# Identification of $\tau$ Leptons at The DØ Experiment

#### Romain MADAR<sup>a</sup> on behalf of **The DØ Collaboration**

<sup>a</sup>Service de Physique des Particules CEA Saclay, Irfu/SPP - France

#### THE 11TH INTERNATIONAL WORKSHOP ON TAU LEPTON PHYSICS

Manchester, UK  $- 16^{\text{th}}$  of September 2010



Romain Madar (CEA/Irfu/SPP)

Tau Lepton Workshop - 09/16/2010 1 / 34

# The Tevatron

### Fermilab collider :

- $\bullet \ p\bar{p} \ {\rm collisions}$
- $\sqrt{s} = 1.96 \text{ TeV}$
- $\mathcal{L}_{\rm max} \sim 400 \times 10^{30} \ {\rm cm}^{-2}.{\rm s}^{-1}$
- $8 fb^{-1} of delivered collisions \sim 6 millions Z bosons into leptons$



# Two interaction points with detectors CDF & DØ

# The DØ detector

#### Multi purpose detector : electrons, muons, taus, photons ID, (b-)jets, mET



Romain Madar (CEA/Irfu/SPP)

# The DØ detector

#### Multi purpose detector : electrons, muons, <u>taus</u>, photons ID, (b-)jets, mET



Romain Madar (CEA/Irfu/SPP)

# Why $\tau$ at hadron colliders?

#### Potential acceptance gain for leptonic final states :

 $(e, \mu) \Rightarrow (e, \mu, \tau)$  : single lepton ×1.5, dilepton ×2.0, trilepton ×3.0

- Electroweak physics : Test of lepton universality with  $Z \rightarrow \tau \tau$  and  $W \rightarrow \tau v_{\tau}$  cross section measurement.
- Top quark physics : top quark property measurements in τ final state are sensitive to new physics and test the Standard Model (SM) consistency.
- Higgs searches : Many decay chains initiated by Higgs boson (Electroweak Symmetry breaking origin) involve τ leptons and allow to increase the sensitivity.
- New physics : Supersymmetric extensions of SM predict new particles that can decay in τ leptons. τ final state acts as a probe of new physics.

# ... But experimentally challenging !

#### Impact of neutrino(s) involved in $\tau$ decay :

- **1** Invisible energy :  $\nu$  escapes the detector without interaction.
- Visible decay products are soft : more sensitive to backgrounds from soft QCD processes.

#### Impact of various $\tau$ decay modes :

- leptonic decays (~ 35%) are indistinguishables from  $e/\mu$  leptons produced in W/Z direct decays which are much more abundant and suffer from poor stat. ( $\mathcal{BR}(\tau\tau \to e\mu) = 6\%$ ).
- **2** hadronic decays (~ 65%) :
  - different signatures depending on the hadronic final state.
  - ② Large bkg from direct QCD interactions in hadronic collisions.
- **3** Need to combine several channels.

# Hadronically decaying $\tau$ leptons require sophisticated algorithms to deal with all these difficulties.

Romain Madar (CEA/Irfu/SPP)

# Overview

### 1 $\tau$ reconstruction at DØ

- $\bullet$  Tracks and calorimeter of  $\tau$  object
- $\tau$  candidate definition
- Reconstruction efficiencies
- **2**  $\tau$ /jet discrimination
  - Problematics and strategy
  - Algorithm performances
  - Further optimizations
- **3** Energy measurement
  - Problematics
  - Strategy : track propagation
    - Absolute correction
    - Relative correction

### 4 Conclusions and outlooks

#### $\tau$ reconstruction at DØ

# Overview

### 1 $\tau$ reconstruction at DØ

- $\bullet$  Tracks and calorimeter of  $\tau$  object
- $\tau$  candidate definition
- Reconstruction efficiencies
- **2**  $\tau$ /jet discrimination
  - Problematics and strategy
  - Algorithm performances
  - Further optimizations
- 8 Energy measurement
  - Problematics
  - Strategy : track propagation
    - $\bullet$  Absolute correction
    - Relative correction

### 4 Conclusions and outlooks

 $\tau$  reconstruction at DØ

Tracks and calorimeter of  $\tau$  object

# Tracks and calorimeter objects of $\tau_{cand}$

#### Calorimeter cluster :

found by Simple Cone Algorithm in a  $\Delta R \leq 0.5$  cone.

