CVC and
$$\tau^- \to \eta(\eta') \pi^- \pi^0 \nu_{\tau}$$

Simon Eidelman

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Outline

1. CVC basics

- 2. $\tau^- \to \eta \pi^- \pi^0 \nu_\tau$
- 3. $\tau^- \to \eta' \pi^- \pi^0 \nu_\tau$
- 4. Conclusions

The allowed $I^G J^P = 1^+ 1^-$: $X^- = \pi^- \pi^0, (4\pi)^-, \omega \pi^-,$ $\eta \pi^- \pi^0, K^- K^0, (6\pi)^-, \dots$ $\mathcal{B}(V^- \nu_{\tau}) \sim 32\%$

For the vector part of the weak hadronic current the mass distribution of the produced hadrons is $\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ud}|^2 S_{EW}}{32\pi^2 m_\tau^3} (m_\tau^2 - q^2)^2 (m_\tau^2 + 2q^2) v_1(q^2),$ where the spectral function is $v_1(q^2) = \frac{q^2 \sigma_{e^+e^-}^{I=1}(q^2)}{4\pi^2 \alpha^2}.$ Integration gives the branching fraction: $\frac{B(\tau^- \to X^- \nu_\tau)}{B(\tau^- \to e^- \nu_e \nu_\tau)} = \frac{3|V_{ud}|^2 S_{EW}}{2\pi \alpha^2} \int_{4m_\pi^2}^{m_\tau^2} dq^2 \frac{q^2}{m_\tau^2} (1 - \frac{q^2}{m_\tau^2})^2 (1 + 2\frac{q^2}{m_\tau^2}) \sigma_{e^+e^-}^{I=1}(q^2).$

CVC Basics – II

- The CVC relations are known since the pre-τ era:
 Y.S. Tsai, 1971; H.B. Thacker and J.J. Sakurai, 1971
- First CVC tests showed good agreement of the τ branchings predicted from e⁺e⁻ with τ data (N.Kawamoto, A.Sanda, 1978; F.Gilman, D.Miller, 1978; SE, V.Ivanchenko, 1991, 1997).
- Higher accuracy of both τ and e^+e^- revealed serious discrepancies, particularly in the 2π and 4π channels: M. Davier et al., 2003
- Reconsideration of isospin-breaking corrections improved the situation in the 2π channel: M. Davier et al., Eur. Phys. J. C66, 127 (2010)
- It is interesting to analyze other possible channels

Motivation

- Together with V. Cherepanov (Phys. Inst. IIIB, RWTH, Aachen) we consider the η(η')ππ final state. First results in V. Cherepanov and SE, JETP Lett. 89, 429 (2009).
- For $\tau^- \to \eta \pi^- \pi^0 \nu_{\tau}$ the old CVC estimate gave $\mathcal{B}_{CVC} = (0.13 \pm 0.02)\%$ compared to the PDG-08 $\mathcal{B}_{\tau} = (0.181 \pm 0.024)\%$
- A new high-statistics measurement appeared at Belle in 2009
- There are new e^+e^- data from BaBar (2007) and SND (2010)
- Good knowledge of the $\eta \pi^- \pi^0 (\eta \pi^-)$ spectrum may help in a search for 2nd class current $\tau^- \to \eta \pi^- \nu_{\tau}$
- Work is in progress on updating hadronic form factors in MC generators TAUOLA and PHOKARA with Z. Was and H. Czyż
- Belle is repeating the analysis of BaBar to study ISR production of $e^+e^- \rightarrow \eta \pi^+\pi^-$

In 2009 Belle performed a high-statistics study of $\tau^- \to \eta \pi^- \pi^0 \nu_{\tau}$ and obtained $\mathcal{B} = (0.135 \pm 0.003 \pm 0.007)\%$

In general, the $\eta \pi^- \pi^0 (\pi^- \pi^0)$ mass spectra are consistent with the old form factors in TAUOLA

Summary of $e^+e^- \rightarrow \eta \pi^+\pi^-$ Measurements – I

Group	\sqrt{s} , GeV	$N_{ m points}$	$\Delta \sigma_{ m stat}, \%$	$\Delta \sigma_{\rm syst}, \%$
ND, 1986	1.25 - 1.40	3	50-100	10
CMD-2, 2000	1.25 - 1.40	6	30-60	15
SND, 2010	1.17 - 1.38	6	15-60	10.5
DM1, 1982	1.40-1.80	4	30-60	10
DM2, 1988	1.35 - 1.80	10	25-60	10
BaBaR, 2007	1.00-1.80	16	10-60	8

