Physics case: Monotop signature

Characterizing New Physics with Polarized Beams at High Energy Hadron Colliders

Josselin Proudom

Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Grenoble Theory group

SUSY 2014 @ Manchester July 21, 2014

Based on arXiv:1403.2383 [hep-ph] With: B. Fuks J. Rojo I. Schienbein

LPSC

Laboratoire de Physique Subatomique et de Cosmologie

ELE NOR

Motiva	ations
	oc

Physics at polarized hadron colliders

Physics case: Monotop signature

Conclusions

Outline

2 Physics at polarized hadron colliders

3 Physics case: Monotop signature

4 Conclusions

▷ ▲ 문 ▶ ▲ 문 ▶ ▲ 문 ▲ ○ Q ○

Physics case: Monotop signature

Conclusions

Status of New Physics searches at the LHC

► After 3 years of data taking at the LHC:

- > No experimental evidence of New physics has been found
- > ATLAS and CMS have probed extensively the TeV region
- Significant portions of the parameter space (ps) of many BSM simplified models have been excluded.
- Mass exclusion limits of many BSM particles have been pushed higher and higher in energy
- e.g. Summary plots for ATLAS:

Physics at polarized hadron colliders

Physics case: Monotop signature

ATLAS Preliminary

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1} \sqrt{s} = 7, 8 \text{ TeV}$

ATLAS Exotics Searches* - 95% CL Exclusion Status: ICHEP 2014

	Model	<i>l</i> ,γ	Jets	E ^{miss} T	∫£ dt[ft	-1] Mass limit		Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{\text{INC}} + g/q \\ \text{ADD non-resonant } \ell\ell \\ \text{ADD OBH} + \delta q \\ \text{ADD OBH} \\ \text{ADD OH High } \sum pr \\ \text{BSI } G_{\text{IOC}} \rightarrow \ell P \\ \text{Baik RS } G_{\text{IOC}} \rightarrow 2Z - \ell f q \\ \text{Buik RS } G_{\text{IOC}} \rightarrow \ell H \rightarrow \delta b \delta \overline{b} \\ \text{Buik RS } G_{\text{IOC}} \rightarrow \ell H \\ \text{Baik RS } G_{\text{IOC}} \rightarrow \ell H \\ \text{Solution } S^{2}_{\text{IOC}} \in \mathbb{C} \\ S^{2}_{\text{IOC}} \geq E \\ \text{DUBD} \end{array}$	$\begin{array}{c} - \\ 2e, \mu \\ 1 e, \mu \\ - \\ 2 \mu (SS) \\ \geq 1 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ - \\ 1 e, \mu \\ 2 e, \mu \\ 2 \gamma \end{array}$	1-2 j - 2 j - 2 2 j - 2 j / 1 J 4 b $\ge 1 b, \ge 1 J /$ -	Yes - - - Yes - (2) Yes Yes	4.7 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 19.5 14.3 5.0 4.8	May 4.27 TeV May 5.27 TeV May 2.48 TeV Gan main 1.22 TeV May main 7.50 TeV May main 2.28 TeV May main 2.28 TeV May main 2.21 TeV May main 2.21 TeV	$\begin{array}{l} n=2 \\ n=3 \ \text{HLZ} \\ n=6 \\ n=6 \\ n=6 \\ m=6, M_0=1.5 \ \text{TeV}, \ \text{non-rot BH} \\ n=6, M_0=1.5 \ \text{TeV}, \ \text{non-rot BH} \\ n/M_0=0.1 \\ n/M_0=0.1 \\ n/M_0=1.0 \\ R/M_0=1.0 \\ \text{BR}=0.025 \end{array}$	1210.4491 ATLAS-CONF-2014030 1311.2006 to be submitted to PRD 1308.4075 1405.4254 1405.4254 1405.4123 1208.2880 ATLAS-CONF-2014-005 ATLAS-CONF-2014-005 ATLAS-CONF-2014-005 ATLAS-CONF-2013-052 1209.2555 ATLAS-CONF-2012-072
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{SSM } W' \to \ell\nu \\ \text{EGM } W' \to WZ \to \ell\nu\ell'\ell' \\ \text{EGM } W' \to WZ \to qq\ell\ell \\ \text{LRSM } W'_R \to tb \\ \text{LRSM } W'_R \to tb \end{array}$	2 e, μ 2 τ 1 e, μ 3 e, μ 2 e, μ 1 e, μ 0 e, μ	- - 2 j / 1 J 2 b, 0-1 j ≥ 1 b, 1 J	- Yes Yes - Yes -	20.3 19.5 20.3 20.3 20.3 14.3 20.3	Zimas 23 TeV Zimas 13 TeV Wimas 323 TeV Wimas 132 TeV Wimas 159 TeV Wimas 159 TeV Wimas 147 TeV Wimas 1,77 TeV		1405.4123 ATLAS-CONF-2013-086 ATLAS-CONF-2014-017 1406.4456 ATLAS-CONF-2014-039 ATLAS-CONF-2013-050 to be submitted to EPJC
G	Cl qqqq Cl qqll Cl uutt	 2 e,μ 2 e,μ (SS)	2 j _ ≥ 1 b, ≥ 1	- j Yes	4.8 20.3 14.3	A 7.6 TeV A 3.3 TeV	$\eta = +1$ 21.6 TeV $\eta_{1L} = -1$ C = 1	1210.1718 ATLAS-CONF-2014-030 ATLAS-CONF-2013-051
MQ	EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e,μ 0 e,μ	1-2 j 1 J, ≤ 1 j	Yes Yes	10.5 20.3	M, 731 GeV M, 2.4 TeV	at 90% CL for m(χ) < 80 GeV at 90% CL for m(χ) < 100 GeV	ATLAS-CONF-2012-147 1309.4017
Ŋ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ, 1 τ	≥ 2 j ≥ 2 j 1 b, 1 j	-	1.0 1.0 4.7	LO mass 660 GeV LO mass 685 GeV LO mass 534 GeV	$\beta = 1$ $\beta = 1$ $\beta = 1$	1112.4828 1203.3172 1303.0526
Heavy quarks	Vector-like quark $TT \rightarrow Ht + X$ Vector-like quark $TT \rightarrow Wb + X$ Vector-like quark $TT \rightarrow Zt + X$ Vector-like quark $BB \rightarrow Zb + X$ Vector-like quark $BB \rightarrow Wt + X$	$1 e, \mu$ $1 e, \mu$ $2/\geq 3 e, \mu$ $2/\geq 3 e, \mu$ $2 e, \mu$ (SS)	$\begin{array}{l} \geq 2 \ b, \geq 4 \\ \geq 1 \ b, \geq 3 \\ \geq 2/ \geq 1 \ b \\ \geq 2/ \geq 1 \ b \\ \geq 1 \ b, \geq 1 \end{array}$	j Yes j Yes – j Yes	14.3 14.3 20.3 20.3 14.3	T mass 790 GeV T mass 670 GeV T mass 735 GeV B mass 755 GeV B mass 725 GeV	T in (T,B) doublet isospin singlet T in (T,B) doublet B in (B,Y) doublet B in (T,B) doublet	ATLAS-CONF-2013-018 ATLAS-CONF-2013-060 ATLAS-CONF-2014-036 ATLAS-CONF-2014-036 ATLAS-CONF-2013-051
Excited	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$	1 γ - 1 or 2 e, μ 2 e, μ, 1 γ	1 j 2 j 1 b, 2 j or 1 -	- j Yes -	20.3 20.3 4.7 13.0	rer mass 3.5 TeV rer mass 4.09 TeV 16 mass 870 GeV 12 Texas	only w^* and d^* , $\Lambda = m(q^*)$ only w^* and d^* , $\Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2 \text{ TeV}$	1309.3230 to be submitted to PRD 1301.1583 1308.1364
Other	$\begin{array}{l} \text{LSTC } a_T \rightarrow W\gamma \\ \text{LRSM Majorana }\nu \\ \overline{\text{Type III Seesaw}} \\ \text{Higgs triple } H^{+*} \rightarrow \ell\ell \\ \text{Multi-charged particles} \\ \text{Magnetic monopoles} \end{array}$	1 e, μ, 1 γ 2 e, μ 2 e, μ 2 e, μ (SS) - -	2 j - - - 7 TeV	Yes 	20.3 2.1 5.8 4.7 4.4 2.0 8 TeV	Set men Set GeV Me mass 245 GeV Mit mass 245 GeV Mit mass 246 GeV mut drag particin mass 440 GeV mut drag particin mass 480 GeV mut drag particin mass 482 GeV 10 ⁻¹ 1	$m(W_S) = 2$ TeV, no mixing $ V_c =0.055, V_s =0.063, V_c =0$ DY production, $ R H^{++} \rightarrow \ell\ell =1$ DY production, $ g = 4e$ DY production, $ g = 1g_O$	to be submitted to PLB 1203.5420 ATLAS-CONF-2013-019 1210.5070 1301.5272 1207.6411
							mass scale [Tev]	

