Searches for BSM Physics in Rare B-Decays in ATLAS

Iskander Ibragimov

SPONSORED BY THE

Federal Ministry of Education and Research

on behalf of the ATLAS Collaboration

SUSY 2014

The 22nd International Conference on Supersymmetry and Unification of Fundamental Interactions

University of Manchester 21-26 July 2014, Manchester (England)

ATLAS B-Physics Data

excellent data taking efficiency and quality of data
multiple interactions per bunch crossing (<µ>)

- ► > 5 fb⁻¹ recorded in 2011 (7 TeV)
 - <µ> = 9
- > 20 fb⁻¹ recorded in 2012 (8 TeV)

• <µ> = 20

only 2011 data are used in the presented searches

topological di-muon triggers

- require two muons with p_T(μ) > 4 GeV or more at the first trigger level
- full track reconstruction and loose mass selection at the higher trigger levels
 - no trigger prescales applied in 2011

▶ single muon triggers also used (e.g. in $B_d^0 \rightarrow K^{*0}\mu^+\mu^-$ analysis)

 high-rate triggers prescaled at higher instantaneous luminosity (2nd half of 2011, at the beginning of a run)

$\rightarrow \mu^+\mu^-$: Introduction

$B_s \rightarrow \mu^+ \mu^-$: Analysis Strategy

► Relative BR measurement:

- partial cancelation of uncertainties (luminosity, cross-section, ...)
- reference channel $B^{\pm} \rightarrow J/\psi K^{\pm}$

- use MVA technique (BDT) for signal/background discrimination
- optimize discrimination avoiding biasses =>
 - independent datasets used for
 - BDT training (MC modeling)
 - selection optimization (50% of sideband data)
 - background measurement (remaining 50% of sideband data)
 - blind analysis (region ± 300 GeV around B_s mass blinded)

$B_s \rightarrow \mu^+ \mu^-$: Background Composition

$B_s \rightarrow \mu^+ \mu^-$: Background Discrimination

SUSY 2014, Manchester, 21-07-2014

Iskander Ibragimov, University of Siegen

► selection as close as possible to Bs (to minimize overall systematics) • uses PDT trained on Pa

 $B_s \rightarrow \mu^+ \mu^-$: Reference Channel Yield and ExA Ratio

use BDT trained on Bs

 $N(B^{\pm} \rightarrow J/\psi K^{\pm})$ extraction:

- use the same BDT selection
- unbinned max. likelihood fit
 - use per-event mass resolution δm
- systematics accessed by varying background fit model

ε x A measurement:

Channel	$A \times \epsilon$	$R_{A\epsilon}$	
B^+	$1.317 \pm 0.008\%$ (stat)	0.267 + 1.9% (stat) + 6.0% (syst)	
B_s^0	$4.929 \pm 0.084\%$ (stat)	$0.207 \pm 1.8\%$ (stat) $\pm 0.9\%$ (syst)	

systematics from data/MC discrepancies

$B_s \rightarrow \mu^+ \mu^-$: Result

Single Event Sensitivity: SES = $(2.07 \pm 0.26) \cdot 10^{-9}$

- ▶ 12.5 % error dominated by systematics, mainly:
 - BR(B[±]), f_u/f_s : 8.5 %
 - E x A ratio : 6.9 %
 - absolute K[±] tracking efficiency: 5 %

- ▶ total N_{bkg} expected in search region: 6.75 events (with 0.3 events from B → hh') $=> BR(B_s → \mu^+\mu^-) < 1.6 \times 10^{-8} (@ 95\% CL)$
- $N_{\mu\mu}$ observed in search region: 6 events

 $=> BR(B_s \rightarrow \mu^+\mu^-) < 1.5 \times 10^{-8} (@ 95\% CL)$

$B_d^0 \rightarrow K^{*0} \mu^+ \mu^-$: Introduction

• exclusive final state for $b \rightarrow sl^+l^+$ transition

▶ $b \rightarrow sl^+l^+$ can occur only via loop-suppressed W-exchange:

- SM expectation BR = $(1.06 \pm 0.10) \cdot 10^{-6}$ [PDG 2013]
- contribution from new particles can affect BR

- ▶ angular observables sensitive to NP:
 - A_{FB} muon forward-backward asymmetry
 - F_L fraction of longitudinally polarized K^{*0} mesons

$B_d^0 \rightarrow K^{*0}\mu^+\mu^-$: Analysis Strategy

kinematic observables

- dimuon mass q²
- 3 angles: θ_L , θ_K , $\varphi =>$ decay rate

 $\frac{d^4\Gamma}{dq^2d\cos\theta_Ld\cos\theta_Kd\phi}$

- limited statistics => use ϕ symmetry
 - integrate over ϕ , cos θ_{L} : $\left| \frac{1}{\Gamma} \frac{1}{dq^{2}} \right|$

$$\frac{\mathrm{d}^2\Gamma}{\mathrm{d}\cos\theta_K} = \frac{3}{2}F_L(q^2)\cos^2\theta_K + \frac{3}{4}\left(1 - F_L(q^2)\right)\left(1 - \cos^2\theta_K\right)$$