CAL clu

#### 

#### Tracks :

All tracks in a  $\Delta R \leq 0.3$  cone around the cal cluster compatible with  $\tau$  decay (inv. mass cut).

trk(s)

Highest track  $p_T \ge 1.5$  GeV.

Romain Madar (CEA/Irfu/SPP)



 $\tau$  reconstruction at DØ

 $\tau$  candidate definition

# Type of $\tau$ candidate



#### We will focus on hadronic decay of $\tau : \tau_{had}$

Reconstruction and DØ  $\tau$  type definition for <u>hadronic</u> decay :

- $\bullet \ D \ensuremath{\varnothing} \ type \mbox{ 1 } \equiv \ \ 1 \ trk \ , \ CAL \ clu \ \ \ \sim \tau^\pm \to \pi^\pm \nu_\tau$
- DØ type 2 = 1 trk , CAL clu, EM sub clu ~  $\tau^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^0 \pi^{\pm}) \nu_{\tau}$
- DØ type  $3 \equiv 2 \text{ trks}$ , CAL clu

Romain Madar (CEA/Irfu/SPP)

 $\sim \tau^{\pm} \rightarrow a_{\pm}^{\pm} (\rightarrow 3\pi^{\pm}) \gamma_{\tau}$ 

 $\tau$  reconstruction at DØ

Reconstruction efficiencies

### **Reconstruction efficiencies**



A large fraction of QCD objects (jets) can pass  $\tau_{cand}$  reconstruction.

Romain Madar (CEA/Irfu/SPP)

# Overview

### $1 ) \tau \text{ reconstruction at } DØ$

- $\bullet$  Tracks and calorimeter of  $\tau$  object
- $\tau$  candidate definition
- Reconstruction efficiencies
- 2  $\tau$ /jet discrimination
  - Problematics and strategy
  - Algorithm performances
  - Further optimizations
- **3 Energy measurement** 
  - Problematics
  - Strategy : track propagation
    - Absolute correction
    - Relative correction

### 4 Conclusions and outlooks

 $\tau$ /jet discrimination

Problematics and strategy

### Identification of true $\tau$



Jets could have the same experimental signature as hadronic  $\tau$  and have to be removed.



 $\tau$ /jet discrimination

Problematics and strategy

### Identification of true $\tau$





#### $\tau$ /jet separation

Several observables having different shape for true  $\tau$  and jets are combined in a Neural Network (NN).



Tau lepton identification at  $\mathrm{D} \varnothing$ 

 $\tau$ /jet discrimination

Problematics and strategy

# Discriminating observables

#### Which observables?

- Isolation in the tracking system
- Isolation in the calorimeter
- Shower shape variables
- Correlations between tracks and calorimeter objects

#### Example of input variables and their physical meaning :



 $\tau$ /jet discrimination

Algorithm performances

### $Z \to \tau\tau \ {\rm events}$



 $\tau$ /jet discrimination

Algorithm performances

### $W \rightarrow \tau \nu \ events$

#### Context of search for new physics :

e.g. search for squark production in  $\tau + 2$  jets+mET events.  $W \rightarrow \tau \nu \equiv SM$  background



Phys. Lett. B 680, 24-33 (2009)

# **Overview**

### 1 $\tau$ reconstruction at DØ

- $\bullet$  Tracks and calorimeter of  $\tau$  object
- $\tau$  candidate definition
- Reconstruction efficiencies

### 2 $\tau$ /jet discrimination

- Problematics and strategy
- Algorithm performances
- Further optimizations

#### **3** Energy measurement

- Problematics
- Strategy : track propagation
  - Absolute correction
  - Relative correction

### 4 Conclusions and outlooks

### **Optimization strategy**

General point of view : Neural Network output  $\eta^{\rm NN}(\vec{X})$  converges to

$$\eta^{\rm true}(\vec{X}) \equiv \frac{\mathcal{S}(\vec{X})}{\mathcal{S}(\vec{X}) + \mathcal{B}(\vec{X})}$$

where  $\vec{X} \equiv (x_1, x_2, ..., x_n)$  describes the discriminating variables space.