*Only a selection of the available mass limits on new states or phenomena is shown.

Characterizing New Physics with Polarized Beams -4

・ロ> < 団> < 三> < 三> < 三> < □> < □>

ATLAS Preliminary $\sqrt{s} = 7.8 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: ICHEP 2014

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	1 Mass limit	Reference
Inclusive Searches	MSUGRA/CMSSM MSUGRA/CMSSM MSUGRA/CMSSM 49. 7 + 97 ¹ / _{1.9} 82. 7 + 99 ² / _{1.9} 63. 7 + 99 ² / _{1.9} 64. 8 (FNLSP) GAM (higgsino LISP) GGM (higgsino LISP) GGM (higgsino LISP) GGM (higgsino LISP)	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 \ 2 \ r, \mu + 10 \ 1 \ \ell \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 20.3 20.3 4.8 4.8 5.8 10.5	4.3	1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 1405.7875 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 1407.0603 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-147 ATLAS-CONF-2012-147
3 rd gen. § med.	$\overline{s} \rightarrow b\overline{b}\overline{k}_{1}^{0}$ $\overline{s} \rightarrow t\overline{t}\overline{k}_{1}^{0}$ $\overline{s} \rightarrow t\overline{t}\overline{k}_{1}^{0}$ $\overline{s} \rightarrow b\overline{t}\overline{k}_{1}^{+}$	0 0 0-1 e, µ 0-1 e, µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	2 1.25 TeV m(1)-420.04V 2 1.1 TeV m(1)-430.64V 2 1.3 TEV m(1)-430.64V 3 1.3 TEV m(1)-430.64V	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$\begin{array}{l} b_1 \tilde{b}_1, \ b_1 \rightarrow b \tilde{k}_1^0 \\ b_1 \tilde{b}_1, \ b_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \ b_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{i}_1 (light), \ \tilde{i}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{i}_1 (light), \ \tilde{i}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{i}_1 (modlum), \ \tilde{i}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{i}_1 (modlum), \ \tilde{i}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{i}_1 (modlum), \ \tilde{i}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{i}_1 (modlum), \ \tilde{i}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{i}_1 (modlum), \ \tilde{i}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{i}_1 (modlum), \ \tilde{i}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{i}_1 (modlum), \ \tilde{i}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{i}_1 (modlum), \ \tilde{i}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{i}_1 \tilde{i}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{i}_1 \tilde{i}_1 \tilde{i}_1 + \tilde{k}_1 \\ \tilde{i}_1 \tilde{i}_1 \tilde{i}_1 + Z \end{array}$	$\begin{array}{c} 0\\ 2\ e,\mu({\rm SS})\\ 1\cdot 2\ e,\mu\\ 2\ e,\mu\\ 2\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 3\ e,\mu(Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b cono-jet/c-t 1 b 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.1 20 20.1 20.3 20.3 20.3 20.3	λ, 100-50 GeV m ² / ₂ /2×6.0V λ1 105 Core m ² / ₂ /2×6.0V m ² / ₂ /2×6.0V λ1 105 Core m ² /2×6.0V m ² /2×6.0V λ1 105 Core m ² /2×6.0V m ² /2×6.0V λ1 105 Core m ² /2×6.0V m ² /2×6.0V λ1 105 Core m ² /2×6.0V m ² /2×6.0V λ1 105 Core m ² /2×6.0V m ² /2×6.0V λ1 105 Core m ² /2×6.0V m ² /2×6.0V λ1 105 Core m ² /2×6.0V m ² /2×6.0V λ1 105 Core m ² /2×6.0V m ² /2×6.0V λ1 105 Core m ² /2×6.0V m ² /2×6.0V λ1 105 Core m ² /2×6.0V m ² /2×6.0V λ1 105 Core 105 -000 Core m ² /2×6.0V λ1 105 -000 Core m ² /2×6.00 Core m ² /2×6.00 Core	1308.2831 1404.2500 1208.4305, 1209.2102 1403.4853 1403.4853 1403.4853 1407.0683 1406.1122 1407.0608 1408.5222 1403.5222
