Limits from Simplified Models for supersymmetry and same-spin models

Lisa Edelhäuser Jan Heisig Michael Krämer Lennart Oymanns Jory Sonneveld

RWTH Aachen

SUSY 2014, Manchester 2014-07-22

1 / 13

Simplified Models: for easy limits...

Simplified Models: Why?

Or, use simplified modules:

T. Rizzo (SLAC Summer Institute, 01-Aug-12)

model	prod.		
name	mode	decay	visibility
T1	ĝĝ	$\tilde{g} \rightarrow q \bar{q} \tilde{\chi}^0$	hadronic
T2	q̃q̃*	$\tilde{q} \rightarrow q \tilde{\chi}^0$	hadronic
T5zz	gg	$\tilde{g} \rightarrow q \bar{q} Z \tilde{\chi}^{0}$	hadronic
			di-leptons
			multi-leptons
T3w	<u>ĝĝ</u>	$\tilde{g} \rightarrow q \bar{q} \tilde{\chi}^{0}$	single lepton
	00	$\widetilde{g}\to q\bar{q}\widetilde{\chi}^\pm$, $\widetilde{\chi}^\pm\to W^\pm\widetilde{\chi}^0$	· ·
T5lnu	<u>ĝ</u> ĝ	$\tilde{g} \rightarrow q \bar{q} \tilde{\chi}^{\pm} \tilde{\chi}^{\pm} \rightarrow \ell \nu \tilde{\chi}^{0}$	di-leptons
T3lh	ĝĝ	$\tilde{g} \rightarrow q\bar{q}\tilde{\chi}^0$	di-leptons
		$\tilde{g} \rightarrow q \bar{q} \ell^+ \ell^- \tilde{\chi}^0$	-
T2bb	b b*	$\tilde{b} \rightarrow b \tilde{\chi}^0$	hadronic
T2tt	ŤŤ*	$\tilde{t} \rightarrow t \tilde{\chi}^0$	hadronic
T1bbbb	ĝĝ	$\tilde{g} \rightarrow b \bar{b} \tilde{\chi}^0$	hadronic
T1tttt	ĝĝ	$\tilde{g} \rightarrow t \bar{t} \tilde{\chi}^0$	hadronic(b)
	00	0 1	single-leptons(b)
			di-leptons(b)
			inclusive(b)
TChiSlepSlep	$\tilde{\chi}^{\pm}\tilde{\chi}_{2}^{0}$	$\hat{x}_{2}^{0} \rightarrow \ell^{\pm} \tilde{\ell}^{\mp}, \tilde{\ell} \rightarrow \ell \tilde{x}^{0}$	multi-leptons
	<i>R R</i> ₂	$\widetilde{\chi}^{\pm} \rightarrow \nu \widetilde{\ell}$, $\widetilde{\ell} \rightarrow \ell \widetilde{\chi}^{0}$	
TChiwz	$\tilde{\chi}^{\pm}\tilde{\chi}_{2}^{0}$	$\tilde{\chi}^{\pm} \rightarrow W^{\pm} \tilde{\chi}^{0}$, $\tilde{\chi}^{0}_{2} \rightarrow Z \tilde{\chi}^{0}$	multi-leptons
TChizz	$\hat{\chi}_2^0 \hat{\chi}_3^0$	$\tilde{\chi}_{2}^{0}, \tilde{\chi}_{3}^{0} \rightarrow Z \tilde{\chi}^{0}$	multi-leptons
T5gg	ĝĝ	$\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{2'}^0 \tilde{\chi}_2^0 \rightarrow \gamma \tilde{\chi}_1^0$	photons
T5Wg	ĝĝ	$\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{2'}^0, \tilde{\chi}_2^0 \rightarrow \gamma \tilde{\chi}_1^0$	photons
-		$\tilde{g} \rightarrow q \bar{q} \tilde{\chi}^{\pm}, \tilde{\chi}^{\pm} \rightarrow W^{\pm} \tilde{\chi}_{1}^{0}$	-

A simplified model: T2

CMS SUS-11-016; arXiv:1301.2175 (CMS Simplified Models)

What T2 is not

Not included in T2:

- right-handed squarks \widetilde{q}_{R}
- gluinos, resulting in production:

 \rightarrow Effect on limits when including:

- production channels like $\tilde{q}_{L}\tilde{q}_{L}, \tilde{q}_{L}\tilde{q}_{R}, \tilde{q}_{L}\tilde{q}_{R}^{*};$
- a non-decoupled gluino?