### **Optimization strategy**

General point of view : Neural Network output  $\eta^{\rm NN}(\vec{X})$  converges to

$$\eta^{\rm true}(\vec{X}) \equiv \frac{\mathcal{S}(\vec{X})}{\mathcal{S}(\vec{X}) + \mathcal{B}(\vec{X})}$$

where  $\vec{X} \equiv (x_1, x_2, ..., x_n)$  describes the discriminating variables space.

#### In the $\tau$ identification context :

A lot of ideas were tested to optimize the identification of  $\tau$  leptons :

- $\bullet\,$  Include preshower detector measurement  $\varkappa\,$
- Exploit the long  $\tau$  life time (like for b-jets)  $\checkmark$
- $\bullet\,$  Tune NN parameters (epoch, nodes, statistics)  $\checkmark\,$
- $\bullet\,$  Dedicated training for  $\tau$  of high  $p_T\,\,\checkmark\,$
- $\bullet\,$  Dedicated training for high luminosity events  $\bigstar\,$

### **Optimization strategy**

General point of view : Neural Network output  $\eta^{\rm NN}(\vec{X})$  converges to

$$\eta^{\rm true}(\vec{X}) \equiv \frac{\mathcal{S}(\vec{X})}{\mathcal{S}(\vec{X}) + \mathcal{B}(\vec{X})}$$

where  $\vec{X} \equiv (x_1, x_2, ..., x_n)$  describes the discriminating variables space.

#### In the $\tau$ identification context :

A lot of ideas were tested to optimize the identification of  $\tau$  leptons :

- Include preshower detector measurement X
- Exploit the long  $\tau$  life time (like for b-jets)  $\checkmark$
- $\bullet\,$  Tune NN parameters (epoch, nodes, statistics)  $\checkmark\,$
- Dedicated training for  $\tau$  of high  $p_T$   $\checkmark$
- $\bullet\,$  Dedicated training for high luminosity events  $\bigstar\,$

 $\left. \begin{array}{c} \\ \checkmark \\ \\ \end{array} \right\} \quad \begin{array}{c} \operatorname{improve} \eta^{\operatorname{true}}(\vec{X}) \\ \\ \\ \\ \\ \\ \eta^{\operatorname{NN}} - \eta^{\operatorname{true}} \end{array} \right.$ 

 $\tau$ /jet discrimination

Further optimizations

# Central PreShower (CPS) for type 2

**Physical idea.** Exploit specific resonance of  $\tau$  **type** 2 decay :  $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$ . Use Central PreShower detector with fine segmentation :  $\Delta \phi_{CPS} \simeq 0.1 \times \Delta \phi_{calo}$ 

 $CPS_{\rm cluster}\approx\pi^0$  ,  ${\rm trk}\approx\pi^\pm$ 



 $\tau$  jet discrimination

Further optimizations

# Central PreShower (CPS) for type 2

**Physical idea.** Exploit specific resonance of  $\tau$  **type** 2 decay :  $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$ . Use Central PreShower detector with fine segmentation :  $\Delta \phi_{\rm CPS} \simeq 0.1 \times \Delta \phi_{\rm calo}$ 





 $\tau$ /jet discrimination

Further optimizations

### Central PreShower (CPS) for type 2

**Physical idea.** Exploit specific resonance of  $\tau$  **type** 2 decay :  $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$ . Use Central PreShower detector with fine segmentation :  $\Delta \phi_{CPS} \simeq 0.1 \times \Delta \phi_{calo}$ 





After adding these variables in the NN **No significant improvement** was observed.

**Reason :** these informations were already included via calorimeter measurement.

 $\tau$ /jet discrimination

Further optimizations

# $\tau$ is a long lived particle



Use impact parameter to remove jets faking  $\tau$  more efficiently. (large  $c\tau_{\rm life} \Rightarrow$  large  $d_0$ )

 $\tau$ /jet discrimination

Further optimizations

# $\tau$ is a long lived particle





Use impact parameter to remove jets faking  $\tau$  more efficiently. (large  $c\tau_{life} \Rightarrow large d_0$ )

 $\tau$ /jet discrimination

Further optimizations

# $\tau$ is a long lived particle





 $\begin{array}{l} {\rm Use\ impact\ parameter\ to\ remove} \\ {\rm jets\ faking\ \tau\ more\ efficiently.} \\ {\rm (large\ } c\tau_{\rm life} \Rightarrow {\rm large\ } d_0) \end{array}$ 