EV direct	$ \begin{array}{c} t_{1,\mathbf{R}}t_{1,\mathbf{R}},t\rightarrow t\hat{K}_{1}^{0}\\ \tilde{K}_{1}^{*}\tilde{K}_{1}^{*},\tilde{K}_{1}^{*}\rightarrow t\hat{V}(\tilde{Y})\\ \tilde{K}_{1}^{*}\tilde{K}_{1}^{*},\tilde{K}_{1}^{*}\rightarrow t\hat{V}(\tilde{Y})\\ \tilde{K}_{1}^{*}\tilde{K}_{1}^{*}\tilde{K}_{1}^{*}\rightarrow t\hat{V}(\tilde{Y})\\ \tilde{K}_{1}^{*}\tilde{K}_{2}^{*}\rightarrow W\tilde{K}_{1}^{*}\tilde{K}_{1}^{*}\\ \tilde{K}_{1}^{*}\tilde{K}_{2}^{*}\rightarrow W\tilde{K}_{1}^{*}\tilde{K}_{1}^{*}\\ \tilde{K}_{2}^{*}\tilde{K}_{2}^{*}\rightarrow W\tilde{K}_{1}^{*}\tilde{K}_{1}^{*}\\ \tilde{K}_{2}^{*}\tilde{K}_{2}^{*},\tilde{K}_{2}^{*}\rightarrow \tilde{K}_{2}^{*}\tilde{K}_{2}^{*}\\ \tilde{K}_{2}^{*}\tilde{K}_{2}^{*},\tilde{K}_{2}^{*}\rightarrow \tilde{K}_{2}^{*}\tilde{K}_{2}^{*}\\ \tilde{K}_{2}^{*}\tilde{K}_{2}^{*},\tilde{K}_{2}^{*}\rightarrow \tilde{K}_{2}^{*}\tilde{K}_{2}^{*}\\ \end{array}$	2 e,μ 2 e,μ 2 τ 3 e,μ 2 3 e,μ 1 e,μ 4 e,μ	0 0 0 2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	パー 9933 GeV の小う 4 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093 1405.5086
Long-lived particles	Direct $\tilde{X}_{1}^{+}\tilde{X}_{1}^{-}$ prod., long-lived \tilde{X}_{1}^{+} Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{X}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{c}, \tilde{\mu}) + \tau(e, \tilde{g})$ GMSB, $\tilde{X}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived \tilde{X}_{1}^{0} $\tilde{q}\tilde{q}, \tilde{X}_{1}^{0} \rightarrow q q \mu$ (RPV)	Disapp. trk 0 µ) 1.2 µ 2 γ 1 µ, displ. vtx	1 jet 1-5 jets	Yes Yes Yes	20.3 27.9 15.9 4.7 20.3	21 270 GeV m(² / ₁) m(² / ₁) +160 MV, π(² / ₁) +0.2 ras 8 m(² / ₁) +160 MV, π(² / ₁) +0.2 ras 1 475 GeV m(² / ₁) +160 MV, π(² / ₁) +0.2 ras 1 475 GeV m(² / ₁) +160 MV, π(² / ₁) +160 MV 1 4 Coupt-Go 0 4-σ(² / ₁) -2 as 0 4-σ(² / ₁) -2 as 1.0 TeV 15 σerc15 mm Re[p] +1, π(² / ₁) +160 GeV	ATLAS-CONF-2013-069 1310.6584 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
Νd	$\begin{array}{l} LFV pp {\rightarrow} \tilde{v}_{\tau} + X, \tilde{v}_{\tau} {\rightarrow} c + \mu \\ LFV pp {\rightarrow} \tilde{v}_{\tau} + X, \tilde{v}_{\tau} {\rightarrow} c(\mu) + \tau \\ Blinear RPV CMSSM \\ \tilde{k}_{1}^{+} \tilde{k}_{1}^{-}, \tilde{k}_{1}^{+} {\rightarrow} W \tilde{k}_{1}^{0}, \tilde{k}_{1}^{+} {\rightarrow} a c \tilde{v}_{\mu}, e \mu \tilde{v}_{\nu} \\ \tilde{k}_{1}^{+} \tilde{k}_{1}^{-}, \tilde{k}_{1}^{+} {\rightarrow} W \tilde{k}_{1}^{0}, \tilde{k}_{1}^{+} {\rightarrow} a c \tilde{v}_{\mu}, e \tilde{v}_{\tau} \\ \tilde{k}_{1}^{+} \tilde{k}_{1}^{-}, \tilde{k}_{1}^{+} {\rightarrow} W \tilde{k}_{1}^{0}, \tilde{k}_{1}^{-} {\rightarrow} c \tilde{v}_{\tau} \\ \tilde{s}^{\rightarrow} e g g \\ \tilde{s}^{\rightarrow} f_{1} r, f_{1} {\rightarrow} b s \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (\text{SS}) \end{array}$	0-3 b 6-7 jets 0-3 b	Yes Yes Yes Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	Littery Littery μ _c -0.1, λ _{cu} -0.65 % 1.1 K ² <	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	$\begin{array}{l} {\rm Scalar \ gluon \ pair, \ sgluon \ \rightarrow } q\bar{q} \\ {\rm Scalar \ gluon \ pair, \ sgluon \ \rightarrow } \bar{n} \\ {\rm WIMP \ interaction \ (D5, \ Dirac \ \chi)} \end{array}$	2 e, µ (SS) 0	4 jets 2 b mono-jet	Yes Yes	4.6 14.3 10.5	solution 100-287 GeV 130-807 GeV incl. limit from 1110.2893 incl. limit from 1110.2893 mt_1-x80 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data P	s = 8 TeV artial data	$\sqrt{s} = full$	8 TeV data		10 ⁻¹ 1 Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1ar theoretical signal cross section uncertainty.

