Searches for direct electroweak production of charginos, neutralinos and sleptons with leptons and MET in ATLAS

Da XU On behalf of the ATLAS Collaboration

AT

Institute of High Energy Physics Chinese Academy of Sciences

Introduction

- Search for electroweak (EWK) SUSY below the TeV scale is motivated by naturalness arguments.
- EWK production has a low cross-section compared to strong production
 - Very challenging searches
 - But leads to multi-lepton signatures with very low SM background.
- If strong production is suppressed, EWK processes could be the dominant SUSY production at the LHC.

<u>Generic signature</u>: >=1 lepton(s) in the final state arising from the decay of charginos/neutralinos via sleptons/sneutrinos, gauge bosons or Higgs.

EWK benchmark searches

* All analyses are based on 20.3 fb-1 LHC Run-I data.

1 lepton(e/μ)+bb	2 hadronic τ	2 leptons(e/μ)	3 leptons(e/μ/τ)	4 leptons(e/μ/τ)
• ATLAS-CONF- 2013-093	• arXiv:1407.0350	• JHEP 05(2014) 071	• JHEP 04(2014) 169	• arXiv:1405.5086
• $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ via WH	 χ̃[±]₁ χ̃⁰₂ via stau/sneutrino χ̃[±]₁ χ̃[∓]₁ via stau/sneutrino Stau pair 	 χ₁[±] χ₂⁰via WZ χ₁[±] χ₁[∓] via slepton/sneutrin o/WW Slepton pair 	• $\widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0$ via slepton/stau/sne utrino/WZ/WH	• $\widetilde{\chi}_2^0 \widetilde{\chi}_3^0$ via slepton/stau/ZZ • $\widetilde{\chi}_1^{\pm} \widetilde{\chi}_1^0$
Simplified model	・Simplified model ・pMSSM	Simplified model pMSSM	 Simplified model pMSSM 	Simplified modelGGM

Simplified model

- Pure states: no mixing of wino, bino and higgsinos.
- One decay considered each time: e.g. BR($\tilde{l} \rightarrow l \tilde{\chi}_1^0$)=100%.
- Phenomenological MSSM (pMSSM)
 - 19 free parameters (MSSM + phenomenological constraints).
- General gauge mediation (GGM)
 - Specific SUSY breaking mechanism is assumed (gravitino as LSP).

* Targeting chargino, neutralino and slepton production.

* *R*-parity conservation is assumed in models presented here.

SM Background Modelling

SUSY searches rely on accurate modelling of the Standard Model backgrounds.

Standard Model

Top, multijets V, VV, VVV, Higgs & combinations of these

Combined fit of all regions and backgrounds and incl. systematic exp. and theor. uncertainties as nuisance parameters

Reducible backgrounds

Determined from data Backgrounds and methods depend on analyses

Irreducible backgrounds

Dominant sources: normalise MC in data control regions Subdominant sources: MC

← (CR)

ATLAS-CONF-2013-093

1 lepton(e/μ)+bb

 $\widetilde{\chi}_1^\pm \widetilde{\chi}_2^0$ via WH

* Wino-like $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$ (mass degenerate); bino-like $\tilde{\chi}_1^0$

* Assume 100% branching of $\tilde{\chi}_1^{\pm}$ via W and $\tilde{\chi}_2^0$ via 125GeV SM-like lightest higgs

```
* For on shell higgs:

\triangle M(\tilde{\chi}_2^0, \tilde{\chi}_1^0) > 125 GeV
```

* 125GeV SM-like higgs has highest BR for h→bb.

First search for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production via Higgs from the LHC!

- Search for events with one lepton(e,µ), MET and 2 b-tagged jets consistent with a SM higgs at 125 GeV.
- 2 SRs designed targeting large $\triangle M(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0, \tilde{\chi}_1^0)$ and low/high $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ masses.
- Main backgrounds: ttbar, W+jets
 - Reduced using mCT(mass of pair produced particles with semi-invisible decay)
 - In background fit, only mbb sidebands are used to avoid signal contamination impact.

