



# Searches for second-class currents at Babar

#### Kim Alwyn

University of Manchester representing the BaBar Collaboration

#### Tau-2010 Workshop

Manchester, UK September 2010

#### **Second-Class Currents**

- Weak hadronic currents in  $\tau$  decays can be classified as:
  - first-class currents (FCC):
  - second-class currents (SCC):  $J^{PG} = 0^{+-}, 0^{-+}, 1^{++}, 1^{--}$

C):  $J^{PG} = 0^{++}, 0^{--}, 1^{+-}, 1^{-+}, 1^{-+}, 1^{-+}, 0^{-+}, 0^{-+}, 1^{++}, 1^{--}$ 

S. Weinberg (Phys. Rev. **112**, 1375 (1958))

$$\hat{G} = \hat{C} e^{i\pi \hat{I}_2}$$

- No evidence has been found for SCC
- SCC are associated with a decay constant proportional to the mass difference between up and down quarks, vanishing in limit of perfect isospin symmetry
- Expected to have branching fraction values of order 10<sup>-5</sup>
- The  $\tau^-$  lepton provides clean ways to look for SCC

## Searches for second-class currents in $\tau$ decays

\*the use of charge-conjugate reactions is implied throughout talk

#### $\tau \rightarrow \omega \pi \nu_{\tau}$

- Proceeds dominantly through FCC with  $J^{PG} = 1^{-+}$ 
  - decays through a P-wave
- May potentially decay through SCC with J<sup>PG</sup> = 0<sup>-+</sup> or 1<sup>++</sup>
  - decays through S- and D-waves
  - may be mediated by  $b_1(1235)$
- Angular analysis reveals whether there is any SCC contribution

#### $\tau \rightarrow \eta \pi \nu_{\tau}$

• Must be produced through SCC with  $J^{PG} = 0^+$  or  $1^-$ - can be mediated by  $a_0(980)$  or  $\pi_1(1400)$ 

# $\tau^{-} \rightarrow \eta'(958)\pi^{-}\nu_{\tau}$

• Must also be produced through SCC with  $J^{PG} = 0^+$  or  $1^-$ 

## **Previously Published Results**

#### $\tau \rightarrow \omega \pi \nu_{\tau}$

 Ratio of second-class (non-vector) to first-class (vector) currents < 5.4% at 90% confidence level (CL) CLEO (Phys. Rev. D 61, 072003 (2000))

#### $\tau \rightarrow \eta \pi \nu_{\tau}$

• BF( $\tau \rightarrow \eta \pi \nu_{\tau}$ ) < 1.4 x 10<sup>-4</sup> at 95% CL

CLEO (Phys. Rev. Lett. **76**, 4119 (1996))

# $\tau^- \rightarrow \eta'(958)\pi^- \nu_{\tau}$

• BF( $\tau \rightarrow \eta'(958)\pi \nu_{\tau}$ ) < 7.2 x 10<sup>-6</sup> at 90% CL

Described in my talk at Tau 2008

Babar (Phys. Rev. D **77**, 112002 (2008))

#### Analysis of $\tau^- \rightarrow \omega \pi^- v_{\tau}$ and $\tau^- \rightarrow \eta \pi^- v_{\tau}$

- 1. Topology selection
- 2. Event selection for  $\tau^- \rightarrow \omega \pi^- v_{\tau}$ , with  $\omega \rightarrow \pi^+ \pi^- \pi^0$
- 3. Angular analysis of  $\tau^- \rightarrow \omega \pi^- v_{\tau}$
- 4. Event selection for  $\tau^- \rightarrow \eta \pi^- v_{\tau}$ , with  $\eta \rightarrow \pi^+ \pi^- \pi^0$
- 5. Search for  $\tau^- \rightarrow \eta \pi^- v_{\tau}$

## Monte Carlo samples

- τ-pair production is simulated by KK2F, τ decays by Tauola, continuum qq̄ by JETSET and radiation in decays is simulated by Photos
- Dedicated Monte Carlo (MC) samples are made for:  $\tau^- \rightarrow \eta \pi^- \nu_{\tau}, \tau^- \rightarrow \eta K^- \nu_{\tau}, \tau^- \rightarrow \eta \pi^- \pi^0 \nu_{\tau}, \tau^- \rightarrow \eta \pi^- K^0 \nu_{\tau}$  and  $\tau^- \rightarrow \eta K^- \pi^0 \nu_{\tau}$

