Precise Prediction for M_W in the MSSM

Sven Heinemeyer, IFCA (CSIC, Santander)

Manchester, 07/2014

Based on a collaboration with W. Hollik, G. Weiglein, L. Zeune

1. Introduction

- **2.** M_W in the MSSM: current data
- **3**. M_W in the MSSM: future data
- 4. Conclusions

1. Introduction

Comparison of observables with theory:

Precision data:Theory:
$$M_W, \sin^2 \theta_{\rm eff}, a_\mu, M_h$$
 \leftrightarrow SM, MSSM , ... \Downarrow \Downarrow

Test of theory at quantum level: Sensitivity to loop corrections, e.g. \boldsymbol{X}

BSM: limits on M_X

Very high accuracy of measurements and theoretical predictions needed

The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles

Problem in the MSSM: more than 100 free parameters

Luckily not all are relevant for our calculation/analysis!

Precision observables in the SM and the MSSM M_W , $\sin^2 \theta_{\text{eff}}$, M_h , $(g-2)_{\mu}$, b physics, ...

A) Theoretical prediction for M_W in terms

Evaluate Δr from μ decay $\Rightarrow M_W$

One-loop result for M_W in the SM: [A. Sirlin '80], [W. Marciano, A. Sirlin '80]

$$\Delta r_{1-\text{loop}} = \Delta \alpha - \frac{c_W^2}{s_W^2} \Delta \rho + \Delta r_{\text{rem}}(M_H)$$
$$\sim \log \frac{M_Z}{m_f} \sim m_t^2 - \log (M_H/M_W)$$
$$\sim 6\% \sim 3.3\% \sim 1\%$$

Precision observables in the SM and the MSSM M_W , $\sin^2 \theta_{\text{eff}}$, M_h , $(g-2)_{\mu}$, b physics, . . .

A) Theoretical prediction for M_W in terms

B) Effective mixing angle:

$$\sin^2 \theta_{\text{eff}} = \frac{1}{4 |Q_f|} \left(1 - \frac{\operatorname{Re} g_V^f}{\operatorname{Re} g_A^f} \right)$$

Higher order contributions:

$$g_V^f \to g_V^f + \Delta g_V^f, \quad g_A^f \to g_A^f + \Delta g_A^f$$

Corrections to M_W , $\sin^2 \theta_{\text{eff}} \rightarrow \text{approximation via the } \rho$ -parameter:

 ρ measures the relative strength between neutral current interaction and charged current interaction

$$\rho = \frac{1}{1 - \Delta \rho} \qquad \Delta \rho = \frac{\Sigma_Z(0)}{M_Z^2} - \frac{\Sigma_W(0)}{M_W^2}$$

(leading, process independent terms)

 $\Delta \rho$ gives the main contribution to EW observables:

 $\Delta \rho^{\rm SUSY} \text{ from } \tilde{t}/\tilde{b} \text{ loops} > 0 \quad \Rightarrow M_W^{\rm SUSY} \gtrsim M_W^{\rm SM}, \ \sin^2 \theta_{\rm eff}^{\rm SUSY} \lesssim \sin^2 \theta_{\rm eff}^{\rm SM}$

 $\Delta \rho^{\text{SUSY}}$ from \tilde{t}/\tilde{b} loops > 0 $\Rightarrow M_W^{\text{SUSY}} \gtrsim M_W^{\text{SM}}$, $\sin^2 \theta_{\text{eff}}^{\text{SUSY}} \lesssim \sin^2 \theta_{\text{eff}}^{\text{SM}}$

SM result for M_W and $\sin^2 \theta_{\text{eff}}$:

- full one-loop
- full two-loop
- leading 3-loop via $\Delta\rho$
- leading 4-loop via $\Delta \rho$

Our MSSM result for M_W and $\sin^2 \theta_{\text{eff}}$:

- full SM result (via fit formel)
- full MSSM one-loop (incl. complex phases)
- all existing two-loop $\Delta\rho$ contributions
- \Rightarrow non- $\Delta \rho$ one-loop and $\Delta \rho$ two-loop contributions sometimes non-negligible!

The W boson mass

Experimental accuracy:

Today: LEP2, Tevatron: $M_W^{\text{exp}} = 80.385 \pm 0.015 \text{ GeV}$

ILC: – polarized threshold scan

- kinematic reconstruction of W^+W^-

- hadronic mass (single W)

$$\delta M_W^{\mathrm{exp,ILC}} \lesssim$$
 3 MeV

Theoretical accuracies:

intrinsic today: $\delta M_W^{\text{SM,theo}} = 4 \text{ MeV}, \quad \delta M_W^{\text{MSSM,today}} = 5 - 10 \text{ MeV}$ intrinsic future: $\delta M_W^{\text{SM,theo,fut}} = 2 \text{ MeV}, \quad \delta M_W^{\text{MSSM,today}} = 3 - 5 \text{ MeV}$ parametric today: $\delta m_t = 0.9 \text{ GeV}, \ \delta(\Delta \alpha_{\text{had}}) = 10^{-4}, \ \delta M_Z = 2.1 \text{ MeV}$ $\delta M_W^{\text{para},m_t} = 5.5 \text{ MeV}, \quad \delta M_W^{\text{para},\Delta\alpha_{\text{had}}} = 2 \text{ MeV}, \quad \delta M_W^{\text{para},M_Z} = 2.5 \text{ MeV}$ parametric future: $\delta m_t^{\text{ILC}} = 0.1 \text{ GeV}, \ \delta(\Delta \alpha_{\text{had}})^{\text{fut}} = 5 \times 10^{-5}$ $\Delta M_W^{\text{para,fut},m_t} = 1 \text{ MeV}, \quad \Delta M_W^{\text{para,fut},\Delta\alpha_{\text{had}}} = 1 \text{ MeV}$