BaBar studied the whole range from threshold to m_{τ} B. Aubert et al., Phys. Rev. D 76, 092005 (2007) SND: M.N. Achasov et al., JETP Lett. 92, 84 (2010)

BaBar data are much more precise than those at DM1, DM2 above 1.4 GeV Are BaBar points higher below 1.4 GeV?

Calculation of the Branching Fraction

• The parameter values are:

 $S_{\rm EW} = 1.0194, |V_{ud}|^2 = 0.9742 \text{ and } \mathcal{B}(\tau^- \to e^- \nu_\tau \bar{\nu}_e) = (17.85 \pm 0.05)\%$

- No corrections except $S_{\rm EW}$ are applied
- "Old" (+ SND) and "new" (BaBar) data

Data	$\mathcal{B},\%$		
Old + SND	0.130 ± 0.015		
BaBar	0.165 ± 0.015		
Aver.	0.153 ± 0.018		

The error of the average is inflated with a scale factor of 1.67

Comparison with Other Predictions

Author	Method	$\mathcal{B},\%$
A. Pich, 1987	ho'	~ 0.3
F.J. Gilman, 1987	CVC	~ 0.15
E. Braaten, 1987	ChT	$0.14_{-0.10}^{+0.19}$
G. Kramer, 1988	ChT	0.18-0.88
S. Eidelman, 1991	CVC	0.13 ± 0.02
S. Narison, 1993	CVC	0.14 ± 0.05
R. Decker, 1993	CVC+ChT	~ 0.19
B.A. Li, 1998	ChT	~ 0.19
This work	CVC	0.153 ± 0.018

Group	$\mathcal{B},\%$	
CLEO, 1992	$0.17 \pm 0.02 \pm 0.02$	
ALEPH, 1997	$0.18 \pm 0.04 \pm 0.02$	
Belle, 2009	$0.135 \pm 0.003 \pm 0.007$	
PDG-2010	0.139 ± 0.010	
$\mathcal{B}_{ ext{CVC}}$	0.153 ± 0.018	

- \mathcal{B} from Belle is lower, but consistent with ALEPH and CLEO Fair agreement of \mathcal{B}_{CVC} with PDG-2010
 - CLEO M. Artuso et al., Phys. Rev. Lett. 69, 3278 (1992)
 - ALEPH D. Buskulic et al., Z. Phys. C74, 263 (1997)
 - Belle K. Inami et al., Phys. Lett. B 672, 209 (2009)

This can be seen better from the "difference" plot taking into account a 5.3% syst. error of Belle

Difference between new (BaBaR) and old + SND e^+e^- data

Some excess of the "BaBaR" data is confirmed although critical analysis of the fits needed

Integration of the optimal curve up to m_{τ} gives $\mathcal{B} = (13.4 \pm 9.4(stat) \pm 1.3(syst) \pm 6.1(mod)) \cdot 10^{-6}$ $\mathcal{B} < 3.2 \cdot 10^{-5}$ at 90% CL compared to the CLEO limit $\mathcal{B} < 8 \cdot 10^{-5}$ at 90% CL An order of magnitude higher than ~ 4.4 \cdot 10^{-6} from ChT

Conclusions

- The whole dataset on $e^+e^- \rightarrow \eta \pi^+\pi^-$ is used to test CVC
- Spectral functions of τ and e^+e^- are compatible
- $\mathcal{B}_{CVC} = (0.153 \pm 0.018)\%$ is consistent with $\mathcal{B}_{PDG} = (0.139 \pm 0.010)\%$
- Is excess of BaBar data below 1.4 GeV significant?
- From the data on $e^+e^- \rightarrow \eta' \pi^+\pi^-$ we obtain $\mathcal{B} < 3.2 \cdot 10^{-5}$ at 90% CL compared to the CLEO limit $\mathcal{B} < 8 \cdot 10^{-5}$ at 90% CL
- Update of TAUOLA and PHOKHARA in progress