Josselin Proudom

◆□ > ◆□ > ◆目 > ◆目 > ● 目目 の Q @ >

LPSC

Motivations	
000000	

Physics case: Monotop signature

Conclusions

What's next?

- ► The range of those searches will be increased by:
 - ➤ The upcoming run at 13 and 14 TeV
 - > The proposed (and very popular) High-Luminosity upgrade
- ▶ If New Physics has to be discovered in the coming years:
 - > Goal will be to characterize the properties of the new d.o.f.
 - e.g. masses, couplings and spins
- However in most studies at hadron colliders...
 - Experimental analyses motivated by theoretical arguments
 - Imply key-final state signatures that should be looked for
 - Signatures not typical of a given theory/scenario
 - Famous example: MSSM and UED models

Disentangling BSM theories with same signature is hard

Motivations ○○○○●○ Physics at polarized hadron colliders

Physics case: Monotop signature

Conclusions

Why using polarized beams for New Physics searches?

Because it precisely solves the previous issue

Because the technology is already there and working:

- c.f. RHIC (Relativistic Heavy Ion Collider) in BNL
 - Polarization rate of proton beams at RHIC \sim 70-80%
- Because we have the theoretical knowledge:
 - > A few BSM phenomenological studies were lead at RHIC
 - Most of those studies were also considering
 - Polarization upgrades of the TeVatron and/or the LHC

Motivations ○○○○○●

Physics at polarized hadron colliders

Physics case: Monotop signature

Conclusions

Future Accelerators & Polarized beams

► A polarized LHC is now quite unlikely to be realized

- Technologically feasible but...
 - Would require to replace the full injector chain

The situation is different for the recently proposed FCC
 If New physics is discovered at the LHC

→ Strong motivation for a polarized mode of the FCC

Physics case: Monotop signature

2 Physics at polarized hadron colliders

B Physics case: Monotop signature

4 Conclusions

Josselin Proudom

Physics case: Monotop signature

Conclusions

Polarized Parton Distribution Functions

Unpolarized and polarized PDFs defined as:

$$f_{a/p}(x, Q^2) = f_{a/p}^+(x, Q^2) + f_{a/p}^-(x, Q^2)$$

$$\Delta f_{a/p}(x, Q^2) = f_{a/p}^+(x, Q^2) - f_{a/p}^-(x, Q^2)$$

With $f^+_{a/p}(x,Q^2)$ $\left[f^-_{a/p}(x,Q^2)\right]$ at Leading Order:

The probability of finding a parton a with a **momentum fraction** x at a given **energy scale** Q, with a **spin aligned** [anti-aligned] with the **spin of the proton** p

Physics at polarized hadron colliders

Physics case: Monotop signature

Conclusions

Polarized Parton Distribution Functions

- Polarized PDFs are smaller than unpolarized ones
- ► At small-*x* polarized PDFs are largely suppressed
- **>** Polarized distributions Δu and Δd have opposite signs
- Important consequences for spin asymmetries:
 - Sizable only at medium and large-x
 - i.e. for final-state with large invariant masses (New Physics)
 - > Behave differently depending on the initial partonic state
 - i.e. give discriminating power between BSM scenarios

Physics at polarized hadron colliders

Physics case: Monotop signature

Conclusions

Parton luminosities & cross sections

Parton luminosities are defined from the PDFs as:

$$\mathcal{L}_{ij} = \frac{1}{S} \int_{\tau}^{1} \frac{dx}{x} \frac{1}{1+\delta_{ij}} \left[q_i\left(x, m_X\right) q_j\left(\frac{\tau}{x}, m_X\right) + q_i\left(\frac{\tau}{x}, m_X\right) q_j\left(x, m_X\right) \right]$$

$$\mathcal{L}_{ij}^L = \frac{1}{S} \int_{\tau}^{1} \frac{dx}{x} \frac{1}{1+\delta_{ij}} \left[q_i\left(x, m_X\right) \Delta q_j\left(\frac{\tau}{x}, m_X\right) + q_i\left(\frac{\tau}{x}, m_X\right) \Delta q_j\left(x, m_X\right) \right]$$

$$\mathcal{L}_{ij}^{LL} = \frac{1}{S} \int_{\tau}^{1} \frac{dx}{x} \frac{1}{1+\delta_{ij}} \left[\Delta q_i\left(x, m_X\right) \Delta q_j\left(\frac{\tau}{x}, m_X\right) + \Delta q_i\left(\frac{\tau}{x}, m_X\right) \Delta q_j\left(x, m_X\right) \right]$$