ATLAS-CONF-2013-093

1 lepton(e/μ)+bb

No excess observed beyond SM expectation.

Exclusion limit

1D upper limit for massless LSP

<u>arXiv:1407.0350</u>

Illustration of "ABCD" method

T = C/B

T = C/B

Used for validation

and systematics

SR D

Multi-jet VR-F

Multi-iet

CR-C

1 medium

1 tight

Tau ID

m_{T2} or

meff or

 $m_{T_{T1}} + m_{T_{T2}}$

Used for nominal

ABCD method

Multi-jet

CR-A

Multi-je VR-E

Multi-iet

CR-B

2 loose

(tight veto)

2 hadronic t

- * $\widetilde{\chi}_1^{\pm}$, $\widetilde{\chi}_2^0$ (pure wino, mass degenerate); $\widetilde{\chi}_1^0$ (pure bino)
- * $\widetilde{\chi}_1^\pm$, $\widetilde{\chi}_2^0$ decay 100% to final state with (s)taus in simplified mode

First search for $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ production with hadronic tau decays from the LHC!

• 4 SRs designed targeting different models: one for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$; one for $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$; two for direct stau model, targeting high/low mass region.

Main background:

- W+jets(25-50%): one fake tau + one real tau
- multi-jet(13%-30%): two fake taus ← estimated by data-driven "ABCD" method

arXiv:1407.0350

2 hadronic T

NEW!

m_z=40 GeV

m₂=100 Ge\

m_₂=20 GeV

150 200

m_{,₀}=80 GeV

250 300 m_e [GeV]

JHEP 05(2014) 071

2 leptons(e/μ)

- 7 SRs designed targeting different models.
 - The same flavor and different flavor are considered separately in each SR.
- Main backgrounds: top-quark(ttbar and Wt) and dibosons.
 - For SM ttbar and WW: mt2 has an upper end-point at the W mass.

JHEP 05(2014) 071

2 leptons(e/μ)

- No excess beyond SM expectation.
- $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via slepton: Large improvement w.r.t 7TeV results (blue line).
- The exclusions are further extended by combining with three lepton analysis (shown later).

JHEP 04(2014) 169

3 leptons($e/\mu/T$)

- Analysis includes up to 2 hadronic taus.
- 5 SRs are defined according to the flavor and charge of the leptons, targeting different models.
- Main backgrounds: diboson, triboson, ttbarV, tZ and VH.

JHEP 04(2014) 169

3 leptons(e/µ/t)

- No excess beyond SM expectation.
- $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via slepton/WZ: Large improvement w.r.t 7TeV results (blue line).

• The exclusions are further extended by combining with two lepton analysis (shown later).

Combination of 2- and 3-lepton analysis

<u>JHEP 05(2014) 071</u> JHEP 04(2014) 169

Improved exclusion limits with combination!

SUSY-2014

arXiv:1405.5086

4 leptons($e/\mu/T$)

RPC-Simplified mode: *higgsino-like $\tilde{\chi}_{2}^{0}, \tilde{\chi}_{3}^{0}$ (mass degenerate) *bino-like $\tilde{\chi}_{1}^{0}$

- No excess beyond SM expectation.
- Upper limits have been set on the production crosssection for $\tilde{\chi}_2^0 \tilde{\chi}_3^0$ via stau/ZZ model.

- 9 SRs are defined for different models with Z-veto/Zwindow.
- Main SM background: ZZ/gamma*, Z/gamma*+X
 - Reduced by multi-lepton(tau) requirements, Z-veto, Etmiss cut.

arXiv:1405.5086

4 leptons($e/\mu/T$)

RPC-GGM mode:

- A generalization of GMSB
- Gravitino as LSP
- higgsino-like $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$, $\tilde{\chi}_1^{\pm}$ co-NLSPs
 - SR: Z window required

Summary

Light gauginos are favoured by naturalness.

- Search for direct gaugino/slepton production using 8TeV LHC Run-I data.
 - The analyses based on different lepton multiplicity/flavor.
 - No significant excess observed beyond SM expectation.
 - Large areas of parameter space have been excluded in Simplified model as well as pMSSM scenarios.