## **Topology Selection**

- Analyses require the same topology
  - τ-pairs produced back-to-back in CM frame
  - select events with 1-3 topology of charged particles
- I-prong side for tagging:
  - track identified as either  $e^-$  or  $\mu^-$
- 3-prong side has signal mode:
  - $\pi^+\pi^-\pi^0$  from  $\omega$  or  $\eta$ , plus a bachelor  $\pi^-$
- Single  $\pi^0$  candidate required on signal side:
  - reconstructed from 2 photons on signal side



## **Topology Selection**

- Analyses require the same topology
  - τ-pairs produced back-to-back in CM frame
  - select events with 1-3 topology of charged particles
- I-prong side for tagging:
  - track identified as either  $e^-$  or  $\mu^-$
- 3-prong side has signal mode:
  - $\pi^+\pi^-\pi^0$  from  $\omega$  or  $\eta$ , plus a bachelor  $\pi^-$
- Single  $\pi^0$  candidate required on signal side:
  - reconstructed from 2 photons on signal side



#### Event Selection for $\tau^- \rightarrow \omega \pi^- v_{\tau}$

- Data sample has integrated luminosity of 347 fb<sup>-1</sup> (320 million τ-pairs)
- Aim to select  $\tau^- \rightarrow \omega \pi^- v_{\tau}$  events with  $\omega \rightarrow \pi^+ \pi^- \pi^0$
- Signal side has  $\omega \rightarrow \pi^+ \pi^- \pi^0$  plus a bachelor  $\pi^-$ :
  - all 3 tracks are identified as pions
- Total event energy < 11.5 GeV</li>
- Thrust > 0.875 &  $\cos \theta_{\text{Thrust}} < 0.9$
- $M(\pi^+\pi^-) > 0.09 \text{ GeV}/c^2$  with electron mass hypothesis
- $M(\pi^+\pi^-\pi^{-0}\pi^-) < M(\tau^-)$



- Angle  $\theta$  is between:
  - normal to the  $\omega \rightarrow \pi^+ \pi^- \pi^0$  decay plane (in  $\omega$  rest frame) and direction of bachelor  $\pi^-$
- Angle  $\theta$  calculated for each  $\omega$  candidate
- Expected angular distribution for FCC
   P-wave is proportional to 1-cos<sup>2</sup>θ

## Search for Second-Class Current in $\tau^- \rightarrow \omega \pi^- v_{\perp}$



- 1. combinatoric background from events in sideband regions of  $\pi^+\pi^-\pi^0$  mass spectrum
- 2.  $q\overline{q}$  background







- The cosθ distribution is fitted with a function proportional to 1-cos<sup>2</sup>θ
- This is consistent with FCC

Fraction of SCC in this decay mode < 0.69% at 90% CL BF( $\tau \rightarrow \omega \pi^- v_{\tau}(SCC)$ ) < 1.3 x 10<sup>-4</sup> at 90% CL

Babar (Phys. Rev. Lett. 103, 041802 (2009))

#### Event Selection for $\tau^- \rightarrow \eta \pi^- v_{\tau}$

- Data sample has integrated luminosity of 470 fb<sup>-1</sup> (430 million τ-pairs)
- Aim to select  $\tau^- \rightarrow \eta \pi^- v_{\tau}$  events with  $\eta \rightarrow \pi^+ \pi^- \pi^0$
- Signal side has  $\eta \rightarrow \pi^+ \pi^- \pi^0$  plus a bachelor  $\pi^-$ :
  - assume that tracks used for  $\eta$  are pions
  - bachelor track is identified as  $\pi^-$
- Total event energy < 80% of initial energy</li>
- Thrust > 0.95 & cos  $\theta_{Thrust}$  < 0.8
- No additional signal-side photons with energy > 100 MeV (in laboratory frame)

## Method Overview

- Fit  $\pi^+\pi^-\pi^{-0}$  mass spectra to determine number of  $\eta$  mesons
- Use MC samples to estimate number of η mesons expected from background modes
- Don't trust simulation of uu+dd+ss (uds) events so uds MC is calibrated with data
- Any excess signal, above what is expected from backgrounds, would be evidence of SCC