Cross sections can be defined using parton luminosities:

$$\begin{split} \sigma_0 &= q_i \otimes q_j \otimes \hat{\sigma}_{0,ij} = \mathcal{L}_{ij} \otimes [\hat{s} \ \hat{\sigma}_{0,ij}], \\ \sigma_L &= q_i \otimes \Delta q_j \otimes \hat{\sigma}_{L,ij} = \mathcal{L}_{ij}^L \otimes [\hat{s} \ \hat{\sigma}_{L,ij}], \\ \sigma_{LL} &= \Delta q_i \otimes \Delta q_j \otimes \hat{\sigma}_{LL,ij} = \mathcal{L}_{ij}^{LL} \otimes [\hat{s} \ \hat{\sigma}_{LL,ij}], \end{split}$$

Physics at polarized hadron colliders

Physics case: Monotop signature

Conclusions

ELE NOR

Longitudinal spin asymmetries

> Spin asymmetries are defined as ratios of cross sections:

$$A_L = \frac{\sigma_L}{\sigma_0} \qquad A_{LL} = \frac{\sigma_{LL}}{\sigma_0}$$

- Why is it is useful to compute spin asymmetries?
 From the experimental point of view:
 - Because systematic uncertainties cancel in ratios
 - Because of their sensitivity to the initial partonic state
 - > Because $\hat{s}\hat{\sigma}_{ij}$ are often constants
 - Far above the production threshold
 - In the case of a narrow s-channel resonance
 - \implies A_L and A_{LL} re-write as ratios of parton luminosities

$$A_L^{ij} = rac{\mathcal{L}_{ij}^L}{\mathcal{L}_{ij}}$$
 and $A_{LL}^{ij} = rac{\mathcal{L}_{ij}^{LL}}{\mathcal{L}_{ij}}$

Physics case: Monotop signature

2 Physics at polarized hadron colliders

3 Physics case: Monotop signature

4 Conclusions

Josselin Proudom

Physics at polarized hadron colliders

Physics case: Monotop signature

Conclusions

Monotop production in the Standard model

- Final state signature : $t + \not\!\!\!E_T \longrightarrow bjj + \not\!\!\!E_T$
- Production mode \longrightarrow subdominant contribution
 - GIM suppressed: $V_{us} \simeq 0.23$, $V_{ts} \simeq 0.04$
 - Loop-suppressed
 - Branching ratio: $BR(Z \rightarrow \nu \bar{\nu}) \simeq 0.2$
- Observing monotop means observing New Physics

LPSC

Motivations

Physics at polarized hadron colliders

Physics case: Monotop signature

Conclusions

Monotop production in the RPV-MSSM

Production @ tree-level through squark exchange

$$pp \to \tilde{q} \to \tilde{\chi}_1^0 + t$$

- > 6 diagrams in the flavor conserving case
- > E_T associated to the lightest neutralino
 - \clubsuit Kinematic condition: $m_t > m_{\chi^0_1} \Rightarrow$ Long-lived neutralino
 - Decay far outside of the detector due to its long lifetime

Physics at polarized hadron colliders

Physics case: Monotop signature

Conclusions

Monotop production in the RPV-MSSM

Production @ tree-level through \tilde{t}_1 exchange

 $pp \to \tilde{t}_1 \to \tilde{\chi}_1^0 + t$

> Assume \tilde{t}_2 contribution is negligible

Only one resonant diagram (NWA)

$$\hat{\sigma}_{RPV}^{h_1h_2}(\bar{q}_j\bar{q}_k \to t\tilde{\chi}_1^0) = \frac{(1-h_1)(1-h_2)\pi \left|\lambda_{3jk}^{\prime\prime}\sin\theta_{\tilde{t}}\right|^2}{6} \times \text{BR}\left(\tilde{t} \to t\tilde{\chi}_1^0\right) \times \delta\left(\hat{s} - m_{\tilde{t}}^2\right)$$

• • = • • = •

ELE NOR

Physics at polarized hadron colliders

Physics case: Monotop signature

Conclusions

Monotop production in the RPV-MSSM

Dominant channels are ds and $d\bar{s}$

Spin asymmetries for the process + charge conjugate

$$A_L^{\overline{d}\overline{s}+ds} = \frac{\mathcal{L}_{ds}^L - \mathcal{L}_{\overline{d}\overline{s}}^L}{\mathcal{L}_{ds} + \mathcal{L}_{\overline{d}\overline{s}}} \qquad \text{and} \qquad A_{LI}^{\overline{d}\overline{s}}$$

$$\mathcal{L}^{+ds} = rac{\mathcal{L}^{LL}_{ds} + \mathcal{L}^{LL}_{ar{ds}}}{\mathcal{L}_{ds} + \mathcal{L}_{ar{ds}}}$$

Motivations
000000

Physics at polarized hadron colliders

Physics case: Monotop signature

Conclusions

Monotop production in the Hylogenesis model

[arXiv:1008.2399], [arXiv:1106.4320]

Provides a theoretical mechanism for generating:

- Baryon Asymmetry in the Universe (BAU)
- Dark Matter (DM)

Lagrangian:

$$\mathcal{L}_{\mathrm{hylo}} = rac{1}{2}\kappa_{ij}\;ar{d}_i^c\gamma^\mu d_j V_\mu + \mathsf{h.c.}\;,$$

Monotop originates from the decay of a vector resonance

$$\hat{\sigma}^{h_1h_2}_{\text{hylo}}(\bar{q}_j\bar{q}_k \to t\chi) =$$

$$\frac{(1-h_1h_2)\pi|\kappa_{jk}|}{3} \times \mathrm{BR}\left(V \to t\chi\right) \times \delta\left(\hat{s} - m_V^2\right)$$

Physics at polarized hadron colliders

Physics case: Monotop signature

Conclusions

ELE DOG

3 × 4 3 ×

Monotop production in the Hylogenesis model

Dominant channels are dd and $\overline{d}\overline{d}$

Spin asymmetries for the process + charge conjugate

$$A_L^{\overline{d}\overline{d}+dd} = 0, \qquad A_{LL}^{\overline{d}\overline{d}+dd} = -\frac{\mathcal{L}_{dd}^{LL} + \mathcal{L}_{\overline{d}\overline{d}}^{LL}}{\mathcal{L}_{dd} + \mathcal{L}_{\overline{d}\overline{d}}}$$

