Higgs potential and inflation

Yuta Hamada (Kyoto University)

Collaborators Hikaru Kawai (Kyoto) Kin-ya Oda (Osaka) Seong Chan Park (Sungkyunkwan) July 21 2014 SUSY2014 1210.2538(PRD), 1308.6651(PTEP), 1403.6141(PRL), 1404.6141(JHEP)

This talk

• We assume SM is valid up to high scale such as string scale $\sim 10^{17-18} \text{GeV}.$

- SM potential is flat around 10¹⁷⁻¹⁸GeV.
- propose Higgs inflation scenario where $\lambda \sim \beta_{\lambda} \sim 0$ plays crucial role.
- discuss implications of our scenario on Higgs portal DM.

1. Higgs inflation from SM criticality 2. Z_2 scalar DM mass prediction

1. Higgs inflation from SM criticality 2. Z₂ scalar DM mass prediction

Higgs potential at high scale

- By tuning M_t , SM potential is flat because $\lambda \sim \beta_{\lambda} \sim 0$.
- Inflation possible ?

Too large A.

- We can realize saddle point by tuning M_t
- For sufficiently expansion $N_* \sim 60$, ϕ_* needs to be close to saddle point($\epsilon < < <1$)
- As a result, too large density perturbation. $(A_s >>1$ in this case)

 $A_s \simeq \frac{1}{24\pi^2 M_{\rm pl}^4 \epsilon}$

Higgs inflation

- 1. conservative approach
- We trust effective potential only below SM cutoff scale Λ , and try to make bound on parameters, Λ and M_t. [YH,Kawai,Oda '13]
- 2. Radical approach

We introduce non-minimal coupling between scalar curvature and Higgs. We trust flat potential at high field value.

[Bezrukov, Shaposhnikov '08] [YH,Kawai,Oda,Park '14, Bezrukov, Shaposhnikov '14]

Conservative approach

- We assume for field value $\phi > \Lambda$, potential is flat and inflation occurs above Λ .
 - New physics would make potential flat.
- Though it is ad-hoc assumption, we obtain useful constraint on M_t and Λ (necessary conditions).

Necessary conditions

- Scalar perturbation and observation of tensor mode give upper bound on potential. $V_{\rm SM}(\Lambda) < 1.3 \times 10^{65} {\rm GeV}^4$ $A_s \simeq \frac{V}{24\pi^2 M_{\rm pl}\epsilon} \sim 10^{-9} \qquad r \simeq 16\epsilon \sim 0.1$
- Potential should be monotonically increasing function to avoid graceful exit problem.

[YH,Kawai,Oda '13] Constraint on M_t and A

[YH,Kawai,Oda '13]

Constraint on M_t and Λ

- • Λ <5×10¹⁷GeV
- String scale appears.
- Situation in which $\Lambda{\sim}10^{17} \text{GeV}$ and inflation above Λ is OK.

Radical approach: & H|2R

• Jordan frame

$$S = \int d^4x \sqrt{-g} \left\{ -\frac{M_{pl}^2 + \xi\varphi^2}{2}R + \frac{(\partial_\mu \varphi)^2}{2} - \frac{\lambda}{4}\varphi^4 \right\}$$

• Conformal transformation $\hat{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}, \quad \Omega^2 = 1 + \frac{\xi \varphi^2}{M_{pl}^2}$ $S = \int d^4 x \sqrt{-\hat{g}} \left\{ -\frac{M_{pl}^2}{2} \hat{R} + \frac{(\partial_\mu \chi)^2}{2} - \frac{\lambda}{4} \frac{\varphi^4}{(1 + \xi \varphi^2 / M_{pl}^2)^2} \right\}$ $\frac{d\chi}{d\varphi} = \sqrt{\frac{\Omega^2 + 6\xi^2 \varphi^2 / M_{pl}}{2\Omega^4}} \qquad \varphi \simeq \frac{M_{pl}}{\sqrt{\xi}} \exp\left(\frac{\chi}{\sqrt{6}M_{pl}}\right), \quad \text{for} \quad \varphi \gg \frac{M_{pl}}{\sqrt{\xi}}$

• Potential becomes flat at high φ $V = \frac{\lambda(\mu)}{4} \frac{\varphi^4}{(1 + \xi \varphi^2/M_{pl}^2)^2}$

RG improvement

- Where is renormalization scale μ ?
- Usually, μ~(effective mass of top/gauge boson).
 Prescription1(effective mass in Einstein frame)

$$\mu = \frac{\varphi}{\sqrt{1 + \xi \varphi^2 / M_{pl}^2}}$$

- µ becomes constant at high field value.
- Prescription2(effective mass in Jordan frame)

$$\mu = \varphi$$

- We don't know which prescription is correct.
- Let's see Higgs inflation in both descriptions.

Higgs inflation

• If λ is not small at high scale (~O(0.1)), small r is predicted.

$$\epsilon = \frac{4M_{pl}^4}{3\xi^2\varphi^4} \qquad \eta = -\frac{4M_p^2}{3\xi\varphi^2}$$

- $r\simeq 3 imes 10^{-3}$ $n_s\simeq 0.97$ [Bezrukov, Shaposhnikov '08]
- But, taking into account λ~0 at high scale (SM criticality), [YH,Kawai,Oda,Park '14, Bezrukov, Shaposhnikov '14]

Prescription1:saddle point

- By tuning top mass, we can make saddle point without ξ .
- By adding ξ , potential becomes flat above saddle point.
 - e-folding is earned in passing the saddle point.
 - Observational density perturbation corresponds to φ_* above saddle point.

