Updated Constraints on the Higgs Singlet Extension of the SM

Tania Robens

based on

G.M. Pruna, TR (PRD 88 (2013) 115012)
 D. Lopez-Val, TR (arXiv:1406.1043)
 TR, T. Stefaniak, work in progress

TU Dresden

SUSY 2014 Manchester, UK 21.7.2014

Tania Robens

Update on Singlet

SUSY 2014, 21.7.2014

< ロ > < 同 > < 回 > < 回 > < 回 >

Higgs Singlet extension (aka The Higgs portal)

The model

• Singlet extension:

simplest extension of the SM Higgs sector

 add an additional scalar, singlet under SM gauge groups (further reduction of terms: impose additional symmetries)
 ⇒ potential (*H* doublet, χ real singlet)

 $\mathbf{V} = -\mathbf{m}^2 \mathbf{H}^{\dagger} \mathbf{H} - \mu^2 \, \chi^2 + \lambda_1 (\mathbf{H}^{\dagger} \mathbf{H})^2 + \lambda_2 \, \chi^4 + \lambda_3 \mathbf{H}^{\dagger} \mathbf{H} \, \chi^2,$

- collider phenomenology studied by many authors: Schabinger, Wells; Patt, Wilzcek; Barger ea; Bhattacharyya ea; Bock ea; Fox ea; Englert ea; Batell ea; Bertolini/ McCullough; ...
- our approach: minimal: no hidden sector interactions
- equally: Singlet acquires VeV

Tania Robens

Update on Singlet

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Singlet extension: free parameters in the potential

VeVs:
$$H \equiv \begin{pmatrix} 0\\ rac{ ilde{h}+ extsf{v}}{\sqrt{2}} \end{pmatrix}, \ \chi \equiv rac{ ilde{h}'+ extsf{x}}{\sqrt{2}}$$

• potential: 5 free parameters: 3 couplings, 2 VeVs

 $\lambda_1,\,\lambda_2,\,\lambda_3,\,v,\,x$

rewrite as

 $\mathbf{m}_{\mathbf{h}}, \mathbf{m}_{\mathbf{H}}, \sin \alpha, \mathbf{v}, \tan \beta$

• fixed, free

 $\sin \alpha$: mixing angle, $\tan \beta = \frac{v}{x}$

• physical states $(m_h < m_H)$:

$$\begin{pmatrix} \mathbf{h} \\ \mathbf{H} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \tilde{h} \\ h' \end{pmatrix},$$

Tania Robens

Update on Singlet

Tania Robens

Update on Singlet

E SQA

Theoretical and experimental constraints on the model

our studies: $m_{h,H} = 125.7 \,\mathrm{GeV}, \, 0 \,\mathrm{GeV} \leq m_{H,h} \leq 1 \,\mathrm{TeV}$

we considered

- Iimits from perturbative unitarity
- ② limits from EW precision observables through S, T, U
- **o** perturbativity of the couplings (up to certain scales*)
- vacuum stability and minimum condition (up to certain scales*)
- **6** collider limits using HiggsBounds
- measurement of **light Higgs signal rates** using HiggsSignals (debatable: minimization up to arbitrary scales, \Rightarrow perturbative unitarity to arbitrary high scales [these are common procedures though in the SM case])

(*): only for
$$m_h=125.7\,{
m GeV}$$

Tania Robens

Update on Singlet

SUSY 2014, 21.7.2014

< ロ > < 同 > < 回 > < 回 > < 回 >

The model	Parameter space including bounds	LHC	Summary	Appendix
Results				

• strongest constraints:

 $m_H \gtrsim 800 \,{
m GeV}$: perturbativity of couplings $m_H \in [200; 800] {
m GeV}$: m_W @ NLO $m_H \in [130; 200] {
m GeV}$: experimental searches $m_h \lesssim 120 \,{
m GeV}$: SM-like Higgs coupling rates (+ LEP)

 \Rightarrow κ \leq 0.25 for all masses considered here

 $\Gamma_{tot} \lesssim 0.02 \, m_H$

 \Rightarrow Highly (??) suppressed, narrow(er) heavy scalars \Leftarrow

⇒ new (easier ?) strategies needed wrt searches for SM-like Higgs bosons in this mass range ⇐

 \Rightarrow (partially) already correctly treated in experimental

searches (variation of Γ by hand...) कि रहा रहा हे हे ज्य

Tania Robens

Update on Singlet

E 990

Comments on constraints (1) - Perturbativity issues

Perturbative unitarity:

- tests combined system of all (relevant) 2 \rightarrow 2 scattering amplitudes for $s \rightarrow \infty$
- makes sure that the largest eigenvalue for the "0"-mode partial wave of the diagnolized system ≤ 0.5
- "crude" check that unitarity is not violated (in the end: all "beaten" by perturbativity of running couplings)
 Perturbativity of couplings
- make sure that no coupling \geq 4 π ("typical" loop prefactor $^{-0.5}$)
- at ew scale: perturbative unitarity stronger

