WHAT'S GOING ON WITH $V_{u s}$ FROM HADRONIC τ DECAYS?

K. Maltman

Tau 2010, Manchester, September 14, 2010

OUTLINE

- A few basics
- Some technical issues and the current situation
- Results, assessment and the future

THE BASIC APPROACH

- $I_{i j}^{w}\left(s_{0}\right), i j=u d, u s: s \leq s_{0}, w(s)$-weighted integrals over flavor ud, us V+A τ decay distributions; $\left[\delta J^{w}\left(s_{0}\right)\right]_{O P E}$: the OPE representation of

$$
\delta J^{w}\left(s_{0}\right) \equiv \frac{I_{u d}^{w}\left(s_{0}\right)}{\left|V_{u d}\right|^{2}}-\frac{I_{u s}^{w}\left(s_{0}\right)}{\left|V_{u s}\right|^{2}}
$$

$$
\Rightarrow\left|V_{u s}\right|=\sqrt{I_{u s}^{w}\left(s_{0}\right) /\left[\frac{I_{u d}^{w}\left(s_{0}\right)}{\left|V_{u d}\right|^{2}}-\left[\delta J^{w}\left(s_{0}\right)\right]_{O P E}\right]}
$$

- $\left[\delta J^{w}\left(s_{0}\right)\right]_{O P E}$ typically at the \sim few to several \% level of $I_{u d}^{w}\left(s_{0}\right) \Rightarrow$ accurate $\left|V_{u s}\right|$ from modest OPE errors [Gamiz et al., JHEP 0301: 060]
- $\mathrm{V}, \mathrm{A} i j=u d, u s,(J)=(0+1),(0)$ spectral functions from experimental differential decay distributions

$$
\begin{gathered}
d R_{V / A ; i j} / d s=12 \pi^{2}\left|V_{i j}\right|^{2} S_{E W}\left[w_{(00)}\left(y_{\tau}\right) \rho_{V / A ; i j}^{(0+1)}(s)\right. \\
\left.+w_{L}\left(y_{\tau}\right) \rho_{V / A ; i j}^{(0)}(s)\right] / m_{\tau}^{2}
\end{gathered}
$$

with $\left.R_{V / A ; i j} \equiv \frac{\Gamma\left[\tau \rightarrow \nu_{\tau} \text { hadrons }\right.}{\Gamma\left[\tau^{-} \rightarrow \nu_{\tau} e^{-} \bar{\nu}_{e}(\gamma)\right]}(\gamma)\right], y_{\tau}=s / m_{\tau}^{2}$

$$
w_{(00)}(y)=(1-y)^{2}(1+2 y), w_{L}(y)=-2 y(1-y)^{2}
$$

- "Iongitudinal": (0) part of $(0+1) /(0)$ decomposition
- $\left[\delta J^{w}\left(s_{0}\right)\right]_{O P E}:$ OPE on RHS of FESR relation

$$
\int_{0}^{s_{0}} w(s) \rho(s) d s=-\frac{1}{2 \pi i} \oint_{|s|=s_{0}} w(s) \Pi(s) d s
$$

valid for $\Pi(s)=\Pi_{u d, u s ; V / A}^{(0+1)}(s), s \Pi_{u d, u s ; V / A}^{(0)}(s)$

(Data on LHS, OPE on RHS)

- Bad integrated $(J)=(0) D=2$ OPE convergence \Rightarrow phenomenological treatment needed. Fortunately
- π, K contributions accurately known
- strong continuum suppression $\left(\propto\left(m_{i} \mp m_{j}\right)^{2}\right)$
- small us continuum contribution from us scalar, PS analyses (constrained by m_{s})
- impact on $V_{u s}$ small (~ 0.0002 or less)
- \Rightarrow essentially $\Delta \Pi \equiv \Pi_{u d: V+A}^{(0+1)}-\Pi_{u s ; V+A}^{(0+1)}$ FESRs