Motivations
000000

Physics at polarized hadron colliders

Physics case: Monotop signature

Conclusions

= 200

Monotop production in the X-model

[arXiv:1107.0623], [arXiv:1310.7600]

- Provides a candidate for Dark matter
 - > Top quark couple to a new neutral heavy resonance X
 - > X resonance strongly couples to some new hidden sector
 - > X resonance decays into particles of the hidden sector
 - > X resonance mediates FCNCs at tree-level
- **Lagrangian:**

$$\mathcal{L}_X = g_X^i \bar{u}_i \gamma^\mu P_R t X_\mu + \text{h.c.}$$

Monotop originates from non-resonant diagrams

Physics at polarized hadron colliders

Physics case: Monotop signature ○○○○○○○●○ Conclusions

Monotop production in the X-model

► Non-resonant diagrams ⇒ Cannot apply the NWA

Result for the helicity-dependent partonic cross-section:

$$\frac{\mathrm{d}\hat{\sigma}_X^{h,\lambda}}{\mathrm{d}t}(u_i g \to t X) = -\frac{1}{16\pi s^2} \frac{g_s^2 g_X^{i2}}{12 s m_X^2 (t - m_t^2)^2} (1+h) \Big[C_1 + C_2 \lambda \Big]$$

> No simple expression for A_L and A_{LL}

Dominant channel \Rightarrow *ug*

Josselin Proudom

Physics at polarized hadron colliders

Physics case: Monotop signature ○○○○○○○● Conclusions

Numerical Results

Josselin Proudom

Motivations

Physics case: Monotop signature

Conclusions

Conclusions

- > Polarized beams are technologically feasible
- > If New Physics is discovered at the LHC or at the HL-LHC
 - Provide strong motivation for a polarized FCC
- Polarized beams allow to disentangle BSM theories with the same final-state signature
 - Because of the of the properties of the polarized PDFs
- > Polarization effects at a 100 TeV FCC are unavoidable
 - Because at high energy the Z and W are effectively massless, and should be included into the DGLAP equations

Physics at polarized hadron colliders 0000

Physics case: Monotop signature

Thanks for your attention

LPSC

Josselin Proudom

・ 同 ト ・ ヨ ト ・ ヨ ト

ELE SQA

Back-up slides

LPSC

★ E ▶ ★ E ▶ E = 9 Q Q

Motivations for beyond Minimal SUSY searches

- ▶ Non-observations of SUSY particles @ the LHC:
 - Rekindled the interest for non-minimal SUSY models
- Idea behind non-minimal SUSY models
 - > It could be that we are missing an additional ingredient
 - R-Parity Violating (RPV) MSSM
 - NMSSM, Left-Right MSSM, MRSSM, Vector-like MSSM
- Price to pay for non-minimal SUSY
 - ➤ More interactions ⇒ New free parameters
 - Phenomenological analyses → More complicated
- Attractive feature of non-minimal SUSY
 - May solve problems that minimal SUSY does not
 - Baryon Asymmetry in the Universe (BAU) [Barbier et al.]
 - Neutrino mass generation [Barbier et al.]

LPSC

• μ problem

Motivations for R-Parity Violating SUSY

R-Parity

- Forbids both BNV and LNV interactions in the MSSM
- Imposed to avoid fast proton decay: $\tau_p\gtrsim 10^{33}$ years

- Proton decay requires both BNV and LNV interactions
 - R-parity conservation is too restrictive
 - ➤ Either BNV or LNV are allowed ⇒ No proton decay
- RPV-MSSM with BNV model features
 - BNV + lepton number conservation compatible with a GUT
 - $\bullet~$ Provides the third Sakharov condition $\Rightarrow~$ BAU
- Price to pay: Extremely difficult to accommodate DM

The model

BNV superpotential:

$$W_{BNV} = \frac{1}{2} \lambda_{ijk}^{\prime\prime} U^i D^j D^k + W_{MSSM}$$

- > $\lambda_{iik}^{\prime\prime}$: BNV couplings \Rightarrow 9 new free independent parameters \succ <u>U</u>, <u>D</u>: Superfields
- \succ *i*, *j* and *k* : Flavor indices
- BNV Lagrangian:

$$\begin{split} \mathcal{L}_{U_{l}U_{j}D_{k}} &= -\frac{1}{2}\lambda_{ijk}^{''}\varepsilon^{c_{1}c_{2}c_{3}}\left(\widetilde{u}_{lc_{3}}^{0\dagger}R_{l(k+3)}^{u}\bar{\Psi}_{Dic_{1}}^{d}P_{L}\Psi_{Djc_{2}}^{d}\right. \\ &+ \widetilde{d}_{lc_{2}}^{0\dagger}R_{l(k+3)}^{d}\bar{\Psi}_{Dic_{1}}^{u}P_{L}\Psi_{Dkc_{2}}^{d}+\bar{\Psi}_{Dic_{1}}^{u}P_{L}\Psi_{Djc_{2}}^{d}R_{l(k+3)}^{d}\widetilde{d}_{lc_{3}}^{0\dagger}\right) + \mathsf{h.c.} \end{split}$$

I> < E> < E> E| = のQQ

Constraints on BNV couplings

Present experimental constraints on λ''_{ijk} couplings:

- Neutron dipole moment [Slavich arXiv:0008270]
- Antinucleon oscillations, double nucleon decays
- Rare hadronic decays of *B*-mesons, *K*-*K* systems
- Observed flux of cosmic rays antiprotons : [Gondolo arXiv:9704411]

 $\lambda_{ijk}'' < 10^{-19} - 10^{-24}$

Yet... Not applicable to λ"_{3jk} if the top quark is heavier than the Lightest Supersymmetric Particle (LSP)
 λ"_{3jk} is left almost unconstrained [Barbier et al.]
 Enforce MFV ⇒ Only λ"₃₁₂ is sizable ~ O(0.1)