Prescription1:saddle point

Prescriotion2:chaotic

• Around minimum $\lambda(\mu) = \lambda_{\min} + \frac{\beta_{2\lambda}}{2} \left(\ln \frac{\mu}{\mu_{\min}} \right)^2$

$$\mu = \varphi$$
$$\beta_{2\lambda} = \frac{d\beta_{\lambda}}{d\ln\mu}$$

- Using canonical field in Einstein frame $\hat{\chi} \simeq \sqrt{6}M_{pl} \ln \frac{\varphi M_{pl}}{\sqrt{\xi}\mu_{\min}^2} \qquad \qquad \beta_{2\lambda,SM} \simeq \frac{1.2}{(16\pi^2)^2}$
- Potential becomes $V = \frac{\lambda(\mu)}{4} \frac{\varphi^4}{(1+\xi\varphi^2/M_{pl}^2)^2} \simeq \frac{\lambda_{\min}M_{pl}^4}{4\xi^2} + \frac{\beta_{2\lambda}}{192\xi^2}\hat{\chi}^2$
- Putting into SM value, if $\xi \sim 100$, quadratic chaotic inflation and $n_s \sim 0.96$,r ~ 0.15

Plan

Higgs inflation from SM criticality Z₂ scalar DM mass prediction

Z₂ scalar dark matter

Add gauge singlet real scalar DM S.
Z₂ charge: SM particle is even. S is odd.

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} (\partial_{\mu} S)^2 - \frac{1}{2} m_S^2 S^2 - \frac{\rho}{4!} S^4 - \frac{\kappa}{2} S^2 H^{\dagger} H.$$

• S modifies β_{λ} . At one-loop level,

$$\begin{split} \beta_{\lambda} &= \beta_{\lambda,\text{SM}} + \frac{1}{16\pi^2} \frac{1}{2} \kappa^2 & \text{Positive contribution} \\ \bullet \lambda \text{ is larger than } \lambda_{\text{SM}} \text{ at high scale.} \end{split}$$

[YH,Kawai,Oda '14]

Constraint on mov

- m_{DM} and M_t are correlated.
- m_{DM} < 1000GeV
- If we further impose saddle point at 10¹⁷GeV,
 - DM mass is 400~470GeV.

$$\rho_0 = \rho(m_{weak})$$

Summary

- We consider scenario where SM is valid up to string scale $\sim 10^{17\text{--}18} \text{GeV}.$
- find SM potential is flat around 10¹⁷⁻¹⁸GeV.
- propose Higgs inflation scenario where $\lambda \sim \beta_{\lambda} \sim 0$ plays crucial role.
- In this scenario, Z_2 scalar DM mass is constrained depending on M_t .

Backup

Inflation

- Inflation solves several problems.
 - Flatness problem
 - Horizon problem
- Inflation can generate density perturbation.
 - Generate by quantum fluctuation of inflaton
 - Predictive and good agreement with observation

Slow roll inflation

- Flat potential realize exponential expansion.
- $ds^{2} = -dt^{2} + a^{2}(dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}) \qquad H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{1}{3M_{pl}^{2}}\left(\frac{1}{2}\dot{\varphi}^{2} + V\right)$ • Flatness of potential is characterized by slow roll parameters.

$$\epsilon = \frac{M_{\rm pl}^2 V_{\varphi}^2}{2V^2} \ll 1 \qquad \eta = \frac{M_{\rm pl}^2 V_{\varphi\varphi}}{V^2} \ll 1$$

• Expansion is given by e-foldings.

 $N_* = \int_{a_*}^{a_{\rm end}} d\ln a \simeq \frac{1}{M_{\rm pl}} \int_{\varphi_*}^{\varphi_{\rm end}} d\varphi \frac{1}{\sqrt{2\epsilon}} = 50 \sim 60$ for successful inflation

Scalar and tensor perturbation

tensor perturbation

$$\mathcal{P}_{\mathcal{R}} = A_s \left(\frac{k}{k_0}\right)^{n_s - 1} \qquad \mathcal{P}_t = A_t \left(\frac{k}{k_0}\right)^{n_t}$$

$$A_s \simeq \frac{V}{24\pi^2 M_{pl}^4 \epsilon} \qquad A_t \simeq \frac{2V}{3\pi^2 M_{pl}^4}$$
spectral index
$$n_s - 1 \simeq 2\eta - 6\epsilon \qquad n_t \simeq -2\epsilon$$
tensor to scalar ratio
$$r \equiv \frac{\mathcal{P}_t}{\mathcal{P}_{\mathcal{R}}} \simeq 16\epsilon$$
Knowing A_s(Planck) and r(BICEP2) Inflation scale!!

scalar perturbation

Observations

$$\begin{split} A_{s}(\exp) &\simeq 2 \times 10^{-9} \\ n_{s}(\exp) &\simeq 0.96 \quad \text{[Planck '13]} \\ r(\exp) &= 0.2^{+0.07}_{-0.05} \quad \text{[BICEP '14]} \end{split}$$

Test

Prediction can be tested by XENON.

Einstein frame