Looking forward to 13/14 TeV LHC Run-II data !

THANK YOU ③

Extra slides

Discriminating variables

 $E_{T}^{miss, rel}$ projection of E_{T}^{miss} on perpendicular axis Reduces mis-measured E_{T}^{miss} $E_{\rm T}^{\rm miss, rel.} = \begin{cases} E_{\rm T}^{\rm miss} & \text{if } \Delta \phi_{\ell,j} \ge \pi/2\\ E_{\rm T}^{\rm miss} \times \sin \Delta \phi_{\ell,j} & \text{if } \Delta \phi_{\ell,j} < \pi/2 \end{cases}$

$$\begin{array}{l} \mathbf{m_{T2}} \quad \text{stransverse mass} \\ \textit{kinematic endpoint} \sim \textit{mass of decaying particle} \\ m_{T2} = \min_{\mathbf{q}_T} \left[\max \left(m_T(\mathbf{p}_T^{\ell 1}, \mathbf{q}_T), m_T(\mathbf{p}_T^{\ell 2}, \mathbf{p}_T^{\text{miss}} - \mathbf{q}_T) \right) \right] \\ \textit{where} \quad m_T(\mathbf{p}_T, \mathbf{q}_T) = \sqrt{2(p_T q_T - \mathbf{p}_T \cdot \mathbf{q}_T)} \end{array}$$

*m*_{CT} without boost-correction:

$$m_{CT}^{2}(v_{1}, v_{2}) = \left[E_{T}(v_{1}) + E_{T}(v_{2})\right]^{2} - \left[\mathbf{p}_{T}(v_{1}) - \mathbf{p}_{T}(v_{2})\right]^{2},$$

where v_1 and v_2 denote the visible particles or particle aggregates. with:

- \blacktriangleright b_1 and b_2 as aggregates
- lepton (e or μ) is the downstream vector combined with $E_{\rm T}^{\rm miss}$ for boost-correction

 $\ln 1/(1 + \overline{b}b) + E_T^{\text{miss}}$ analysis, m_{CT} is designed to build an endpoint in ttbar:

$$m_{\text{CT}}^{\text{max}} \approx \frac{m_{\text{heavy}}^2 - m_{\text{invisible}}^2}{m_{\text{heavy}}} \quad m_{\text{CT}}^{\text{max}} \approx \frac{m_t^2 - m_W^2}{m_t} \approx 135 \text{ GeV}$$

SUSY-2014

 $m_{\rm eff} = E_{\rm T}^{\rm miss} + p_{\rm T}^{\tau 1} + p_{\rm T}^{\tau 2}$

1 lepton(e/μ)+bb

Dominant systematics:

- jet energy scale
 9.0% (11.0%)
- b-tagging 4.0%
- theoretical ones
 40%(20%)
- largest is single top 27% (16%).

```
A combination of single-electron and
single-muon triggers.
electron trigger: 24 GeV (isolated) and
60 GeV (non-isolated).
muon trigger: 24 GeV and 36 GeV.
```

arXiv:1407.0350

2 hadronic t

Di-tau trigger: p⊤ > 40 (25) GeV.

Source	W+jets	Diboson	Z+jets	Top
MC statistics	16-36%	15– $28%$	44 - 80%	23– $50%$
Theoretical uncertainty	17 – 30%	17-27%	25 – 30%	10-20%
Tau ID and trigger	10–18%	20-21%	10 - 20%	22– $28%$
Tau Energy Scale	12 - 20%	3 - 13%	4 - 12%	2–7%
Others	1 - 10%	3–9%	5 - 10%	10 - 20%
Total	34 - 48%	35 - 44%	58-85%	43 - 62%

Table 8.Summary of the systematic uncertainties for the multi-jet background estimation. Thetotal uncertainty is the sum in quadrature of each source.

