

On the determination of QCD parameters from τ hadronic spectral moment fits including duality violations

Diogo Boito UAB and IFAE

ongoing work done in collaboration with: Oscar Catà, Maarten Golterman, Matthias Jamin, Kim Maltman, James Osborne, and Santi Peris.

Tau2010- Manchester 13-17 Sep. 2010

outline

i ii iii

i. introduction

ii. main features of our analysis

i. introduction

ii. main features of our analysis

introduction

Fundamental quantity

$$R_{\tau}^{S=0} = \frac{\Gamma[\tau \to \text{hadrons}^{S=0} \nu_{\tau}]}{\Gamma[\tau \to e^{-} \bar{\nu}_{e} \nu_{\tau}]} = R_{\tau}^{V} + R_{\tau}^{A}$$

• Related to the correlators

$$\Pi_{\mu\nu}^{V,A}(q) = i \int d^4x \, e^{iqx} \langle 0|T\{J_{\mu}^{V,A}(x)J_{\nu}^{V,A}(0)^{\dagger}\}|\rangle \qquad \qquad J_{\mu}^{V/(A)} = \bar{u}(x)\gamma_{\mu}(\gamma_5)d(x)$$

via

$$R_{\tau}^{V/A} = 12\pi \int_{0}^{m_{\tau}^{2}} \frac{ds}{m_{\tau}^{2}} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left[\left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \operatorname{Im}\Pi_{V/A}^{(1)} + \operatorname{Im}\Pi_{V/A}^{(0)} \right]$$

i ii iii

introduction

i ii iii

Braaten, Narison, and Pich (1992)

$$R_{\tau}$$
: special case $\longrightarrow s_0 = m_{\tau}^2$ and $w(s) = w_{\tau}(s)$

- Different functions w(s) emphasize different aspects of $\Pi(s)$.
- On the contour the common lore is to use the OPE expansion of $\Pi(s)$.

i ii iii

i. introduction

ii. main features of our analysis

previous analyses

main features of previous analyses

• Fits to moments of $\Pi(s)$ in terms of QCD parameters (α_s , condensates, ...).

- Fits with pinched weights, using the physical tau mass, main results from V+ALe Diberder and Pich (1992), ALEPH Collaboration, OPAL Collaboration, Davier et al.
- Fits using several different "tau-masses" (S_0). Maltman and Yavin (2008)

i ii iii

previous analyses

main features of previous analyses

• Fits to moments of $\Pi(s)$ in terms of QCD parameters (α_s , condensates, ...).

- Fits with pinched weights, using the physical tau mass, main results from V+ALe Diberder and Pich (1992), ALEPH Collaboration, OPAL Collaboration, Davier et al.
- Fits using several different "tau-masses" (S_0). Maltman and Yavin (2008)

Why revisit the determination of QCD parameters from tau decay data?

-Results for α_s from different works are barely compatible: tiny uncertainties.

-Gluon condensate value inconsistent between V and A analyses.

ii iii

Why revisit the determination of QCD parameters from tau decay data?

$$\int_{0}^{s_{0}} ds \, w(s) \frac{1}{\pi} \operatorname{Im}\Pi(s) = -\frac{1}{2\pi i} \oint_{|z|=s_{0}} dz \, w(z) \begin{bmatrix} \Pi_{OPE}^{(0)}(z) + \Pi_{OPE}^{(2)} + \Pi_{OPE}^{(4)} + \dots + \Delta_{V/A}(z) \end{bmatrix}$$

Duality Violations $\Delta_{V/A}$ (DVs) Blok et al. (1998), Bigi et al. (1999), Catà, Golterman, and Peris (2005)

Perturbative component of $\Pi(s)$: RG resummation FO vs CI vs ... Not completely resolved. \rightarrow see talks by Caprini and Jamin Pivovarov (1992), Le Diberder and Pich (1992), Beneke and Jamin (2008), Caprini and Fischer (2009)

What is the best strategy to extract information from $\text{Im}\Pi_{V/A}^{\exp}$? Fits varying $s_0, w(s), ...$

see e.g. Maltman and Yavin (2008), Dominguez et al. (2004)

Direct fit to $Im\Pi_{V/A}$ CGP (2009)

Fits with DVs, combining the spectral function, different moments and energies.

Diogo Boito

ii iii

8

$$-\frac{1}{2\pi i} \oint_{|z|=s_0} dz \, w(z) \Pi_{V/A}(z) = -\frac{1}{2\pi i} \oint_{|z|=s_0} dz \, w(z) \ \Pi_{V/A}^{\text{OPE}}(z)$$

duality violations

8

• Theory side of the sum rule theory

$$-\frac{1}{2\pi i} \oint_{|z|=s_0} dz \, w(z) \Pi_{V/A}(z) = -\frac{1}{2\pi i} \oint_{|z|=s_0} dz \, w(z) \left[\Pi_{V/A}^{\text{OPE}}(z) + \Delta_{V/A}(z) \right]$$

i ii iii

• Theory side of the sum rule theory

$$-\frac{1}{2\pi i} \oint_{|z|=s_0} dz \, w(z) \Pi_{V/A}(z) = -\frac{1}{2\pi i} \oint_{|z|=s_0} dz \, w(z) \left[\Pi_{V/A}^{OPE}(z) + \Delta_{V/A}(z) \right]$$

