Measurement of τ Lifetime at Belle

Simon Eidelman (for the Belle Collaboration)

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Outline

1. Motivation

2. Belle analysis

- 3. Lifetime difference
- 4. Conclusions

S.Eidelman, BINP

Why Is τ Lifetime Important?

• Lifetime is a basic property of any fundamental particle:

Particle	$ au,{ m s}$	$\Delta au / au$,
μ	$(2.197034 \pm 0.000021) \cdot 10^{-6}$	$9.6 \cdot 10^{-6}$
au	$(290.6 \pm 1.0) \cdot 10^{-15}$	$3.4 \cdot 10^{-3}$

• In SM we can test lepton universality

$$\tau_{\tau} = \tau_{\mu} \left(\frac{G_{\tau \to e\nu_{\tau}\bar{\nu}_{e}}}{G_{\mu \to e\nu_{\mu}\bar{\nu}_{e}}}\right)^{2} \left(\frac{M_{\mu}}{M_{\tau}}\right)^{5} \frac{F_{\rm cor}(M_{\mu}, M_{e})}{F_{\rm cor}(M_{\tau}, M_{e})}$$

 The current world-average τ lifetime is dominated by LEP experiments Test of Lepton Universality with G_{τ}/G_{μ}

 $r = \left(\frac{G_{\tau \to e\nu_{\tau}\bar{\nu}_{e}}}{G_{\mu \to e\nu_{\mu}\bar{\nu}_{e}}}\right)^{2}$ (Leptonic universality implies r = 1)

r	t_{τ}, fs	$\mathcal{B}(\tau \to e \nu_{\tau} \bar{\nu}_e), \%$	$M_{ au}, { m MeV}$	Comments
0.9405	305.6 ± 6.0	17.93 ± 0.26	$1784.1_{-3.6}^{+2.7}$	PDG, 1992
± 0.0249	± 0.0185	± 0.0136	$+0.0071 \\ -0.0095$	-2.4σ
0.9999	291.0 ± 1.5	17.83 ± 0.08	$1777.0^{+0.30}_{-0.27}$	PDG, 1996
± 0.0069	± 0.0052	± 0.0045	± 0.0008	-0.01σ
1.0020	290.6 ± 1.1	17.84 ± 0.06	$1776.99_{-0.26}^{+0.29}$	PDG, 2004
± 0.0051	± 0.0038	± 0.0034	± 0.0008	$+0.4\sigma$
1.0034	290.6 ± 1.0	17.85 ± 0.05	1776.82 ± 0.16	PDG, 2010
± 0.0045	± 0.0034	± 0.0028	± 0.0004	$+0.76\sigma$

Measurements of τ Lifetime

Group	$N_{ au au}, 10^6$	$ au,\mathrm{fs}$
CLEO, 1996	3.4	$289.0 \pm 2.8 \pm 4.0$
OPAL, 1996	0.070	$289.2 \pm 1.7 \pm 1.2$
ALEPH, 1997	0.115	$290.1 \pm 1.5 \pm 1.1$
L3, 2000	0.060	$293.2 \pm 2.0 \pm 1.5$
DELPHI, 2004	0.150	$290.9 \pm 1.4 \pm 1.0$
PDG-10	_	290.6 ± 1.0
BaBaR, 2004	71.2	$289.40 \pm 0.91 \pm 0.90$
Belle, 2010	653.4	—

Results of **BaBaR** and **Belle** are preliminary

Belle Measurement

- •KEKB: $3.5 \text{ GeV } e^+ \times 8.0 \text{ GeV } e^-$
- • $\mathcal{L}_{max} = 2.11 \times 10^{34} cm^{-2} s^{-1}$
- •Continuous injection $\rightarrow 1.52 \, \text{fb}^{-1}/\text{day}$
- $\int \mathcal{L}dt \approx 1014 \,\mathrm{fb}^{-1}$ Operation stopped in June 2010
- $\bullet Belle 370$ physicists from 60 Institutes in 15 countries
- •711 fb⁻¹ at $\Upsilon(4S)$ and 60 MeV below

- Sil.VD: 3(4) layers DSSD
- CDC : small cells $He + C_2H_6$
- TOF counters
- Aerogel CC: $n = 1.015 \sim 1.030$
- CsI(Tl) 16 X_0
- SC solenoid 1.5 T
- μK_L detection 14-15 layers RPC+Fe

Analysis Method – I

In the center-of-mass (CM) frame: $\vec{P}_1^*, \ \vec{P}_2^*, \ \vec{P}_{\nu_1}^*, \ \vec{P}_{\nu_2}^* - 3$ -momenta of the hadronic system and neutrino in τ decay

For the angle between the vectors of the τ and hadronic system

$$\cos\theta^* = \frac{2E_{\tau}^* E_h^* - m_{\tau}^2 - m_h^2}{2P_{\tau}^* P_h^*} = \frac{2E_{\tau}^* E_h^* - m_{\tau}^2 - m_h^2}{2\sqrt{E_{\tau}^{*2} - m_{\tau}^2} P_h^*}$$

For the unit vector $\vec{n}^*_+ = \vec{P}^*_{\tau^+}/|P^*_{\tau^+}|$

$$(\vec{P}_1^* \cdot \vec{n}_+^*) = x^* P_{x1}^* + y^* P_{y1}^* + z^* P_{z1}^* = |P_1^*| \cos \theta_1^*$$
$$(\vec{P}_2^* \cdot \vec{n}_+^*) = x^* P_{x2}^* + y^* P_{y2}^* + z^* P_{z2}^* = -|P_2^*| \cos \theta_2^*$$
$$(\vec{n}_+^*)^2 = (x^*)^2 + (y^*)^2 + (z^*)^2 = 1$$

Analysis Method – II

We perform a Lorentz boost of τ momenta from the CM to laboratory frame τ decay vertices are determined as the 3D-points of intersection of the two pion triplets.