Systematic	SR-C1N2	SR-C1C1	SR-DS-highM	ass SR-DS-lowMass	
Correlat	ion	4.9%	1.6%	8.0%	14%
Non-multi-jet subtrac	tion in Region A	8.0%	12%	21%	13%
Non-multi-jet subtrac	tion in Region B	1.0%	0.4%	1.2%	0.5%
Non-multi-jet subtrac	tion in Region C	2.7%	1.4%	3.6%	2.0%
Number of events	in Region A	61%	38%	133%	57%
Number of events in I	Regions C and B	1.0%	2.0%	8.4%	1.5%
Total	62%	40%	135%	60%	
SR-C1N2	SR-C	1C1	SR-D	S-highMass	SR-DS-lowMass
$\geq 2 \text{ OS taus}$	2 OS	taus	≥ 2	2 OS taus	$\geq 2 \text{ OS taus}$
<i>b</i> -jet veto	jet v	eto	loos	er jet-veto	looser jet-veto
Z-veto	Z-veto Z-ve			Z-veto	Z-veto
			ΔR	$\mathcal{C}(au, au) < 3$	$\Delta R(\tau,\tau) < 3$
$E_{\rm T}^{\rm miss} > 40~{\rm GeV}$	$m_{\mathrm{T2}} > 3$	m_{T2}	$> 60~{\rm GeV}$	$m_{\rm T2} > 30~{\rm GeV}$	
$m_{\rm T2} > 100~{\rm GeV}$	$m_{\mathrm{T}\tau 1} + m_{\mathrm{T}\tau 2}$	$> 250~{ m Ge}$	$\mathbf{V} = m_{\text{eff}}$	$> 230 { m GeV}$	$m_{\rm eff} > 260~{\rm GeV}$

EWK SUSY Searches at ATLAS (Da XU)

JHEP 05(2014) 071

2 leptons(e/μ)

A combination of two-lepton triggers: the pT thresholds are 18-25 GeV for the higher-pT lepton 8-14 GeV for the other lepton. Table 4. Systematic uncertainties (in %) on the total background estimated in different signal regions. Because of correlations between the systematic uncertainties and the fitted backgrounds, the total uncertainty can be different from the quadratic sum of the individual uncertainties.

	m	90 T2	m	120 Γ2	m	150 Γ2	WW	Va	WV	Wb	W	Wc	Zjets
	\mathbf{SF}	\mathbf{DF}	\mathbf{SF}										
CR statistics	5	3	6	4	8	4	5	5	5	3	6	4	1
MC statistics	5	7	7	12	10	23	3	4	5	8	6	10	14
Jet	4	1	2	1	5	7	3	6	4	2	4	3	11
Lepton	1	2	1	1	4	1	1	3	2	3	1	8	4
Soft-term	3	4	1	1	2	8	< 1	2	3	5	1	6	5
b-tagging	1	2	$<\!\!1$	$<\!\!1$	$<\!\!1$	<1	1	1	1	2	$<\!\!1$	1	2
Non-prompt lepton	<1	1	<1	<1	1	<1	1	1	1	2	$<\!\!1$	1	<1
Luminosity	<1	<1	<1	<1	$<\!\!1$	<1	<1	<1	<1	<1	$<\!\!1$	<1	2
Modelling	11	13	21	31	18	40	6	6	8	10	15	19	42
Total	13	16	24	34	23	47	9	11	12	14	17	24	47

Table 1	1. Sig	nal reg	jion d	efinitio	ns. J	The c	riteria	on	$ m_{\ell\ell} $ –	m_Z	are	applied	only t	o SF	events.	The
two lead	ding c	entral	light ⁻	jets in	SR-2	Z jets	must]	have	$p_{\rm T} >$	45 G	leV.					

SR	$m_{{ m T2}}^{90}$	$m_{ m T2}^{120}$	$m_{{ m T}2}^{150}$	WWa	WWb	WWc	Zjets
lepton flavour	DF,SF	DF,SF	DF,SF	DF,SF	DF,SF	DF,SF	SF
central light jets	0	0	0	0	0	0	≥ 2
central b -jets	0	0	0	0	0	0	0
forward jets	0	0	0	0	0	0	0
$ m_{\ell\ell} - m_Z $ [GeV]	> 10	> 10	> 10	> 10	> 10	> 10	< 10
$m_{\ell\ell} \; [\text{GeV}]$				< 120	< 170		
$E_{\rm T}^{\rm miss, rel} [{\rm GeV}]$	_			> 80			> 80
$p_{\mathbf{T},\ell\ell} \; [\text{GeV}]$	_			> 80			> 80
$m_{\mathrm{T2}} \; [\mathrm{GeV}]$	> 90	> 120	> 150	—	> 90	> 100	
$\Delta R_{\ell\ell}$							[0.3, 1.5]
$m_{jj} \; [\text{GeV}]$	—						[50, 100]