After adding these variables in the NN clear improvement was observed :

 $\sim 10\%$  more signal for the same bkg

 $\tau$ /jet discrimination

Further optimizations

# Impact of optimizations

Consequences of optimizations : comparison of  $S/B(p_T^{\tau_{\rm cand}})$  after a cut

- on NN[whitout opt.] (old NN)
- 2 on NN[with opt.] (new NN)
- 3 ratio of new/old

 $\tau$ /jet discrimination

Further optimizations

# Impact of optimizations

Consequences of optimizations : comparison of  $S/B(p_T^{\tau_{cand}})$  after a cut

- on NN[whitout opt.] (old NN)
- 2 on NN[with opt.] (new NN)
- 3 ratio of new/old



Optimizations bring ~ 15% improvement on  $N(\tau_{\rm true})/N(\tau_{\rm fake})$  ratio

Energy measurement

# Overview

#### $1 ) \tau reconstruction at DØ$

- $\bullet$  Tracks and calorimeter of  $\tau$  object
- $\tau$  candidate definition
- Reconstruction efficiencies
- **2**  $\tau$ /jet discrimination
  - Problematics and strategy
  - Algorithm performances
  - Further optimizations

#### **3** Energy measurement

- Problematics
- Strategy : track propagation
  - Absolute correction
  - Relative correction

#### 4 Conclusions and outlooks

Energy measurement

Problematics

# Why the $E_{\tau}$ measurement is tricky?

#### Challenges of $\tau$ energy calibration from $Z\to\tau\tau$ :

- $\bullet~Z$  peak suffers from escaping  $\nu {\rm 's~energy}$  : broad and shifted,
- $\bullet \ {\rm low \ statistics \ because \ of \ } BR_{\tau \to X}: o(10^3) \ {\rm vs} \ o(10^5) \ {\rm for} \ Z \to ee.$

Energy measurement

Problematics

# Why the $E_{\tau}$ measurement is tricky?

#### Challenges of $\tau$ energy calibration from $Z\to\tau\tau$ :

- $\bullet~Z$  peak suffers from escaping  $\nu {\rm 's~energy}$  : broad and shifted,
- $\bullet \ {\rm low \ statistics \ because \ of \ } BR_{\tau \to X}: o(10^3) \ {\rm vs} \ o(10^5) \ {\rm for} \ Z \to ee.$

#### Alternative approach :



Energy measurement

Problematics

# Why the $E_\tau$ measurement is tricky ?

#### Challenges of $\tau$ energy calibration from $Z\to\tau\tau$ :

- $\bullet~Z$  peak suffers from escaping  $\nu {\rm 's~energy}$  : broad and shifted,
- $\bullet$  low statistics because of  $\mathsf{BR}_{\tau\to X}:o(10^3)$  vs  $o(10^5)$  for  $Z\to ee.$

#### Alternative approach :



Energy measurement

Strategy : track propagation

# **Overview**

### 1 $\tau$ reconstruction at DØ

- $\bullet$  Tracks and calorimeter of  $\tau$  object
- $\tau$  candidate definition
- Reconstruction efficiencies

### 2 $\tau$ /jet discrimination

- Problematics and strategy
- Algorithm performances
- Further optimizations

#### **3** Energy measurement

- Problematics
- Strategy : track propagation
  - Absolute correction
  - Relative correction

### 4 Conclusions and outlooks

Energy measurement

Strategy : track propagation

### Absolute correction

**Strategy :** measure the  $\pi^{\pm}$  with the tracker and  $\pi^{0}$  with the calorimeter. To avoid double counting, the average calorimeter  $\pi^{\pm}$  energy  $\langle \mathsf{E}_{\mathrm{cal}}^{\pi^{\pm}} \rangle$  is substracted (for type 2 and 3) :

$$E_{\rm corr} \equiv E_{\rm trk} + E_{\rm cal} - \underbrace{\langle R_{\pi}^{\rm data/mc}(E_{\rm trk},\eta) \rangle \cdot E_{\rm trk}}_{\langle E_{\rm cal}^{\pi\pm} \rangle}$$