Not included in T2, not considered here:

Squark production

1st and 2nd generation

1st generation

Testing Closure: all-hadronic analyses in H_T and α_T

Main cuts in
$$\mathcal{H}_T$$
 analysis:
CMS SUS-13-012: arXiv:1402.4770
• $\mathcal{H}_T = -|\sum_{j \in IS} \vec{p}_T|, P_{T_j} > 30$
• $\mathcal{H}_T = \sum_{i=1}^{n_{j \in I}} p_T^{j_i}, P_{T_j} > 50 \text{ GeV}$

Main cuts in α_T analysis: CMS SUS-12-028: arXiv:1303.2985 • $\alpha_T = \frac{E_T^{j_2}}{M_T}$ (dijet)

 $\rightarrow A\varepsilon$: acceptance x efficiency (% events after cuts)

We find

•
$$A \varepsilon_{\tilde{q}_L \tilde{q}_L} < A \varepsilon_{T2}$$
 for H_T

•
$$A\varepsilon_{\tilde{q}_L\tilde{q}_L} > A\varepsilon_{T2}$$
 for α_T

$A\varepsilon$ differences: H_T

 $pp \to \tilde{q}_L \tilde{q}_L \ m(\tilde{g}) = 2m(\tilde{q})$

Simplified Model Limits for SUSY

Jory Sonneveld (RWTH Aachen)

$A\varepsilon$ differences: α_T

 $pp \to \tilde{q}_L \tilde{q}_L \ m(\tilde{g}) = 2m(\tilde{q})$

Limits for MSSM-like model

MSSM-like: Limits using (correct) Aε scaled with cross section: 2q̃_Lq̃_L + 2q̃_Lq̃^{*}_L + q̃_Lq̃_R + 2q̃_Lq̃^{*}_R
T2: Limits using (incorrect) Aε from T2

 $m_{\tilde{r}}/m_{\tilde{a}}=2$, MHT, 1. gen. $m_{\tilde{\sigma}}/m_{\tilde{a}}=2, \alpha_{\rm T}, 1.$ gen. $m_{\widetilde{\chi}^0_1}$ [GeV] MSSM-like MSSM-like - T2 -- T2 $m_{\tilde{a}}$ [GeV] $m_{\tilde{a}}$ [GeV]

Same-spin models

SUSY

Same-spin Model (as SM)

Same-spin production modes (UED):

[in preparation] Limits: UED-like model

UED combined = $2q_Dq_D + 2q_D\bar{q}_D + q_Dq_S + 2q_S\bar{q}_D$ $q_{D(S)}$: KK SU(2) doublet (singlet) quark

12 / 13

Simplified models have:

• underlying differences in individual production channels

... but are also a good approximation

in limit setting;

- for a model such as the MSSM;
- for same-spin models [in preparation].

Future work:

• How can simplified models be used in global fits?

Backup

Squark production

Band: scale variation T2: 'wrong' $A\varepsilon$, correct cross section MSSM-like: correct $A\varepsilon$, correct cross section

Band: scale variation T2: 'wrong' $A\varepsilon$, correct cross section MSSM-like: correct $A\varepsilon$, correct cross section

$A\varepsilon$ differences for T2 vs $\tilde{q}_L \tilde{q}_L$, $m_{\tilde{g}} = 4m_{\tilde{q}}$, $\#_T$

 $pp \to \tilde{q}_L \tilde{q}_L \ m(\tilde{g}) = 4m(\tilde{q})$

Jory Sonneveld (RWTH Aachen)

$A\varepsilon$ differences for T2 vs $\tilde{q}_L \tilde{q}_L$, $m_{\tilde{g}} = 4m_{\tilde{q}}$, α_T

 $pp \to \tilde{q}_L \tilde{q}_L \ m(\tilde{g}) = 4m(\tilde{q})$

A ϵ differences (%), MHT, T2 vs $\tilde{q}_L \tilde{q}_R$, $m_{\tilde{g}}$ =2 $\cdot m_{\tilde{q}}$

$A\varepsilon$ T2 vs $\tilde{q}_L\tilde{q}_R$, α_T

A ϵ differences (%), α_T , T2 vs $\tilde{q}_L \tilde{q}_R$, $m_{\tilde{g}}$ =2 $\cdot m_{\tilde{q}}$

A ϵ differences (%), MHT, T2 vs $\tilde{q}_L \tilde{q}_L$, $m_{\tilde{q}} = 2 \cdot m_{\tilde{q}}$

$A\varepsilon$ T2 vs $\tilde{q}_L\tilde{q}_L^*$, α_T

A ϵ differences (%), α_T , T2 vs $\tilde{q}_L \tilde{q}_L$, $m_{\tilde{q}} = 2 \cdot m_{\tilde{q}}$

A ϵ differences (%), MHT, T2 vs $\tilde{q}_L \tilde{q}_R^*$, $m_{\tilde{q}} = 2 \cdot m_{\tilde{q}}$

$A\varepsilon$ T2 vs $\tilde{q}_L \tilde{q}_R^*$, α_T

A ϵ differences (%), α_T , T2 vs $\tilde{q}_L \tilde{q}_R^*$, $m_{\tilde{q}} = 2 \cdot m_{\tilde{q}}$

α_T variable

2 jets

$$\alpha_T = \frac{E_T^{j_2}}{M_T}$$

$$M_T = \sqrt{\left(\sum_{i=1}^2 E_T^{j_i}\right)^2 - \left(\sum_{i=1}^2 p_x^{j_i}\right)^2 - \left(\sum_{i=1}^2 p_y^{j_i}\right)^2}$$