Duality violations (DVs) $\longrightarrow \Delta_{V/A}(s) = \Pi_{V/A}(s) - \Pi_{V/A}^{OPE}(s)$

- Very little is known about DVs
 - $\Delta(z) \to 0$ as $|z| \to \infty$
 - only substantial near the Minkowski axis

Duality violation correction to the sum rule

$$\mathcal{D}_{V/A}(s_0) = -\int_{s_0}^{\infty} ds \, w(s) \frac{1}{\pi} \mathrm{Im} \Delta_{V/A}(s)$$
CGP (2005)

requires information beyond m_{τ}^2

Diogo Boito

model for DVs

• Reasonable Ansatz for the duality violations

$$\frac{1}{\pi} \operatorname{Im} \Delta_{V/A}(s) \xrightarrow[\operatorname{large} s]{} \kappa_{V/A} e^{-\gamma_{V/A}s} \sin\left(\alpha_{V/A} + \beta_{V/A}s\right)$$

- Asymptotic regime of a large- N_c inspired model with a tower of resonances with Regge behavior.
- Exponentially damped oscillatory behavior from increasing widths of resonances.
 Blok et al, (1998); Bigi et al. (1999), CGP (2005)
- Existing standard analyses $\kappa_{V/A} = 0$
- Four parameters to be determined for *V* and *A* separately (8 in total).
- Onset of asymptoticity tested in the spectral function: successful fits.

$$\frac{1}{\pi} \operatorname{Im}\Pi_{V/A}(s) \xrightarrow[\operatorname{large} s]{} \frac{N_c}{12\pi^2} [1 + \hat{\rho}(s)] + \kappa_{V/A} e^{-\gamma_{V/A}s} \sin\left(\alpha_{V/A} + \beta_{V/A}s\right) \underset{\underset{\mathcal{O}(\alpha_s^4)}{\overset{1.5}{\atop{}}}}{\overset{1.5}{\atop{}}} \underset{\underset{\underset{\mathcal{O}(\alpha_s^4)}{\overset{1.5}{\atop{}}}}{\overset{1.5}{\atop{}}} \underset{\underset{\underset{\mathcal{O}(\alpha_s^4)}{\overset{1.5}{\atop{}}}}{\overset{1.5}{\atop{}}} \underset{\underset{\underset{\mathcal{O}(\alpha_s^4)}{\overset{1.5}{\atop{}}}}{\overset{1.5}{\atop{}}} \underset{\underset{\underset{\mathcal{O}(\alpha_s^4)}{\overset{1.5}{\atop{}}}}{\overset{1.5}{\atop{}}} \underset{\underset{\underset{\mathcal{O}(\alpha_s^4)}{\overset{1.5}{\atop{}}}}{\overset{1.5}{\atop{}}} \underset{\underset{\underset{\underset{\mathcal{O}(\alpha_s^4)}{\overset{1.5}{\atop{}}}}{\overset{1.5}{\atop{}}} \underset{\underset{\underset{\underset{\mathcal{O}(\alpha_s^4)}{\overset{1.5}{\atop{}}}}{\overset{1.5}{\atop{}}} \underset{\underset{\underset{\underset{\underset{s(\operatorname{GeV}^2)}{\overset{1.5}{\atop{}}}}{\overset{1.5}{\atop{}}} \underset{\underset{\underset{\underset{s(\operatorname{GeV}^2)}{\overset{1.5}{\atop{}}}}}{\overset{1.5}{\underset{\underset{\underset{s(\operatorname{GeV}^2)}{\overset{1.5}{\atop{}}}}}}$$

Diogo Boito

ii iii

fit strategy

• Possible joint analysis of moments and of the spectral function.

- Fits employing an interval of energy (s_0) : needed to fix DVs parameters.
- Independent treatment of DVs in V and A analyses.
- Weinberg sum rules: consistency check [within errors].
- Moments highly correlated. Role of correlations?

i. introduction

ii. main features of our analysis

the need for DVs

i ii iii

Diogo Boito

Data: ALEPH 2005

12

Data: ALEPH 2005

Diogo Boito

the need for DVs

Doubly pinched weight: effect is still visible.

Data: ALEPH 2005

|4

i ii iii

Diogo Boito

conclusions

iii

If one wants to achieve

- Self-consistent determination of α_s and condensates.
- Weinberg sum rules satisfied.
- Consistency between V and A.
- Stability with respect to s_0 .

Duality Violations are indispensable for desired precision.

conclusions

iii

If one wants to achieve

- Self-consistent determination of α_s and condensates.
- Weinberg sum rules satisfied.
- Consistency between V and A.
- Stability with respect to s_0 .

Duality Violations are indispensable for desired precision.

Improvements in the spectral function using BaBar and Belle data are highly desirable!