≜UCL

The Dark Side of θ_{13} , δ_{cp} , Leptogenesis and Inflation in Type-I Seesaw

University College London (UCL) Wei-Chih Huang 21.07.2014 SUSY 2014 Manchester

arXiv: 1405.5886

Motivations

- Dark Matter (DM) and massive neutrinos can not be explained in the Standard Model (SM)
- The simplest extension to give a mass to neutrinos is the type-I seesaw mechanism (Minkowiski, Gell-Mann, Ramond, Slansky, Freedman, Niuenhuizen...)
- If θ₁₃=0, the neutrino mixing matrix (U_{PMNS}) can be well approximated by the Tri-Bimaximal Mixing (TBM) pattern Harrison et al (hep-ph/0210197, hep-ph/0302025, hepph/0403278...)

Motivations

In Type-I seesaw, leptogenesis does not work if there exists a
 (residual) flavor symmetry, leading to zero θ₁₃ Jenkins et al (0807.4176), Aristizabal Sierra et al
 (0908.0907), Bertuzzo et al (0908.0161), Hagedorn et al (0908.0240)

$$\epsilon_1 \simeq -\frac{3}{8\pi} \frac{M_1}{\langle H_u^0 \rangle^2} \frac{\sum_j m_j^2 \operatorname{Im}(R_{1j}^2)}{\sum_j m_j |R_{1j}|^2}$$

hep-ph/0202239

- Nonzero θ_{13} and leptogenesis can come from DM radiative corrections in the context of some underlying flavor symmetry, resulting in TBM
- The DM stability can simply come from a Z₂ symmetry
- We keep a spirit of minimality, i.e., fewest free parameters from the DM sector

N

 $\mathcal{L} \supset y_{\alpha i} \left(L_{\alpha} \cdot H \right) N_{i} - \frac{M_{i}}{2} N_{i} N_{i} + \lambda_{\alpha} \left(L_{\alpha} \cdot \chi_{2} \right) S$ $+ \lambda_{H\chi} \left(\chi_{2} \cdot \tilde{H} \right) \chi_{1} + \lambda_{N_{i}} \chi_{1} N_{i} S + h.c.$

L

The Model and relevant observables

- A gauge-singlet fermion χ_1 , a fermionic SU(2) doublet χ_2 and a real gauge-singlet scalar S
- •These particles are odd under the Z₂ symmetry
- The values of the observables are taken from PDG (Phys.Rev. D86, 010001 (2012)), T2K (1308.0465) and Planck results (1303.5076).

Field	L	Н	N_1	N_2	N_3	χ_1	χ_2	$ ilde{\chi}_2$	S
$SU(2)_L$	2	2	1	1	1	1	2	2	1
$U(1)_Y$	-1/2	1/2	0	0	0	0	1/2	-1/2	0
Z_2	+	+	+	+	+	_	_	_	_

The particle content and corresponding quantum numbers in the model.

	$\sin^2 2\theta_{12}$	$\sin^2 2\theta_{23}$	$\sin^2 2\theta_{13}$	$\Delta m_{sol}^2 \; (\mathrm{eV^2})$	$ \Delta m_{atm}^2 $ (eV ²)	$\Omega_{ m b}h^2$	$\Omega_{ m DM} h^2$
best-fit	0.857	1	0.095	7.50×10^{-5}	2.32×10^{-3}	0.022	0.120
1σ	0.024	0.301	0.01	2×10^{-6}	1×10^{-4}	3.3×10^{-4}	3.1×10^{-3}

The best-fit value and 1σ standard deviation of relevant observables

DM radiative corrections

UCL

Results on U_{PMNS} angles and mass-squared differences

- $(\delta m_D)_{13}$ alone can amend U_{TBM} to U_{PMNS} with correct Δm^2
- One must need at least two radiative corrections for U_{PMNS} and Δm^2 if $(\delta m_D)_{13}$ is not involved

	$m_{\nu_1} (\mathrm{eV})$	$m_{\nu_2} (\mathrm{eV})$	$m_{\nu_3} (\mathrm{eV})$	λ_{N_a}	λ_{N_b}	$\lambda_{ au}$
NH	0	8.66×10^{-3}	4.89×10^{-2}	0	0	0
IH	1.107×10^{-1}	$1.11 imes 10^{-1}$	0.1	0	0	0
	$m_{N_1} (\text{GeV})$	$m_{N_2} (\text{GeV})$	m_{N_3} (GeV)	$m_S \; ({\rm GeV})$	$m_{\chi_1} \ (\text{GeV})$	$m_{\chi_2} ~({\rm GeV})$
$\rm NH/IH$	1000	2000	3000	700	62	200