3 leptons($e/\mu/T$)

Trigger	$p_{\rm T}$ threshold [GeV]		
Single Isolated e Single Isolated μ	25 25		
Double e	14,14 25,10		
Double μ	14,14 18,10		
Combined $e\mu$	$14(e),10(\mu)$ $18(\mu),10(e)$		

Table 9. Summary of the dominant systematic uncertainties in the background estimates for each signal region. Uncertainties are quoted relative to the total expected background. For the 20 bins of the SR0 τ a the range of the uncertainties is provided.

	$\mathrm{SR}0 au\mathrm{a}$	$\mathrm{SR}0\tau\mathrm{b}$	$\mathrm{SR}1\tau$	$\mathrm{SR}2\tau\mathrm{a}$	$\mathrm{SR}2\tau\mathrm{b}$
Cross-section	4 - 25%	37%	9%	3.1%	3.0%
Generator	3.2 - 35%	11%	3.1%	6%	< 1%
Statistics on irreducible background	0.8 - 26%	8%	5%	5%	3.1%
Statistics on reducible background	0.4 - 29%	14%	8%	13%	12%
Electron misidentification probability	0.3 - 10%	1.3%	< 1%	_	_
Muon misidentification probability	0.1–24%	2.2%	< 1%	_	_
τ misidentification probability	—	—	8%	4%	5%

Table	3.	Summary of the selection requirements for the signal regions. The index of the signal
region	corr	esponds to the number of required τ leptons. The SR0 τ a bin definitions are shown in
table 4	. En	nergies, momenta and masses are given in units of GeV. The signal models targeted by
the sele	ectio	n requirements are also shown.

Signal region	$\mathrm{SR0}\tau\mathrm{a}$	$\mathrm{SR0}\tau\mathrm{b}$	$\mathrm{SR1}\tau$	$SR2\tau a$	$\mathrm{SR}2\tau\mathrm{b}$
Flavour/sign b-tagged jet $E_{\rm T}^{\rm miss}$	$\begin{array}{c} \ell^+\ell^-\ell, \ \ell^+\ell^-\ell' \\ \text{veto} \\ \text{binned} \end{array}$	$\ell^{\pm}\ell^{\pm}\ell'^{\mp}$ veto > 50	$\begin{array}{c} \tau^{\pm}\ell^{\mp}\ell^{\mp}, \tau^{\pm}\ell^{\mp}\ell'^{\mp} \\ \text{veto} \\ > 50 \end{array}$	$\begin{array}{c} \tau\tau\ell\\ \mathrm{veto}\\ > 50 \end{array}$	$\begin{array}{c} \tau^+ \tau^- \ell \\ \text{veto} \\ > 60 \end{array}$
Other	$m_{ m SFOS}$ binned $m_{ m T}$ binned	$\begin{array}{c} p_{\mathrm{T}}^{3^{\mathrm{rd}}\ell} > 20 \\ \Delta \phi_{\ell\ell'}^{\min} \leq 1.0 \end{array}$	$p_{\rm T}^{2^{\rm nd}\ell} > 30$ $\sum p_{\rm T}^{\ell} > 70$ $m_{\ell\tau} < 120$ $m_{ee} Z \text{ veto}$	$m_{\mathrm{T2}}^{\mathrm{max}} > 100$	$\frac{\sum p_{\rm T}^{\tau} > 110}{70 < m_{\tau\tau} < 120}$
Target model	$\tilde{\ell}, WZ\text{-mediated}$	Wh-mediated	Wh-mediated	$\tilde{\tau}_L$ -mediated	Wh-mediated