Tania Robens

Update on Singlet

SUSY 2014, 21.7.2014

イロト イポト イヨト イヨト

Comments on constraints (2) - running couplings and vacuum

Vacuum stability and perturbativity of couplings at arbitrary scales

- clear: vacuum should be stable for large scales
- unclear: do we need ew-like breaking everywhere ? perturbativity ?
- \Rightarrow check at relative low scale (cf next slide)
- ⇒ bottom line: small mixings excluded from stability for larger scales (for $m_H \le 1 \text{ TeV}$!! for the model-builders...)
 - arbitrary large m_H can cure this !! cf Lebedev; Elias-Miro ea. Out of collider range though (~ $10^8 \,\mathrm{GeV}$)
 - perturbativity of couplings severely restricts parameter space, even for low scales

Tania Robens

Update on Singlet

SUSY 2014, 21.7.2014

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

RGE running in more detail

Question: at which scale did we require perturbativity ? Answer: "just above" the SM breakdown (other answers equally valid...)

- RGEs for this model well-known (cf eg Schabinger, Wells)
- decoupling ($\lambda_3 = 0$): recover SM case
- in our setup: $\mu_{\text{SM,break}} \sim 6.3 \times 10^{10} \, \text{GeV}$ (remark: just simple NLO running)
- we took: $\mu_R \sim 1.2 \times 10^{11} \, {
 m GeV}$

(higher scales \iff stronger constraints)

- obvious: for $m_H = 125.7 \, {\rm GeV}$, breakdown "immediate" when going to $\mu_{\rm run} > v$
- $\Rightarrow\,$ disregard constraints from running in this case

Tania Robens

Update on Singlet

SUSY 2014, 21.7.2014

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Appendix

Limits for $m_H \ge 600 \,\mathrm{GeV}$

for sin $\alpha \leq 0.23$: only λ_2 running important

(sideremark: here, 1 σ constraint on mixing from μ ; relaxed and improved in newer work, just as an example here)

Update on Singlet

SUSY 2014, 21.7.2014

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

NLO corrections to m_W (D. Lopez-Val, TR, arXiv:1406.1043)

- idea: replace electroweak tests using S, T, U by m_W (includes calculation of Δρ,...)
- setup renormalization for Higgs and Gauge boson masses
- EW gauge and matter sector: on-shell scheme
- Higgs sector: several choices, currently a mixture of onshell/ \overline{MS}

(in this case: $\delta \lambda$ only enter at 2-loop \implies not relevant here)

• first step on the road to full renormalization

NLO corrections to m_W (D. Lopez-Val, TR, arXiv:1406.1043)

Contribution to m_W for different Higgs masses

Update on Singlet

Combined limits on $|\sin \alpha|$

(D. Lopez-Val, TR, arXiv:1406.1043, and TR, T. Stefaniak, to appear)

limits on κ , Γ plane from all constraints

several bounds on $|\sin\alpha|$

m_W, perturbativity, LHC direct searches, Higgs Signal strength

Tania Robens

Update on Singlet

SUSY 2014, 21.7.2014

(ロ) (部) (目) (日) (日)

Limits in numbers; high mass scenario

$m_H[\text{GeV}]$	$ \sin lpha $	source upper limit	$(aneta)_{\sf max}$
1000	[0.020; 0.16]	λ_1 perturbativity	0.21
800	[0.028; 0.20]	m_W at NLO/ λ_1 perturbativity	0.26
600	[0.038; 0.22]	m_W at NLO	0.36
400	[0.057; 0.26]	m_W at NLO	0.54
200	[0.092; 0.43]	m_W at NLO	1.08
180	[0.10; 0.44]	126 GeV signal strength	1.20
160	[0.12; 0.44]	126 GeV signal strength	1.34
140	[0.17; 0.36]	$h ightarrow\ell^+\ell^-\ell^+\ell^-$	1.54

- $\sin \alpha_{\min}$ always from vacuum stability
- $\tan \beta_{\max}$ always from perturbativity of λ_2

Tania Robens

Update on Singlet

SUSY 2014, 21.7.2014

3

Results from generic scans and predictions for LHC 14

(TR, T. Stefaniak, in preparation)

 1σ , 2σ , allowed S

BSM decay to hh

Appendix

Could we have seen them ??

all numbers below: $\sqrt{S_{hadr}}$ = 8TeV, $\int \mathcal{L}$ = 23 fb⁻¹

$m_{H}[{\rm GeV}]$	$\kappa_{\sf max}$	$\#$ gg \sim	$\kappa'_{\sf max}$	$\#$ gg \sim
200	0.18	3×10^4	0	0
300	0.076	$6 \times \mathbf{10^3}$	0.038	3×10^3
400	0.053	4×10^3	0.021	1×10^3
500	0.047	1×10^3	0.015	440
600	0.039	470	0.012	140
700	0.035	180	0.010	50
800	0.033	80	0.009	20
900	0.027	40	0.007	10
1000	0.021	15	0.005	4

[for specific final state, multiply with SM-like BR (LO approx)] for $m_H \lesssim 600 \,\mathrm{GeV}$, may could already have been produced which are not excluded by current searches !!