The Benchmark point for the NH and IH cases. $(N_a, N_b, N_c) = (N_1, N_2, N_3)$

We here keep $m_{\nu_2}^2 - m_{\nu_1}^2$ and $|m_{\nu_3}^2 - m_{\nu_2}^2|$ to be Δm_{sol}^2 and Δm_{atm}^2 , respectively.

 10^{3}

DM relic abundance and direct detection

$$\mathcal{L} \supset \qquad \lambda_{H\chi} \left(\chi_2 \cdot \tilde{H} \right) \chi_1 + \lambda_{H\tilde{\chi}} \left(\tilde{\chi}_2 \cdot H \right) \chi_1 + \lambda_{\alpha} \left(L_{\alpha} \cdot \chi_2 \right) S \\ + \lambda_{N_i} \chi_1 N_i S - \frac{1}{2} m_S^2 - \frac{1}{2} m_{\chi_1} \chi_1 \chi_1 - m_{\chi_2} \tilde{\chi}_2 \chi_2 + h.c.,$$

LUX constraint on sin $\theta \lambda_{H\chi}$

LUX bounds on the product of $\sin \theta$ and λ_H , where θ is the $\chi_1 - \chi_2$ mixing angle

LUX SI results arXiv:1310.8214

Leptogenesis (TeV N) with new contributions

Two conditions required to generated a lepton asymmetry from N_1 decays:

- Tree-level and loop-level interference with complex coupling constant(s) (λ_{N_1})
- Particles in the loop must be on-shell

In fact, $(\delta m_D)_{13}$ alone can not realize leptogenesis because:

- 1. In terms of the interference between the tree-level and the DM loops, the lepton asymmetry is zero since $(m_D)_{13} = 0$ due to the TBM mixing pattern
- 2. In terms of original interference (upper panels), $N_1 > 10^9 \text{ GeV}$ is required (hep-ph/0202239)

Leptogenesis (TeV N) with new contributions

With the spirit of minimality, one can include N_2 (λ_{N_2}) in the game:

- $(\delta m_D)_{13}$ comes from λ_{N_2} for nonzero θ_{13} , $(\delta m_D)_{12}$ comes from λ_{N_1} for leptogenesis
- It, however, suffers from new washout processes, $\chi_1 + S \to L^{\pm} + H^{\mp}$

To generate sufficient lepton asymmetry, we employ the resonant enhancement $m_{N_2} - m_{N_1} \sim \Gamma_{N_2}$ (N₂ decay width) (hep-ph/9707235)

	$\sin^2 2\theta_{12}$	$\sin^2 2\theta_{23}$	$\sin^2 2\theta_{13}$	$\Delta m^2_{sol} \; (\mathrm{eV^2})$	$ \Delta m^2_{atm} \ (eV^2)$	$\Omega_{ m b}h^2$	$\Omega_{ m DM} h^2$
best-fit	0.857	1	0.095	7.50×10^{-5}	2.32×10^{-3}	0.022	0.120
1σ	0.024	0.301	0.01	2×10^{-6}	1×10^{-4}	3.3×10^{-4}	3.1×10^{-3}

We include the following observables in χ^2 fits

Table 2: The best-fit value and 1σ standard deviation of relevant observables included in this paper. The values are taken from Refs. [52–54].

Leptogenesis (TeV N) with new contributions

Figure 7: In the case of TeV N_1 , confidence region in green (purple) on the phase of λ_{N_1} , $\delta\lambda_{N_1}$, for $m_{N_2} - m_{N_1} \equiv \Delta m_{N_{12}} = 10^{-9} (10^{-10})$ GeV. The blue line represents the correlation between $\delta\lambda_{N_1}$ and δ_{CP} in U_{PMNS} .