For the production point of each τ we take the points (V_{01}, V_{02}) of closest approach of two lines defined by the τ decay vertices and flight directions $c\tau_1 = l_1/\beta\gamma_1, \ c\tau_2 = l_2/\beta\gamma_2$ Two-fold ambiguity from the system of equations is resolved by requiring the minimal value of \vec{dl} No information about the IP needed in this approach

Event Selection – I

- Exactly 6 charged tracks with zero net charge compatible with pions
- No K_S^0 , Λ and π^0
- CM thrust value > 0.9
- $P_T^2(6\pi) > 0.25 \text{ GeV}/c^2$
- 4 GeV/ $c^2 < M(6\pi) < 10.25 \text{ GeV}/c^2$
- Each of the two hemispheres formed by the plane ⊥ to the thrust axis has three pions with net charge ±1
- Pseudomass of each pion triplet $M_{\min} < 1.8 \text{ GeV}/c^2$, $M_{\min}^2 = M^2(3\pi) + 2(E_{\tau}^* - E_X^*)(E_X^* - P_X^*)$
- Each triplet fitted to a vertex with $\chi^2 < 20$

Event Selection – II

- Distance between two lines dl < 0.02 cm
- All the MC samples are normalized to the data luminosity
- Altogether 512K events selected

Lifetime Resolution

Difference between reconstructed and true values of $c\tau$ for MC events $e^+e^- \rightarrow \tau^+\tau^- \rightarrow 3\pi\nu_{\tau}3\pi\nu_{\tau}$ is fitted with a function $A \cdot R(x) = A \cdot (1 + B \cdot x)$ $e^{\frac{-(x-x_0)^2}{2 \cdot (\sigma_0 + \sigma_1 \cdot |x-x_0|)^2}}$ B, x_0, σ_0 and σ_1 later fixed to the values from this fit

- Data
- $uds + \gamma\gamma$ contribution
- charm contribution
- beauty contribution

Data fitted with function

 $F(x) = A \int e^{-t/c\tau} R((t-x)(1+\delta)) dt + A_{uds} R(x(1+\delta)) + Bkg_{cb}(x)$ From the fit $\Delta c\tau_{\text{stat}} = 0.11 \ \mu\text{m}$

or
$$\Delta \tau_{\rm stat} = 0.37$$
 fs

MC resolution underestimated, R(x) 15% wider in data The *uds* contribution underestimated by 1.5

S.Eidelman, BINP

p.11/15

Systematic Uncertainties

Source	$\Delta c \tau$, nm		
MC statistics	88		
Fit range	20		
ISR & FSR	18		
Beam energy	16		
SVD alignment	15		
Background	10		
$\Delta m_{ au}$	9		
Current total	96		

Analysis of systematics in progress

With $\Delta \tau_{\tau \text{syst}} \sim \Delta \tau_{\tau \text{stat}}$ the final result of Belle will be twice more precise than the current PDG mean.

S.Eidelman, BINP

Lifetime Difference for τ^+ and τ^-

- $D(c\tau) = c\tau_+ c\tau_- = 0.16 \pm 0.22 \mu m$
- $\Delta D_{\rm syst} \ll \Delta D_{\rm stat}$
- $|\tau_+ \tau_-|/\tau_{\rm av} < 6 \cdot 10^{-3} @ 90\%$ CL
- $\tau_{\mu^+}/\tau_{\mu^-} = 1.00002 \pm 0.00008$

S.Eidelman, BINP

Conclusions

- A new high-statistics and high-precision measurement of the τ lifetime was performed at Belle with 711 fb⁻¹ (653.4M $\tau^+\tau^-$ pairs)
- The achieved accuracy is $\pm 0.37(stat) \pm 0.33(syst)$ fs Analysis of systematics is in progress
- With $\Delta \tau_{\tau \text{syst}} \sim \Delta \tau_{\tau \text{stat}}$ the final result will be twice more precise than the current PDG mean
- The expected improvement of the world-average τ_{τ} will result in a factor of 1.5 more precise test of leptonic universality $\Delta (G_{\tau}/G_{\mu})^2 = 0.0045 \rightarrow 0.0032$
- Comparison of the lifetime for τ^+ and τ^- allows a CPT test: $|\tau_+ - \tau_-|/\tau_{av} < 6 \cdot 10^{-3} @ 90\% \text{ CL}$

Analysis of systematic effects

- Limited MC statistics (correction for $c\tau$)
- Fitting (variation of the fit range by $\pm 30\%$)
- ISR/FSR (from $e^+e^- \rightarrow \mu^+\mu^-$)
- Beam energy (accuracy about 1 MeV)
- SVD alignment (calibration by cosmic muons)
- Background estimation (variation of A_{uds} by $\pm 50\%$)
- Accuracy of m_{τ} $(\Delta m_{\tau}/m_{\tau} \sim 10^{-4})$

Main Parameters – Leptonic Branching

Measurements of $B_{\rm e}, \%$

Source	$N_{\tau\tau}, 10^3$	B,%	$\delta B_{ m sys},\%$
ALEPH, 2005	56	$17.837 \pm 0.072 \pm 0.036$	0.2
CLEO, 1997	3250	$17.76 \pm 0.06 \pm 0.17$	1.0
PDG,2006	_	17.84 ± 0.05	0.28

Systematic uncertainties in CLEO, %

$N_{\rm ev}$	$N_{ au au}$	ϵ	Trig.	PID	BG	Total
0.36	0.71	0.48	0.28	0.19	0.16	1.00