Tania Robens

Update on Singlet

The model	Pai	rameter space including bo	unds LHC	Summa	ry Append	
What	t about t	the "inverse"	scenario, i	e. <i>m_H =</i>	$125.7{ m GeV}$	
mainly ruled out by LEP and/ or χ^2 fit from HiggsSignals						
however, still large number produced due to large $\sigma_{gg \rightarrow h}$						
	$m_h[\text{GeV}]$	$ \sin \alpha _{\min, exp}$	$ \sin lpha _{min, 2\sigma}$	$(aneta)_{\sf max}$	$ $ #gg \sim	
_	110	0.82	0.89	9.2	105	
	100	0.86		10.1	10 ⁵	
	90	0.91		11.2	10 ⁵	
	80	0.98		12.6	104	

Table: Upper limit on $\tan\beta$ from perturbative unitarity. (-- $_{\rm means \ no}$ additional constraint)

0.99

0.98

0.99

0.99

70

60

50

40

(side remark: for $m_h \gtrsim 60 \,\mathrm{GeV}$, tan β irrelevant for collider observables) Tania Robens Update on Singlet SUSY 2014, 21.7.2014

 $\gtrsim 0.99$

 $\gtrsim 0.99$

 ≥ 0.99

 10^{4}

 10^{4}

 10^{4}

 10^{4}

14.4

16.8

20.2

25.2

- Singlet extension: **simplest extension of the SM Higgs sector**, easily identified with one of the benchmark scenarios of the HHXWG (cf. also YR3, Snowmass report)
- constraints on maximal mixing from m_W at NLO $(m_H \in [200 \,\mathrm{GeV}; 800 \,\mathrm{GeV}])$, experimental searches and fits $(m_{H,h} \leq 200 \,\mathrm{GeV})$ and/ or running couplings $(m_H \geq 800 \,\mathrm{GeV})$
- quite narrow widths wrt SM-like Higgses in this mass range ⇒ better theoretical handle
- quite large suppression from current experimental/ theoretical constraints

3

The model	Parameter space including bounds	LHC	Summary	Appendix

Appendix

Tania Robens

Update on Singlet

Coupling and mass relations

$$m_h^2 = \lambda_1 v^2 + \lambda_2 x^2 - \sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2},$$
 (1)

$$m_{H}^{2} = \lambda_{1}v^{2} + \lambda_{2}x^{2} + \sqrt{(\lambda_{1}v^{2} - \lambda_{2}x^{2})^{2} + (\lambda_{3}xv)^{2}}, \quad (2)$$

$$\sin 2\alpha = \frac{\lambda_3 x v}{\sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2}},$$

$$\cos 2\alpha = \frac{\lambda_2 x^2 - \lambda_1 v^2}{\sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2}}.$$
(3)

Tania Robens

Update on Singlet

SUSY 2014, 21.7.2014

3

・ロト ・四ト ・ヨト ・ヨト

Limits at Planck scale

assume that the model is valid up to $\mu_{ m run} \sim 10^{19}\,{ m GeV}$ (not always well motivated)

- naturally: parameter space more restricted
- translates to $\kappa \lesssim 0.03$ for $m_H = 600 \,\mathrm{GeV}$ (25% decrease)
- now: μ no longer relevant, only constraint from perturbativity of λ_1 , λ_2 < ロ > < 同 > < 回 > < 回 > < 回 >

Tania Robens

Update on Singlet

Tools which can do it ?? (incomplete list)

("it"=L0,NL0,...)

- LO: any tool talking to FeynRules (in principle)/ LanHep (in practice)
- implemented and run: **CompHep** (M. Pruna), **Sherpa** (±) (would need some modification, T. Figy), privately modified codes (??)
- NLO: (mb) a modified version of **aMC@NLO** (R. Frederix) ?? (production only; might be important for VBF)
- new tool in the MadGraph environment (Artoisenet ea, 06/13): QCD-part of NLO
- complete higher orders: would need to be implemented in respective tools (I am not aware of any at the moment)

< ロ > < 同 > < 回 > < 回 > < 回 >

One more word about $H \rightarrow hh$

- all above: focuses on SM-like decays
- viable alternative: search for

 $H \rightarrow h h \rightarrow \dots$

• widely discussed in the literature

(for recent work, cf Gouzevitch, Oliveira, Rojo, Rosenfeld, Salam, Sanz; Cooper, Konstantinidis, Lambourne, Wardrope; ...)

- HOWEVER in our scan, WW always dominant
- \Rightarrow would go for this first

(but mb more than 1 group is interested...)

Tania Robens

Update on Singlet

SUSY 2014, 21.7.2014

イロト イヨト イヨト イヨト