	$m_{\nu_1} (\mathrm{eV})$	$m_{\nu_2} (\mathrm{eV})$	$m_{\nu_3} (\text{eV})$	λ_{N_a}	λ_{N_b}	$\lambda_{ au}$
NH	0	8.66×10^{-3}	4.89×10^{-2}	0	0	0
IH	1.107×10^{-1}	1.11×10^{-1}	0.1	0	0	0
	$m_{N_1} \; ({\rm GeV})$	$m_{N_2} \; (\text{GeV})$	$m_{N_3}~({\rm GeV})$	$m_S \; ({\rm GeV})$	$m_{\chi_1} \; (\text{GeV})$	$m_{\chi_2} \ ({\rm GeV})$
NH/IH	1000	$1000 + \Delta m_{N_{12}}$	2000	700	62	200

S as Inflaton in chaotic inflation

In the limit of slow-roll inflation, the density and tensor perturbations are related to the inflation potential $V(\phi)$ as:

Φ

 $\phi_{\rm CMB}$

S as Inflaton in chaotic inflation

$$\begin{split} V &= m_{\phi}^2 \phi^2 \\ r &= \frac{\Delta_t^2}{\Delta_s^2} \approx 16\epsilon_V = \frac{8}{N_{\rm cmb}} \sim 0.16 \\ \text{with } N_{\rm cmb} \sim 50 \\ \text{which is consistent with the BICEP2 results with} \\ r &= 0.20^{+0.07}_{-0.05} \text{ or } r = 0.16^{+0.06}_{-0.05} \text{ after subtracting} \\ \text{various dust models (arXiv:1403.3985)} \\ \text{scalar spectral index} \\ n_s &= 1 - \frac{2}{N_{\rm cmb}} \sim 0.96, \end{split}$$

which is also consistent with the *Planck* results (arXiv:1303.5082)

S as Inflaton in chaotic inflation

From the *Planck* results (arXiv:1303.5082), the scalar perturbation amplitude for $V = m_{\phi}^2 \phi^2$ is

$$m_{N_i} \gtrsim m_S \sim 10^{13} \text{ GeV}$$

S as Inflaton in chaotic inflation

	$m_{\nu_1} \ (eV)$	$m_{\nu_2} (\mathrm{eV})$	$m_{\nu_3}~(\text{eV})$	λ_{N_a}	λ_{N_b}	λ_{μ}	$\lambda_{ au}$
NH	0	8.66×10^{-3}	4.89×10^{-2}	0	0	0	0
IH	1.107×10^{-1}	1.11×10^{-1}	0.1	0	0	0	0
	$m_{N_1} \; ({\rm GeV})$	$m_{N_2} \; ({\rm GeV})$	$m_{N_3} \ ({\rm GeV})$	$m_S \; ({\rm GeV})$	$m_{\chi_1} \; (\text{GeV})$	$m_{\chi_2} \; (\text{GeV})$	λ_e
NH/IH	1.65×10^{13}	3×10^{13}	4.5×10^{13}	$1.5 imes 10^{13}$	62	200	1

- Here, we use only $\delta(m_D)_{13}$, i.e., λ_{N_1} only with $\lambda_e = 1$
- we fix λ_{N_1} to the best-fit value and vary its phase $\delta_{\lambda_{N_1}}$
- Only *CP*-violating source comes from $\delta(m_D)_{13}$, i.e., δ_{CP} is linked to leptogenesis
- For HN, one of the confidence regions has $\delta_{CP} = -\pi/2$ $\overset{\circ}{\gtrsim}$ of favored by the T2K experiments (arXiv:1311.4750)

Conclusions

- In the type-I seesaw, θ_{13} =0 and zero lepton asymmetry if there exists a flavor symmetry resulting in the TBM.
- The dark particles, odd under a Z_2 symmetry, break the flavor symmetry to achieve $\theta_{13} \sim 9^0$ and leptogenesis.
- Only one radiative correction is needed for degenerate TeV heavy neutrinos and sub-TeV DM to achieve the goals.
- The singlet S can play the role of the inflaton with $m_{\rm S}$ ~10¹³ GeV.

Conclusions

- With $m_{S,} m_N \sim 10^{13}$ GeV, one needs only one radiative correction to achieve the goals.
- There is a direct connection between δ_{cp} and leptogenesis, which is absent from the original leptogenesis in the type-I seesaw.
- For concrete model building, one should be very careful about radiative corrections from particles in question apart from the dark particles.
- These additional corrections might spoil the connection between the DM and SM neutrinos.