Analytical expressions of the charges

$$\begin{split} Q_{lo}^{ss} &= s \ C_{d_{i}d_{j}\widetilde{u}_{l}} C_{d_{i}d_{j}\widetilde{u}_{o}}^{*} \left[\left(s - m_{q_{m}}^{2} - m_{\widetilde{\chi}_{n}^{0}}^{2} \right) \left(L_{u_{m}\widetilde{u}_{l}\widetilde{\chi}_{n}^{0}} L_{u_{m}\widetilde{u}_{o}\widetilde{\chi}_{n}^{0}}^{*} \right. \\ &+ \ R_{u_{m}\widetilde{u}_{l}\widetilde{\chi}_{n}^{0}} R_{u_{m}\widetilde{u}_{o}\widetilde{\chi}_{n}^{0}}^{*} \right) - 2m_{u_{m}} m_{\widetilde{\chi}_{n}^{0}} \left(L_{u_{m}\widetilde{u}_{l}\widetilde{\chi}_{n}^{0}} R_{u_{m}\widetilde{u}_{o}\widetilde{\chi}_{n}^{0}}^{*} + R_{u_{m}\widetilde{u}_{l}\widetilde{\chi}_{n}^{0}} L_{u_{m}\widetilde{u}_{o}\widetilde{\chi}_{n}^{0}}^{*} \right) \right] \\ Q_{lo}^{tt+} &= \ C_{u_{m}d_{i}\widetilde{d}_{l}} C_{u_{m}d_{i}\widetilde{d}_{o}}^{*} \left(t - m_{u_{m}}^{2} \right) \left(t - m_{\widetilde{\chi}_{n}^{0}}^{2} \right) \left(L_{d_{j}\widetilde{d}_{l}\widetilde{\chi}_{n}^{0}} L_{d_{j}\widetilde{d}_{o}\widetilde{\chi}_{n}^{0}}^{*} \right) \\ Q_{lo}^{tt-} &= \ C_{u_{m}d_{i}\widetilde{d}_{l}} C_{u_{m}d_{i}\widetilde{d}_{o}}^{*} \left(t - m_{u_{m}}^{2} \right) \left(t - m_{\widetilde{\chi}_{n}^{0}}^{2} \right) \left(R_{d_{j}\widetilde{d}_{l}\widetilde{\chi}_{n}^{0}} R_{d_{j}\widetilde{d}_{o}\widetilde{\chi}_{n}^{0}}^{*} \right) \\ Q_{lo}^{uu+} &= \ C_{u_{m}d_{j}\widetilde{d}_{l}} C_{u_{m}d_{j}\widetilde{d}_{o}}^{*} \left(u - m_{u_{m}}^{2} \right) \left(u - m_{\widetilde{\chi}_{n}^{0}}^{2} \right) \left(L_{d_{i}\widetilde{d}_{l}\widetilde{\chi}_{n}^{0}} L_{d_{i}\widetilde{d}_{o}\widetilde{\chi}_{n}^{0}}^{*} \right) \end{split}$$

Josselin Proudom

글 🕨 🔸 글 🕨

Analytical expressions of the charges

$$\begin{split} Q_{lo}^{uu-} &= C_{u_m dj\widetilde{d}l} C_{u_m dj\widetilde{d}o}^* \left(u - m_{u_m}^2 \right) \left(u - m_{\widetilde{\chi}_n^0}^2 \right) \left(R_{di\widetilde{d}\iota\widetilde{\chi}_n^0} R_{di\widetilde{d}o\widetilde{\chi}_n^0}^* \right) \\ Q_{lo}^{st} &= 2m_{\widetilde{\chi}_n^0} m_{u_m} s \Re \left(C_{did\widetilde{j}ul} L_{u_m \widetilde{u}l\widetilde{\chi}_n^0} C_{u_m di\widetilde{d}o}^* R_{d\widetilde{j}\widetilde{d}o\widetilde{\chi}_n^0}^* \right) \\ &+ 2st \Re \left(C_{did\widetilde{j}ul} R_{u_m \widetilde{u}l\widetilde{\chi}_n^0} C_{u_m di\widetilde{d}o}^* R_{d\widetilde{j}\widetilde{d}o\widetilde{\chi}_n^0}^* \right) \\ Q_{lo}^{su} &= -2m_{\widetilde{\chi}_n^0} m_{u_m} s \Re \left(C_{did\widetilde{j}ul} L_{u_m \widetilde{u}l\widetilde{\chi}_n^0} C_{u_m d\widetilde{j}\widetilde{d}o}^* R_{d\widetilde{i}\widetilde{d}o\widetilde{\chi}_n^0}^* \right) \\ &- 2us \Re \left(C_{did\widetilde{j}ul} R_{u_m \widetilde{u}l\widetilde{\chi}_n^0} C_{u_m d\widetilde{j}\widetilde{d}o}^* R_{d\widetilde{i}\widetilde{d}o\widetilde{\chi}_n^0}^* \right) \\ Q_{lo}^{ut} &= 2 \left(m_{\widetilde{\chi}_n^0}^2 m_{u_m}^2 - ut \right) \Re \left(C_{u_m d\widetilde{i}\widetilde{d}l} R_{d\widetilde{j}\widetilde{d}\widetilde{\chi}_n^0} C_{u_m d\widetilde{j}\widetilde{d}o}^* R_{d\widetilde{i}\widetilde{d}o\widetilde{\chi}_n^0}^* \right) \end{split}$$