2. M_W in the MSSM: current data

\Rightarrow extensive parameter scan:

Parameter	Minimum	Maximum
μ	-2000	2000
$M_{\tilde{E}_{1,2,3}} = M_{\tilde{L}_{1,2,3}}$	100	2000
$M_{\tilde{Q}_{1,2}} = M_{\tilde{U}_{1,2}} = M_{\tilde{D}_{1,2}}$	500	2000
$M_{ ilde{Q}_3}$	100	2000
$M_{ ilde{U}_{3}}$	100	2000
$M_{ ilde{D}_3}$	100	2000
$A_e = A_\mu = A_\tau$	-3 $M_{ ilde{E}}$	З $M_{ ilde{E}}$
$A_u = A_d = A_c = A_s$	-3 $M_{ ilde{Q}_{12}}$	З $M_{ ilde{Q}_{12}}$
A_b	-3 max $(M_{ ilde{Q}_3}, M_{ ilde{D}_3})$	$3 \max(M_{ ilde{Q}_3}, M_{ ilde{D}_3})$
A_t	-3 max $(M_{ ilde{Q}_3}, M_{ ilde{U}_3})$	$\operatorname{3max}(M_{ ilde Q_3},M_{ ilde U_3})$
aneta	1	60
M_3	500	2000
M_A	90	1000
M_2	100	1000

Effects of charginos and staus:

Effects of charginos and staus:

All points HiggsBounds allowed

 $\ldots \oplus \, m_{{\widetilde q}_{1,2}}, m_{{\widetilde g}} >$ 1200 GeV

 $\ldots \oplus m_{\tilde{l}}, m_{\tilde{\chi}_i^\pm}, m_{\tilde{\chi}_j^0} > 500 \,\, {\rm GeV}$

Effect of light scalar taus:

- can enhance $\Gamma(h \rightarrow \gamma \gamma)$
- can give contribution to M_W

Szenario: pMSSM-7 best fit point with $M_{\tilde{E}_3}=M_{\tilde{L}_3}$ varied from 280 GeV to 500 GeV

3. M_W in the MSSM: future data

 \Rightarrow extensive parameter scan as before

Szenarios:

1. Assume lower limits on parameters

 \Rightarrow analyze agreement between MSSM prediction and data

2. Assume some measurement: $m_{\tilde{t}_1} = 400 \pm 40$ GeV and lower limits for everything else \Rightarrow prediction for other SUSY particles?

Interpreting the Higgs discovery in the MSSM:

\Rightarrow agreement better than with SM

Interpreting the Higgs discovery in the MSSM:

\Rightarrow agreement better than with SM

Interpreting the Higgs discovery in the MSSM:

\Rightarrow agreement better than with SM

Szenario 1: Effects of stops, sbottoms, M_h :

light blue: $m_{ ilde{t}_i}, m_{ ilde{b}_j} >$ 500 GeV, $m_{ ilde{q}_{1,2}}, m_{ ilde{g}} >$ 1200 GeV

Szenario 1: Effects of stops, sbottoms, M_h :

light blue: $m_{{ ilde t}_i}, m_{{ ilde b}_j} >$ 500 GeV, $m_{{ ilde q}_{1,2}}, m_{{ ilde g}} >$ 1200 GeV

Szenario 2:

 $m_{ ilde{t}_1} =$ 400 \pm 40 GeV, Other masses \gtrsim 500 GeV

 $M_W^{\rm ILC} = 80.375 \pm 0.005 \,\,{\rm GeV}, 80.385 \pm 0.005 \,\,{\rm GeV}, 80.395 \pm 0.005 \,\,{\rm GeV}$

\Rightarrow clear prediction for light sbottom mass!

Szenario 2:

 $m_{\tilde{t}_1} = 400 \pm 40$ GeV, Other masses $\gtrsim 500$ GeV $M_W^{ILC} = 80.375 \pm 0.005$ GeV, 80.385 ± 0.005 GeV, 80.395 ± 0.005 GeV

\Rightarrow clear prediction for light sbottom and heavy stop mass!

4. Conclusinos

- EWPO can give valuable information about SM, BSM Best: M_W , $\sin^2 \theta_{\rm eff}$, ...
- SUSY corrections mainly via $\Delta
 ho$, But also non- $\Delta
 ho$ can be relevant
- Best prediction for M_W in the MSSM (including complex phases at one-loop)
- Effects of light SUSY particles on M_W :
 - light sleptons: $\sim 60~\text{MeV}$
 - light charginos: $\sim 20~MeV$
 - $-m_{{ ilde t}_1}\lesssim$ 1.5 TeV can give exact M_W value
- Higgs discovery:
 - light Higgs at \sim 125 GeV: very good agreement with M_W)
 - heavy Higgs at \sim 125 GeV: still very good agreement (at least
- Future scenarios:
 - stops and sbottoms heavyer than 500 GeV: very good agreement

$$-m_{\tilde{t}_1} = 400 \pm 40 \text{ GeV} \Rightarrow \text{limits an } m_{\tilde{b}_1}, m_{\tilde{t}_2}$$