A PUZZLE: CURRENT RESULTS FOR THE KINEMATIC $w_{(00)}(y)$ WEIGHT CASE

- $s_{0}=m_{\tau}^{2}$, kinematic weight $w_{(00)}(s) \Rightarrow I_{u d, u s}^{w}$ from $B_{u d ; T O T}, B_{u s ; T O T}$
- \Rightarrow recent improved us branching fractions sufficient for improved $\left|V_{u s}\right|$ determination (true for $s_{0}=m_{\tau}^{2}$ AND $w=w_{(00)}$ weight choice only)
- Experimentally more difficult inclusive $d R_{u s ; V+A} / d s$ distribution required for other $w(s)$ and/or s_{0} [expected from BaBar, Belle, but still some time in future]
- The experimental situation:
- $I_{u d}^{w}\left(s_{0}\right): \sim 0.5 \%$ errors for range of w and s_{0} [ALEPH 2005 data and covariances]
- $I_{u s}^{w}\left(s_{0}\right):$ pre-2007 us errors $\sim 3-4 \%$ [ALEPH99 distribution, rescaled mode-by-mode for exclusive us B changes] ($\Rightarrow \sim 1.5-2 \%$ on $\left|V_{u s}\right|$)
- Recent improved B values for several us exclusive modes [BaBar, Belle] (but not yet full $d R_{u s} / d s$)
- Current $B_{u s ; T O T}$ error 2.0\% [Lusiani, ICHEP10] \Rightarrow 1% on $\left|V_{u s}\right|$
- Results of conventional $w_{(00)}(s)$ analysis:
- CIPT+Adler function/CIPT+correlator $D=2$ OPE evaluations used previously in literature, $K_{\mu 2}$ for K contribution, yield updated $\left|V_{u s}\right|$ results

$$
\begin{array}{ll}
0.2166(22)_{\exp }(5 ? ?)_{t h} & (C I P T+\text { Adler function }) \\
0.2162(22)_{\exp }(5 ? ?)_{t h} & (C I P T+\text { correlator })
\end{array}
$$

- $\left|V_{u s}\right|$ nominally 3.6σ low c.f. 3-family unitarity expectations, $K_{\ell 3}$ and $\Gamma\left[K_{m u 2}\right] / \Gamma\left[\pi_{\mu 2}\right]$
- (More on ?? in nominal theory error later)

WHAT'S GOING ON?

- Problem(s) with the ud $V+\mathrm{A}$ data?
- Problem(s) with the us V+A data? (Especially possible missing higher multiplicity modes at higher s ?)
- Underestimate of theory uncertainties/unreliable central OPE values?
- None of the above, i.e., new physics?

SOME INVESTIGATIVE TOOLS

- Definite problem(s) if $\left|V_{u s}\right|$ not independent of both s_{0} and $w(s)$
- Use of polynomial $w(y)=\sum_{m} b_{m} y^{m}, y=s / s_{0}$ to test/check higher D OPE contributions ($D=2 k \propto 1 / s_{0}^{k-1}$, "absent" if $b_{k-1}=0$)
- Alternate $D=2$ OPE prescriptions differing only at higher order in α_{s} than truncation order (CIPT+correlator, CIPT+Adler function, FOPT) should give results compatible within $D=2$ truncation error estimate
- "Supplementary" us V+A FESRs
- Remove ud $\vee+\mathrm{A}$ data as potential problem source
- |Vus| from FESRs for flavor us V+A correlator combination:

$$
\left|V_{u s}\right|=\sqrt{\frac{I_{u s ; V+A}^{w}\left(s_{0}\right)}{I_{O P E}^{w}\left(s_{0}\right)}}
$$

- us spectral data needed identical to that for ud-us FESRs
- OPE side of us V+A FESRs
* $O\left(m_{s}^{2} \alpha_{s}^{m}\right) D=2$ coefficients almost identical to those of $u d-u s \mathrm{~V}+\mathrm{A}$ series
* CAUTION: presence of $D=0,\left\langle\alpha_{s} G^{2}\right\rangle D=4$ OPE contributions \Rightarrow some increase in OPE error
- IF OPE OK, problem due to missing higher s us spectral strength $\Rightarrow\left|V_{u s}\right|$ must be larger at lower so
- $\left|V_{u s}\right|$ lower at lower $s_{0} \Rightarrow$ definite OPE problem (additional us data problem not precluded)

Problems with the ud data?

- τ vs CVC+IB electroproduction expectation discrepancy for $\pi \pi$ [minor for BaBar EM, non-trivial for KLOE, Novosibirsk]
- Similar τ vs EM discrepancy for 4π [still non-trivial, even for preliminary BaBar LP07 4π EM]
- HOWEVER, correlations in PDG global τ branching fractions fit dominantly to "nearby multiplicity" nonstrange modes \Rightarrow impact on $\left|V_{u s}\right|$ likely small

Problems with the us data?