Energy measurement

Strategy : track propagation

### Absolute correction

**Strategy** : measure the  $\pi^{\pm}$  with the tracker and  $\pi^{0}$  with the calorimeter. To avoid double counting, the average calorimeter  $\pi^{\pm}$  energy  $\langle E_{cal}^{\pi^{\pm}} \rangle$  is substracted (for type 2 and 3):

$$E_{corr} \equiv E_{trk} + E_{cal} - \underbrace{\langle R_{\pi}^{data/mc}(E_{trk},\eta) \rangle \cdot E_{trk}}_{\langle E_{cal}^{\pi\pm} \rangle}$$

**Comment :** for type 1 (one track and one Cal Clu)  $\Leftrightarrow$  particle flow

Etrue

Energy measurement

Strategy : track propagation

# $\sigma(p\bar{p} \rightarrow Z \rightarrow \tau\tau) \ {\bf measurement}$

#### $\mu\tau_{had}$ final state using this energy correction method :



Phys. Lett. B 670, 292 (2009)

Energy measurement

Strategy : track propagation

### **Relative correction**

**Motivation :** the *in situ* measurement of  $R_{\pi}$  for data in hadronic environment is difficult (requiring isolated pions). Track energy propagation can be done differently.

Energy measurement

Strategy : track propagation

### **Relative correction**

**Motivation :** the *in situ* measurement of  $R_{\pi}$  for data in hadronic environment is difficult (requiring isolated pions). Track energy propagation can be done differently.

#### **Correction method :**

Use the track energy as reference to correct simulation event by event :



Energy measurement

Strategy : track propagation

# Higgs searches

Higgs searches using this energy correction method :



DØ preliminary

See next talk by Tammy on Higgs boson searches in  $\tau$  final state at  $D \emptyset$ 

# Conclusions and outlooks

Tau identification in hadronic environment requires sophisticated algorithms.

 $\begin{array}{c} \mbox{Promising improvements at D} \emptyset \mbox{ using additional } \tau \mbox{ properties and} \\ \mbox{ kinematic dependences.} \end{array}$ 

In spite of experimental challenges,  $\tau$  are well understood and allow to

- test SM consistency at high energy
- search for new phenomena
- search for the origin of electroweak symmetry breaking next talk by Tammy

Conclusions and outlooks

# **BACKUP SLIDES**

# Minimal Supersymmetric SM and $\tau$ 's

#### **MSSM** extension :

 $\left. \begin{array}{l} \bullet ~~ \tilde{q},~\tilde{g}, \\ \bullet ~~ \mathrm{weak~gauginos},~\ldots \end{array} \right\} \mathrm{cascade~decays~can~end~with}~\tau \mathrm{'s}$ 

**Higgs sector of MSSM** After  $SU(2)_{I} \times U(1)_{Y}$  symmetry breaking :

- **①** 3 neutral Higgs fields  $\phi \equiv (H^0, h, A)$ .
- 2 charged Higgs fields H<sup>+</sup>, H<sup>-</sup>.

For the neutral Higgs search :



 $\phi^{\tau} \bullet \phi$  decays in  $\tau\tau$  (10%) and  $b\bar{b}$  (90%)  $\phi^{\tau} \bullet but b\bar{b}$  final state : multijet bkg

Sensitive process :  $p\bar{p} \rightarrow \phi \rightarrow \tau \tau$ 

# MSSM charged Higgs

#### Charged higgs bosons via $t\bar{t}$ events

M<sub>...</sub>=80 GeV <sup>4</sup>00tr S DØ, L=1.0 fb1 a t  $B(H^+ \rightarrow \tau \nu)=1$ Data 00000 tt Br(t  $\rightarrow$  H<sup>+</sup>b)=0.0 10<sup>3</sup> ā tt Br(t  $\rightarrow$  H<sup>+</sup>b)=0.3 w tt  $Br(t \rightarrow H^+b)=0.6$ background 10<sup>2</sup> t 000000 w 10 I+jets 1 tag I+jets 2 tag dilepton τ+lepton

# $R_{\pi}$ measurement in data

 $\begin{array}{l} {\bf Strategy: fit an improved MC in a restricted region where $R_{\pi}$ is measured in data. Trust MC for extrapolation.} \end{array}$ 