## Search for $\tau^- \rightarrow \eta \pi^- v_{\tau}$

- Select  $\tau^- \rightarrow \pi^+ \pi^- \pi^0 \pi^- v_{\tau}$  candidates (bachelor identified as  $\pi^-$ )
- Require  $m(\pi^{-}\pi^{+}\pi^{0}\pi^{-}) < m(\tau)$





µ-tag events in data

#### e-tag events in data

\*Note the suppressed zero on the y-axis

- Plot  $\pi^+\pi^-\pi^0$  mass spectra
- Binned maximum likelihood fits (range 0.48 0.62 GeV/ $c^2$ )
  - double Gaussian ( $\eta$  peak) + quadratic polynomial (background)
  - parameters found by fitting high-statistics samples (MC &  $\pi$ -tag data)
- Similar fits to MC samples determine expected backgrounds from non-signal channels



# Search for $\tau^- \rightarrow \eta \pi^- v_{\tau}$

| Background contribution               | Expected number of events |           |                 |            |
|---------------------------------------|---------------------------|-----------|-----------------|------------|
|                                       | $e	ext{-tag}$             |           | $\mu	ext{-tag}$ |            |
| uds                                   | $20 \pm 9$                | $\pm 14$  | $64 \pm 13$     | $\pm 43$   |
| $c\overline{c}$                       | $74 \pm 20$               | $\pm 19$  | $54 \pm 15$     | $\pm 13$   |
| $	au^- 	o \eta \pi^- \pi^0  u_	au$    | $215 \pm 14$              | $\pm 12$  | $118 \pm 11$    | $\pm 7$    |
| $\tau^- \to \eta K^0 \pi^- \nu_\tau$  | $100 \pm 2$               | $\pm 17$  | $71 \pm 2$      | $\pm 12$   |
| $\tau^- \to \eta K^- \nu_\tau$        | $35 \pm 1$                | $\pm 2$   | $26 \pm 1$      | $\pm 1$    |
| $\tau^- 	o \eta K^- \pi^0 \nu_{\tau}$ | $0.6 \pm 0.2$             | $\pm 0.1$ | $0.24 \pm 0.16$ | $\pm 0.06$ |
| Total background                      | $445\ \pm 27$             | $\pm 31$  | $333 \pm 23$    | $\pm 47$   |
| Combined $e$ - and $\mu$ -tag         | $778 \pm 35 \pm 73$       |           |                 |            |
| Measured in Data                      | Number of events in data  |           |                 |            |
|                                       | $489\ \pm111$             | $\pm 15$  | $424\ \pm 74$   | $\pm 13$   |
| Combined $e$ - and $\mu$ -tag         | $913 \pm 134 \pm 20$      |           |                 |            |
| Signal                                | Measured data-background  |           |                 |            |
|                                       | $44 \pm 111$              | $\pm 43$  | $91 \pm 74$     | $\pm 54$   |
| Combined $e$ - and $\mu$ -tag         | $135\pm134\pm83$          |           |                 |            |

#### $BF(\tau \rightarrow \eta \pi \nu_{\tau}) = (3.4 \pm 3.4 \pm 2.1) \times 10^{-5}$

 $BF(\tau \rightarrow \eta \pi \nu_{\tau}) < 9.9 \times 10^{-5} @ 95\% CL (preliminary)$ 

CLEO limit: BF( $\tau \rightarrow \eta \pi \nu_{\tau}$ ) < 1.4x10<sup>-4</sup> @ 95% CL

# Efficiency for signal is (0.472 ± 0.006)%



The  $\eta\pi^-$  mass distributions for data and MC, for e-tag and  $\mu$ -tag events, obtained from sideband subtraction method

Limit is driven by background uncertainty which could not be driven down by increased statistics



# Measurement of $\tau^-{\rightarrow}\eta\,K^-\nu_{\tau}$ branching fraction

- Select  $\tau^- \rightarrow \pi^+ \pi^- \pi^0 K^- v_{\tau}$  candidates (bachelor identified as  $K^-$ )
- Require  $m(\pi^-\pi^+\pi^0K^-) < m(\tau)$





(b)  $\mu$ -tag events in data

## (a) e-tag events in data

\*Note the suppressed zero on the y-axis

- Plot  $\pi^+\pi^-\pi^0$  mass spectra
- Fits done in the same way as for  $\tau \rightarrow \eta \pi \nu_{\tau}$  analysis
- Similar fits to MC samples determine expected backgrounds from non-signal channels