• integrate over
$$\phi$$
, $\cos \theta_{\mathsf{K}}$:

$$\frac{1}{\Gamma} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d}q^2 \mathrm{d} \cos \theta_L} = \frac{3}{4} F_L(q^2) \left(1 - \cos^2 \theta_L\right) + \frac{3}{8} \left(1 - F_L(q^2)\right) \left(1 + \cos^2 \theta_L\right) + A_{FB}(q^2) \cos \theta_L$$

• extract $A_{FB}(q^2)$ and $F_L(q^2)$ via unbinned max. likelihood fit

$B_d^0 \rightarrow K^{*0}\mu^+\mu^-$: Signal Selection

Background contributions:

- ▶ $b\overline{b} \rightarrow \mu^+\mu^-X$ (main), $c\overline{c} \rightarrow \mu^+\mu^-X$, Drell-Yan
 - => require τ/σ_{τ} > 12.75 and cos $\theta_{pointing}$ > 0.999 (selections optimized on MC)
- ► radiative decays of charmonium in $B_d^0 \rightarrow K^{*0}J/\psi$, $B_d^0 \rightarrow K^{*0}\psi(2S)$ and J/ψ , $\psi(2S)$ tails => veto mass regions in $|(m(B_d^0)_{rec} - m(B_d^0)_{PDG}) - (m_{\mu\mu, rec} - m_{J/\psi, PDG})| < \Delta m (130 \text{ MeV})$

Additional selections:

- ► K^{*0} (→ $K^{+}\pi^{-}$) mass acceptance range [846, 946] MeV
- ▶ veto $B_d^0 \rightarrow K^{*0}J/\psi$, $B_d^0 \rightarrow K^{*0}\psi(2S)$ decays:
 - 8.68 < q^2 < 10.09 (J/ $\psi \rightarrow \mu\mu$)
 - 12.86 < q^2 < 14.18 ($\psi(2S) \rightarrow \mu\mu$)

B_d⁰ mass likelihood fit:

- signal model: Gaussian with per-event errors
- background model: exponential

 $N_{sig} = 466 \pm 34$ $N_{bkg} = 1132 \pm 43$

$B_d^0 \rightarrow K^{*0}\mu^+\mu^-$: Angular Fits

- unbinned max. likelihood fits using sequential approach
- ▶ for each of six q² bins:
 - I.fit mass distribution
 - => get PDF mass parameters and signal fraction
 - 2. fit angular distributions with parameters of the first step fixed

(using q² bin definitions of BELLE)

$B_d^0 \rightarrow K^{*0}\mu^+\mu^-$: Results

- measurements agree with SM and other experiments
- statistical uncertainties dominate
- in high q² bin ATLAS results are competitive

2			
q^2 range (GeV ²)	Nsig	A_{FB}	F_L
$2.00 < q^2 < 4.30$	19 ± 8	$0.22 \pm 0.28 \pm 0.14$	$0.26 \pm 0.18 \pm 0.06$
$4.30 < q^2 < 8.68$	88 ± 17	$0.24 \pm 0.13 \pm 0.01$	$0.37 \pm 0.11 \pm 0.02$
$10.09 < q^2 < 12.86$	138 ± 31	$0.09 \pm 0.09 \pm 0.03$	$0.50 \pm 0.09 \pm 0.04$
$14.18 < q^2 < 16.00$	32 ± 14	$0.48 \pm 0.19 \pm 0.05$	$0.28 \pm 0.16 \pm 0.03$
$16.00 < q^2 < 19.00$	149 ± 24	$0.16 \pm 0.10 \pm 0.03$	$0.35 \pm 0.08 \pm 0.02$
$1.00 < q^2 < 6.00$	42 ± 11	$0.07 \pm 0.20 \pm 0.07$	$0.18 \pm 0.15 \pm 0.03$

Summary

- ▶ high-quality results with full $\sqrt{s} = 7 \text{ TeV}$ dataset (5 fb⁻¹)
 - rare decay $B_s \rightarrow \mu^+\mu^-$ (ATLAS-CONF-2013-076)
 - angular analysis of $B_d^0 \rightarrow K^{*0}\mu^+\mu^-$ (ATLAS-CONF-2013-038)
- no signs of BSM Physics so far
 - $B_s \rightarrow \mu^+\mu^-$: observed BR < 1.5 x 10⁻⁸, consistent with SM
 - $B_d^0 \rightarrow K^{*0} \mu^+ \mu^-$: A_{FB} and F_L measurements consistent with theoretical predictions and other measurements
- ▶ analyses with $\sqrt{s} = 8 \text{ TeV}$ dataset (ca. 20 fb⁻¹) in preparation
- data of LHC Run 2 will bring us even more statistical power !