$\mathrm{SR0} au\mathrm{a \ bin}$	$m_{ m SFOS}$	m_{T}	$E_{\mathrm{T}}^{\mathrm{miss}}$	$3\ell~Z$ veto
1	12-40	0-80	50-90	no
2	12 - 40	0-80	> 90	no
3	12 - 40	> 80	50 - 75	no
4	12 - 40	> 80	>75	no
5	40-60	0-80	50-75	yes
6	40-60	0-80	> 75	no
7	40 - 60	> 80	50 - 135	no
8	40 - 60	> 80	> 135	no
9	60 - 81.2	0-80	50 - 75	yes
10	60 - 81.2	> 80	50 - 75	no
11	60 - 81.2	0 - 110	> 75	no
12	60 - 81.2	> 110	> 75	no
13	81.2-101.2	0–110	50-90	yes
14	81.2 - 101.2	0 - 110	> 90	no
15	81.2 - 101.2	> 110	50 - 135	no
16	81.2 - 101.2	> 110	> 135	no
17	> 101.2	0–180	50 - 210	no
18	> 101.2	> 180	50 - 210	no
19	> 101.2	0 - 120	> 210	no 23
20	> 101.2	> 120	> 210	no

EWK SUSY Searches at ATLAS (Da XU)

SUSY-2014

arXiv:1405.5086

4 leptons($e/\mu/T$)

Trigger channel	$p_{\rm T}$ or $E_{\rm T}$ threshold [GeV]
Single isolated e/μ	25
Double e	14, 14 25, 10
Double μ	14, 14 18, 10
$e + \mu$	$14(e), 10(\mu)$ $18(\mu), 10(e)$

Experimenta	1	Theoretical		
Jet energy scale	2.4%	$\sigma: t\bar{t} + Z/WW$ [75, 76]	30%	
Jet energy resolution	on	$A\epsilon: t\bar{t} + Z$	30 - 40%	
	5.5%	σ : ZZ/γ^*	5%	
e efficiency	3.5%	Ae: ZZ/γ^*	5 - 20%	
τ efficiency	3.3%	σ : VVV/tWZ	50%	
$E_{\rm T}^{\rm miss}$ energy scale	2.7%	$\sigma A \epsilon$: Vh/VBF [72]	20%	
$E_{\rm T}^{\rm miss}$ resolution	2.7%	$\sigma A \epsilon$: ggF/ $t\bar{t}h$ [72]	100%	
Luminosity	2.8%	Reducible		
Trigger	5%	$\geq 0\tau$ SRs	$\sim 100\%$	
MC sample size	$\lesssim 30\%$	$\geq 1\tau/2\tau$ SRs	30 - 50%	

	$\mathrm{N}(\ell)$	$N(\tau)$	Z-veto	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}$ [GeV]
SR0noZa	≥ 4	≥ 0	SFOS, $SFOS+\ell$, $SFOS+SFOS$	>50	_
SR1noZa	=3	≥ 1	SFOS, SFOS+ ℓ	>50	_
SR2noZa	=2	≥ 2	SFOS	>75	_
SR0noZb	≥ 4	≥ 0	SFOS, $SFOS+\ell$, $SFOS+SFOS$	>75	or >600
SR1noZb	=3	≥ 1	SFOS, SFOS+ ℓ	>100	or >400
SR2noZb	=2	≥ 2	SFOS	>100	or >600
	$\mathrm{N}(\ell)$	$N(\tau)$	Z-requirement	$E_{\rm T}^{\rm miss}$ [GeV]	
SR0Z	≥ 4	≥ 0	SFOS	>75	_
SR1Z	=3	≥ 1	SFOS	>100	_
SR2Z	=2	≥ 2	SFOS	>75	_

The SM background processes are classified into --"irreducible" background "real" leptons: prompt and isolated; directly produced from sparticles or weak bosons. "reducible" background "fake" leptons: originate from a misidentified lightflavour quark or gluon jet (referred to as "light flavour"). "non-prompt" leptons can originate from a semileptonic decay of a heavy-flavour quark, or an electron from a photon conversion.