## Branching Fraction for $\tau^- \rightarrow \eta K^- \nu_{\tau}$

| Background contribution                  | Expected number of events |                         |  |  |
|------------------------------------------|---------------------------|-------------------------|--|--|
|                                          | e-tag                     | $\mu	ext{-tag}$         |  |  |
| uds                                      | $4.5 \pm 2.7 \pm 2.3$     | $8.9 \pm 4.7 \pm 4.5$   |  |  |
| $c\overline{c}$                          | $13.8 \pm 8.3 \pm 3.5$    | $0.7\ \pm 5.5\ \pm 0.2$ |  |  |
| $\tau^- \to \eta \pi^- \pi^0 \nu_{\tau}$ | $13.3 \pm 3.7 \pm 0.7$    | $2.9\ \pm 2.0\ \pm 0.2$ |  |  |
| $\tau^- \to \eta K^- \pi^0 \nu_\tau$     | $8.4 \pm 0.5 \pm 2.1$     | $5.0 \pm 0.4 \pm 1.3$   |  |  |
| $\tau^- \to \eta K^0 \pi^- \nu_\tau$     | $3.9\ \pm 0.5\ \pm 0.7$   | $2.3 \pm 0.4 \pm 0.4$   |  |  |
| Total background                         | $44 \pm 10 \pm 5$         | $20 \pm 8 \pm 5$        |  |  |
| Combined $e$ - and $\mu$ -tag            | $64 \pm 12 \pm 8$         |                         |  |  |
| Measured in Data                         | Number of events in data  |                         |  |  |
|                                          | $463 \pm 44 \pm 12$       | $291 \pm 30 \pm 10$     |  |  |
| Combined $e$ - and $\mu$ -tag            | $754 \pm 53 \pm 16$       |                         |  |  |
| Signal                                   | Measured data-background  |                         |  |  |
|                                          | $419 \pm 44 \pm 16$       | $271 \pm 30 \pm 13$     |  |  |
| Combined $e$ - and $\mu$ -tag            | $690 \pm 53 \pm 22$       |                         |  |  |

# Efficiency for signal is $(0.578 \pm 0.004)\%$



The  $\eta K^-$  mass distributions for data and MC, for e-tag and  $\mu$ -tag events, obtained from sideband subtraction method. MC includes the signal mode, normalised with branching fraction reported here.

## $BF(\tau \rightarrow \eta K \nu_{\tau}) = (1.42 \pm 0.11 \pm 0.07) \times 10^{-4}$ (preliminary)

Consistent with Belle result [Phys. Lett. B 672, 209 (2009)]



## Summary



| BF( $\tau \rightarrow \omega \pi \nabla_{\tau}(SCC)$ ) < 1.3 x 10 <sup>-4</sup> @ 90% CL<br>Fraction of decays that proceed through SCC < 0.                                                                                       | 69% @ 90% CL                                   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|
| Order of magnitude lower than previous limit of < 5.4% @ 90% CL                                                                                                                                                                    | Phys. Rev. Lett.<br><b>103</b> , 041802 (2009) |  |
| BF(τ→ηπ <sup>-</sup> ν <sub>τ</sub> ) < 9.9 x 10 <sup>-5</sup> @ 95% CL                                                                                                                                                            |                                                |  |
| Improvement on previous limit of < 1.4 x 10 <sup>-4</sup> @ 95% CL                                                                                                                                                                 | Publication coming soon                        |  |
| $BF(\tau \rightarrow \eta'(958)\pi \nu_{\tau}) < 7.2 \times 10^{-6} \text{ at } 90\% \text{ CL}$                                                                                                                                   |                                                |  |
| Order of magnitude lower than previous limit of $< 7.4 \times 10^{-5}$ @ 90% CL                                                                                                                                                    | Phys. Rev. D <b>77</b> , 112002 (2008)         |  |
| $BF(\tau \rightarrow \eta K \nu_{\tau}) = 1.42 \pm 0.11(stat) \pm 0.07(sys) \times 10^{-1}$                                                                                                                                        | -4                                             |  |
| Consistent with Belle: $(1.58 \pm 0.05 \pm 0.08) \times 10^{-4}$<br>(used $\eta \rightarrow \gamma\gamma$ and $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$ modes)<br>Belle and Babar give average of: $(1.52 \pm 0.08) \times 10^{-4}$ | Publication coming<br>soon                     |  |