- B for some moderately large exclusive modes not yet remeasured by B factories [Table]
- Missing modes above $s \sim 2 \mathrm{GeV}^{2}$ ($\delta V_{u s} \sim 0.0004$ for each $\left.\delta B \sim 10^{-4}\right)$, e.g., for $w_{(00)}(s)$, $s_{0}=m_{\tau}^{2}$,
$-B\left[K^{-} \pi^{0} \pi^{0} \nu_{\tau}\right]$ up $3 \sigma \Rightarrow \delta\left|V_{u s}\right|=+0.0025$
- $B\left[(K 3 \pi)^{-} \nu_{\tau}\right]$ up $3 \sigma \Rightarrow \delta\left|V_{u s}\right|=+0.0030$
- ALEPH99 $K 4 \pi$ rough estimate $\Rightarrow \delta\left|V_{u s}\right|=+0.0013$
- (See later, however, re s_{0} stability issues etc.)

PRE-2007 vs Lusiani ICHEP10 us \mathcal{B} VALUES

Mode	$\mathcal{B}_{2006}(\%)$	$\mathcal{B}_{\text {ICHEP10 }}(\%)$
$K^{-}[\tau$ decay $]$	$0.685(23)$	$0.696(10)$
Alt: $\left.\left[K_{\mu 2}\right]\right)$	$(0.715(3))$	$(0.715(3))$
$K^{-} \pi^{0}$	$0.454(30)$	$0.431(15)[\dagger \dagger]$
$\bar{K}^{0} \pi^{-}$	$0.878(38)$	$0.827(18)[\dagger \dagger]$
$K^{-} \pi^{0} \pi^{0}$	$0.058(24)$	$0.060(22)[* *]$
$\bar{K}^{0} \pi^{0} \pi^{-}$	$0.360(40)$	$0.349(15)[\dagger \dagger]$
$K^{-} \pi^{-} \pi^{+}$	$0.330(50)$	$0.294(7)[\dagger \dagger]$
$K^{-} \eta$	$0.027(6)$	$0.016(2)$
$(\bar{K} \eta \pi)^{-}$	$0.029(9)$	$0.0141(19)$
$(\bar{K} 3 \pi)^{-}$	$0.141(37)$	$0.165(39)[* *]$
$K \phi$		$0.0037(1)[\dagger \dagger]$
$(\bar{K} 4 \pi)^{-}$(est'd)	$0.011(7)$	$[* *]$
$(\bar{K} 5 \pi)^{-}$(est'd)	0.006	$[* *]$
TOTAL	$2.973(86)$	$2.857(58)$
	$(3.003(83))$	$(2.876(58))$

OPE Problems?

- Key OPE problem: slow $D=2(0+1)$ series convergence at the correlator level
- $\Delta \Pi\left(Q^{2}\right) \equiv \Pi_{u d ; V+A}^{(0+1)}-\Pi_{u s ; V+A}^{(0+1)}, \Delta \rho(s)$: correlator and corresponding spectral function for $u d-u s V+A$ FESRs
- $D=2$ OPE series, $\bar{m}_{s}=m_{s}\left(Q^{2}\right), \bar{a}=\alpha_{s}\left(Q^{2}\right) / \pi, \overline{M S}$ scheme [Baikov, Chetyrkin, Kuhn PRL95:012003]

$$
\begin{gathered}
{\left[\Delta \Pi\left(Q^{2}\right)\right]_{D=2}=\frac{3}{2 \pi^{2}} \frac{\bar{m}_{s}}{Q^{2}}\left[1+2.333 \bar{a}+19.933 \bar{a}^{2}\right.} \\
\left.+208.746 \bar{a}^{3}+(2378 \pm 200) \bar{a}^{4}+\cdots\right]
\end{gathered}
$$