LPSC

Josselin Proudom

▶ ★ 문 ▶ ★ 문 ▶ 문

= 990

Full expressions for the couplings

$$\begin{split} L_{\bar{u}_{j}u_{k}\tilde{\chi}_{i}^{0}} &= \left[\left(e_{q} - T_{q}^{3} \right) s_{W} N_{i1} + T_{q}^{3} c_{W} N_{i2} \right] R_{jk}^{u*} + \frac{m_{u_{k}} c_{W} N_{i4} R_{j(k+3)}^{u*}}{2 \, m_{W} \sin \beta} \\ R_{\bar{u}_{j}u_{k}\tilde{\chi}_{i}^{0}} &= -e_{q} \, s_{W} \, N_{i1}^{*} \, R_{j(k+3)}^{u*} + \frac{m_{u_{k}} \, c_{W} \, N_{i4}^{*} \, R_{jk}^{u*}}{2 \, m_{W} \, \sin \beta} \\ L_{\bar{d}_{j}d_{k}\tilde{\chi}_{i}^{0}} &= \left[\left(e_{q} - T_{q}^{3} \right) s_{W} \, N_{i1} + T_{q}^{3} \, c_{W} \, N_{i2} \right] R_{jk}^{d*} + \frac{m_{d_{k}} \, c_{W} \, N_{i4} \, R_{j(k+3)}^{d*}}{2 \, m_{W} \, \sin \beta} \\ R_{\bar{d}_{j}d_{k}\tilde{\chi}_{i}^{0}} &= -e_{q} \, s_{W} \, N_{i1}^{*} \, R_{j(k+3)}^{d*} + \frac{m_{d_{k}} \, c_{W} \, N_{i4}^{*} \, R_{jk}^{d*}}{2 \, m_{W} \, \sin \beta} \\ R_{\bar{d}_{j}d_{k}\tilde{\chi}_{i}^{0}} &= -e_{q} \, s_{W} \, N_{i1}^{*} \, R_{j(k+3)}^{d*} + \frac{m_{d_{k}} \, c_{W} \, N_{i4}^{*} \, R_{jk}^{d*}}{2 \, m_{W} \, \sin \beta} \\ C_{d_{i}d_{j}\tilde{u}_{l}} &= \lambda_{ijk}^{''} R_{l(k+3)}^{u} \quad \text{and} \quad C_{u_{i}d_{j}\tilde{d}_{l}} &= \lambda_{ijk}^{''} R_{l(k+3)}^{d} \end{split}$$

With

$$\widetilde{\chi}_i^0 = N_{ij}\psi_j^0 \quad \text{with} \quad i = 1, 2, 3, 4$$

▶ ★ 臣 ▶ ★ 臣 ▶ .

= 990

Monotop production in the RPV-MSSM

Helicity-dependent partonic cross section

Full 2 \rightarrow 2 process

$$\begin{aligned} \frac{d\hat{\sigma}_{h_a h_b}}{dt} &= \frac{\alpha}{12s_W^2 c_W^2 s^2} \sum_{l,o=1,2}^6 \left[\left(1 - h_a\right) \left(1 - h_b\right) \left(\frac{Q_{lo}^{ss}}{s_l s_o} + \frac{Q_{lo}^{tt-}}{t_l t_o} + \frac{Q_{lo}^{su}}{u_l u_o} + \frac{Q_{lo}^{st}}{s_l t_o} + \frac{Q_{lo}^{su}}{s_l u_o} + \frac{Q_{lo}^{tu}}{t_l u_o} \right) + \left(1 - h_a\right) \left(1 + h_b\right) \frac{Q_{lo}^{tt+}}{t_l t_o} + \left(1 + h_a\right) \left(1 - h_b\right) \frac{Q_{lo}^{uu+}}{u_l u_o} \right] \end{aligned}$$

➤ Compactified expression of the cross section > h_a and h_b ⇒ helicities of incoming particles > Q^{ss}: interferences between diagrams in the s-channel

Tool chain

SLHA2 input file: [Allanach et al.] > Model and parameters specification SUSY-spectrum: SPheno-3.2.1: [Porod, Staub] Compute RGEs at the two loop level Decay Width an Branching Ratios: SUSY-HIT-1.3 [Djouadi, Mullheitner, Spira] Width and BRs of the MSSM Higgs bosons: HDECAY Width and BRs of the SUSY particles: SDECAY Cross section & scans: XSUSY-1.9.23 (Private code) Original C++ code developed by B. Fuks & B. Herrmann Numerical integration performed using VEGAS

白 ト イヨ ト イヨ ト ヨヨ うくう

Numerical results

Demanding from the computational point of viewIs there a way to simplify the computations?

(*) * 문 * 문 * 문

= 990

The Narrow Width Approximation

- **•** The Narrow Width Approximation (NWA):
 - Reduction of the complexity of scattering amplitudes
 - Assumes peaked resonance with a Breit-Wigner lineshape
 - > For small Γ , off-shell effects are suppressed
 - Intermediate resonance can be approximated to be on-shell
 - Production and decay of unstable particles factorized
 - Non-resonant contributions are neglected
 - > Introduction of an error of $\mathcal{O}(\Gamma/M)$ for each Breit-Wigner

Requirements for the NWA

- **①** Total width of the particle way smaller than its mass: $\Gamma \ll M$
- Propagator separable from the matrix element
- O No significant interferences from non-resonant processes
- **③** Scattering energy larger than mass of the resonance: $\sqrt{s} \gg M$
- Mass of resonance larger than masses of the daughter particles

Narrow Width Approximation & New Physics

[Kauer, Rainwater, Berdine arXiv:0703058]

- **Narrow Width Approximation features:**
 - > Drastically simplifies calculations $\Rightarrow \sigma_p \times BR$
 - Reduce CPU time required for computations
 - Works pretty well in the case of the SM
 - Extensively used for BSM searches

Is the NWA reliable in the context of BSM searches?

- NWA assumes Breit-Wigner resonance
 - In the vicinity of kinematical bounds like $\sqrt{s}\sim M$
 - $\bullet\,$ For near-degenerate parent-daughter masses $\,m\sim M\,$
- Breit-Wigner lineshape is distorted by threshold factors

• phase space factors e.g.
$$\beta = \sqrt{1-(m/M)^2}$$

-

Validity of the NWA

LPSC