> 2 jets

Combination of jets into two pseudojets minimizing $|E_T|$ difference between pseudojets:

$$\begin{split} \alpha_T &= \frac{1}{2} \times \frac{H_T - \Delta H_T}{\sqrt{H_T^2 - \mathcal{H}_T^2}} = \frac{1}{2} \times \frac{1 - (\Delta H_T / H_T)}{\sqrt{1 - (\mathcal{H}_T / H_T)^2}} \\ H_T &= \sum_{i=1}^{n_{jet}} E_T^{j_i} \\ \mathcal{H}_T &= |\sum_{i=1}^{N_{jet}} \vec{p}_T^{j_i}| \end{split}$$

Jory Sonneveld (RWTH Aachen)

Simplified Model Limits for SUSY

CMS SUS-12-028: arXiv:1303.2985

- Jets are required to have E_T > 50 GeV |η| < 3.0;
- Events with electron or muon p_T > 10 GeV are vetoed;
- Events with photon p_T > 25 GeV are vetoed;
- The highest-E_T jet must have |η| < 2.5;
- The two highest-E_T jets must have E_T > 100 (73 and 87 GeV for bin 0 and bin 1, resp.);
- Events with any additional jet having E_T > 50 and |η| > 3 are vetoed;
- Events must have H_T > 275 GeV;
- It is required that H_T / ∉_T < 1.25;
- α_T < 0.55;
 </p>
- For focus on T2, events are required to have 0 b quarks and 2-3 jets.

8 bins in H_T :

- 2 bins of width 50 GeV in 275 < H_T < 375 GeV;</p>
- 5 bins of width 100 GeV in 375 $< H_T <$ 875 GeV.
- 1 bin with H_T ¿ 875 GeV.

The H_T analysis

CMS SUS-13-012: arXiv:1402.4770

- Jets are required to have p_{T,j} > 30 GeV and |η_j| < 5;</p>
- Events must contain 3 jets with p_T > 50 GeV and |η| < 2.5;</p>
- An azimuthal angle difference between a jet axis and the \vec{H}_T direction $|\Delta \phi(J_n, \vec{H}_T)| > 1.5$ rad, n = 1, 2 and $\Delta \varphi(J_3, \vec{H}_T)| > 0.3$ rad, with J_n the jet axis of jet n and n indicating the ranking of the jet in p_T from highest to lowest
- No isolated muons or electrons:
 - p_T > 10 GeV for muons and electrons;
 - $|\eta < 2.4$ for muons;
 - $|\eta| \le 1.44$ or $1.57 \le |\eta| < 2.5$ for electrons;
- $H_T > 500 \text{ GeV};$
- Events should contain 3-5 jets.

17 bins in H_T and H_T and 3-5 jets:

- 500-800, 800-1000, and 1000-1250 GeV in H_T, and 200-300, 300-450, 450-600, and > 600 GeV for H_T (bins 0-11, resp.);
- 1250-1500 GeV in H_T with H_T binned into 200-300, 300-450, and > 450 GeV (bins 12-14, resp);
- > 1500 GeV in H_T with $\#_T$ binned into 200-300 and > 300 GeV (bins 15-16, resp.).

[in preparation] $A\varepsilon$ for UED-T2 and SUSY-T2, H_T

A ϵ differences (%), MHT, T2 vs $q_{KK,d}\bar{q}_{KK,d}$, $m_{\tilde{q}} = 10^5$ GeV

[in preparation] $A\varepsilon$ for UED-T2 and SUSY-T2, α_T

A ϵ differences (%), α_T , T2 vs $q_{KK,d}\bar{q}_{KK,d}$, $m_{\bar{q}}=10^5$ GeV

KK and SUSY quark-antiquark suppressed production modes

KK and SUSY quark pair suppressed production modes

Jory Sonneveld (RWTH Aachen)

Simplified Model Limits for SUSY

SUSY 2014, Manchester 19 / 21

- Use orbifolding to solve problem of γ matrices in 5 dimensions;
- New dimension $x^4 = y$ that defines a circle of radius $r, y \equiv y + 2\pi$;
- Periodic scalar field $\varphi(x^m, y)$ can be expanded in Fourier modes:

$$\varphi(x^m, y) = \sum_{n = -\infty}^{\infty} \varphi_n(x^\mu) \exp\left(\frac{iny}{r}\right).$$
 (1)

• Equations of motion $\partial^M \partial_M \varphi = 0$ have the solutions;

$$\left(\partial^{\mu}\partial_{\mu}-\frac{n^{2}}{r^{2}}\right)\varphi_{n}(x^{\mu})=0.$$
(2)

- Each mode *n* (KK mode) has in 4D a particle with mass $m_n^2 = \frac{n^2}{r^2}$
- UED is an effective theory with a cutoff A, $\Lambda R \sim 20$ for 1 ED