target signals for both analyses: models with sparticles decaying via long chains (eg: gluino → stop, gluino → squark followed by chargino or chargino & neutralino2)

O lepton multijet SRs:

- multijet + flavour stream (0,1,2 b-jets)
- multijet + M² stream (R=0.4 jets

reclustered into R=1.0 jets, and cuts on fat jet mass applied to isolate signal $M_{j}^{\Sigma} = \Sigma m_{i}^{R=1}$)

2 lepton SS & 3 lepton SRs:

- very clean channels with only tiny SM background (mainly top+V, diboson and triboson production)
- Data driven estimates of fake lepton and charge flip backgrounds

7j
 8j
 9j
 10j
 8j
 9j
 10j

 0, 1 or 2>= 2 b-jets

$$M_J^{\Sigma}>340, >420$$
 GeV

 MET/ $\sqrt{H_T}>4 \sqrt{GeV}$

	SR0b	SR1b	SR3b	SR3L low	SR3L high
lepton	SS	SS	SS or 3L	3L	3L
MET [GeV]	>150	>150		[50,150	>150
N(b-jet)	0	>=1	>=3		
m _{eff} [GeV]	>400	>700	>350	>400	>400

SRs with b-jets used for 3rd generation searches - see Maria Fiascaris presentation in SUSY phenomenology session.

0 lepton + 7-10 jets +MET & 2 same sign and 3 lepton +MET

Gluino two-step

Gluino two-step via sleptons

2 same sign or 3 leptons + MET

10

1-2 leptons + 3-6 jets + MET

Target signals: simplified squark/gluino production models with decay chains containing leptons from chargino or neutralino decays

	Soft singl	e lepton	Soft di-muon	Hard single lepton			
Lepton pt	e or µ Pt	<25GeV	µ Pt<25GeV	e o	e or µ Pt>25 GeV		
N jet	3 jet	5 jet	2 jet	3 jet	5 jet	6 jet	
MET [GeV]	>400	>200	>170	>500	>300	>350	
m _r [GeV]	>10	00	>80	>150	>200	>150	

Soft lepton channels designed to cover compressed mass scenarios (SUSY, mUED)

W and top background constraint via CRs, fake leptons via matrix method

<u>1-2 leptons + 3-6 jets + MET</u>

2 lepton razor

1105, 705, 505, 305) Ge

1000

1200 M_R' [GeV]

10

Data / SM

200

400

600

800

ee/µµ

SR2

>800

>0.35

>=3

eµ

ee/uu

2 lepton razor

<u>taus + jets + MET</u>

q

 \tilde{a}

 ν_{τ}

Target signals: GMSB, natural gauge mediated nGM model (tuned version of GGM to avoid fine tuning in Higgs sector) with stau as NLSP

•Hadronically decaying taus (with veto on e/μ in pure τ -channels)

Data driven estimate of fake taus events

<u>taus + jets + MET</u>

16

Summary results

mSUGRA:

0-lepton + 2-6 jets +MET drives the exclusion at small m_0 and high $m_{1/2}$ 0-1 lepton +3 b-jets + MET drives the exclusion at medium and large m_0

Summary & Conclusions

Summary:

- No indication for SUSY particles yet
- Exclusion limits derived for many models (large parameter space excluded)
- Let's see what LHC RUN II with increased √s=13GeV and luminosity will bring !
- Going from 8 to 13 TeV SUSY cross-sections increase rapidly, eg: m(gluino)= 1.5 (2.5)TeV by factor 46(2700) top production only by factor 4

AILAS SOST Searches - 55% CL LOWER LINITS								AILAG		
Sta	atus: ICHEP 2014								\sqrt{s} = 7, 8 TeV	
	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fl	p^{-1}]	Mass limit		Reference	
	MSUGRA/CMSSM	0	2-6 jets	Yes	20.3	ilde q, ilde g	1.7 TeV	$m(\tilde{q})=m(\tilde{g})$	1405.7875	
rches	MSUGRA/CMSSM	1 e, µ	3-6 jets	Yes	20.3	ĝ	1.2 TeV	any m (\tilde{q})	ATLAS-CONF-2013-062	
	MSUGRA/CMSSM	0	7-10 jets	Yes	20.3	ĝ	1.1 TeV	any m (\tilde{q})	1308.1841	
	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$	0	2-6 jets	Yes	20.3	\widetilde{q}	850 GeV	$m(\tilde{\chi}_1^0)=0$ GeV, $m(1^{st} \text{ gen. } \tilde{q})=m(2^{nd} \text{ gen. } \tilde{q})$	1405.7875	
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$	0	2-6 jets	Yes	20.3	ĝ	1.33 TeV	$m(\tilde{\chi}_1^0)=0 \text{ GeV}$	1405.7875	
ea	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0}$	1 e,µ	3-6 jets	Yes	20.3	ĝ	1.18 TeV	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$	ATLAS-CONF-2013-062	
Š	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_1^0$	2 e, µ	0-3 jets	-	20.3	ĝ	1.12 TeV	$m(\tilde{\chi}_1^0)=0$ GeV	ATLAS-CONF-2013-089	
é	GMSB (Î NLSP)	2 e, µ	2-4 jets	Yes	4.7	ĝ	1.24 TeV	$\tan\beta < 15$	1208.4688	
Si	GMSB $(\tilde{\ell} \text{ NLSP})$	1-2 <i>τ</i> + 0-1 <i>ℓ</i>	0-2 jets	Yes	20.3	ĝ	1.6 TeV	$\tan\beta$ >20	1407.0603	
킁	GGM (bino NLSP)	2γ	-	Yes	20.3	ĝ	1.28 TeV	$m(\tilde{\chi}_1^0) > 50 \text{GeV}$	ATLAS-CONF-2014-001	
<u> </u>	GGM (wino NLSP)	$1 e, \mu + \gamma$	-	Yes	4.8	ĝ	619 GeV	$m(\tilde{\chi}_1^0) > 50 \text{GeV}$	ATLAS-CONF-2012-144	
	GGM (higgsino-bino NLSP)	γ	1 <i>b</i>	Yes	4.8	ĝ	900 GeV	m(𝔅1))>220 GeV	1211.1167	
	GGM (higgsino NLSP)	2 e, µ (Z)	0-3 jets	Yes	5.8	ĝ	690 GeV	m(NLSP)>200 GeV	ATLAS-CONF-2012-152	
	Gravitino LSP	0	mono-jet	Yes	10.5	$F^{1/2}$ scale	645 GeV	$m(ilde{G}) {>} 10^{-4} eV$	ATLAS-CONF-2012-147	

ATLAS SUSY Searches* - 95% CL Lower Limits

ATI AC Preliminar

Backup