- $a\left(m_{\tau}^{2}\right) \sim 0.1 \Rightarrow$ veryslow convergence at spacelike point on $|s|=s_{0}$, even for maximum $s_{0}=m_{\tau}^{2}$
- (Not surprisingly) integrated $D=2(0+1)$ series typically also dicey, e.g., behavior to $O\left(\bar{a}^{4}\right)$ of the $w_{(00)}$ CIPT+Adler function ($1^{\text {st }}$ line), CIPT+correlator ($2^{\text {nd }}$ line), FOPT ($3^{\text {rd }}$ line) $D=2$ prescriptions is, for $s_{0}=m_{\tau}^{2}$:

$$
\begin{aligned}
& \sim[1+0.286+0.103-0.039-(0.197)+\cdots] \\
& \sim[1+0.151+0.017-0.120-(0.293)+\cdots] \\
& \sim[1+0.405+0.257+0.154+(0.081)+\cdots]
\end{aligned}
$$

- Options for dealing with the slow $D=2$ convergence:
- Take advantage of improved convergence in CIPT away from spacelike point via choice of weight [Here: $w_{20}, \widehat{w}_{10}, w_{10}$ of PRD62 (2000) 093020]
- FESRs for alternate flavor-breaking correlator combinations with suppressed $D=2$ OPE at correlator level [involves combination of EM, τ decay data]
- s_{0}-stability checks to test that actual control of OPE convergence has been achieved

SOME ILLUSTRATIVE RESULTS

- ud V+A spectral integrals, errors from ALEPH 2005 data, covariances
- us $V+\mathrm{A}$ spectral integrals results using $K_{\mu 2}$ input, mode-by-mode rescaled ALEPH 1999 us distribution to handle $w \neq w_{(00)}, s_{0} \neq m_{\tau}^{2}$ cases
- Rescaling necessary as updated distributions publicly available only for $K^{-} \pi^{+} \pi^{-}, K^{-} K^{+} K^{-}$[BaBar]
- NOTE: test of rescaling for weighted $K^{-} \pi^{+} \pi^{-}$integrals (BaBar vs rescaled ALEPH99) shows rescaling very reliable for central values, despite large rescaling

s_{0}-STABILITY FOR THE $w_{(00)}$ FESR

$\left|\mathrm{V}_{\mathrm{us}}\right|$ from the $\mathrm{w}_{(00)}$ FESR

$s_{0}-$ STABILITY FOR THE w_{10}, \widehat{w}_{10} FESRs

CAUTION: VERY slow FOPT convergence for both

DECENT STABILITY, $D=2$ CONVERGENCE CASES

$\left|\mathrm{V}_{\text {us }}\right|$ from reasonable stability/convergence ud-us FESRs

THE us V+A FESRs

$\left|\mathrm{V}_{\mathrm{us}}\right|$ from the us V+A FESRs

Impact of $3 \sigma B$ increases for largest us modes not yet remeasured by BaBar or Belle

$$
w_{(00)} \mathrm{FESR}
$$

$\mathrm{w}_{(00)}$ ud-us FESR, $\mathrm{B}\left[\mathrm{K} 2 \pi^{0}\right], \mathrm{B}[\mathrm{K} 3 \pi]$ up 3σ

$w_{10}, \widehat{w}_{10}, w_{20}$ FESRs

THE ALTERNATE EM- τ FESRs

- Slow convergence of the integrated $D=2$ OPE series for $\Delta \Pi$ due to slow convergence at the correlator level (for scales kinematically accessible in τ decay)
- Suggests trying alternate flavor-breaking combinations with suppressed $D=2$ OPE contributions, e.g.,

$$
\Delta \Pi^{E M, \tau} \equiv 9 \Pi_{E M}-\left[5 \Pi_{u d ; V}-\Pi_{u d ; A}+\Pi_{u s ; V+A}\right]
$$

(same normalization for us $V+\mathrm{A}$ as in $\Delta \Pi$)

- $D=2$ suppression choice also suppresses $D=4$
$-D=2$

$$
\begin{aligned}
& {\left[\Delta \Pi\left(Q^{2}\right)\right]_{D=2} }=\frac{3}{2 \pi^{2}} \frac{\bar{m}_{s}}{Q^{2}}\left[1+\frac{7}{3} \bar{a}+19.933 \bar{a}^{2}\right. \\
&\left.+208.75 \bar{a}^{3}+\cdots\right] \\
& {\left[\Delta \Pi^{E M, \tau}\left(Q^{2}\right)\right]_{D=2}=\frac{3}{2 \pi^{2}} \frac{\bar{m}_{s}}{Q^{2}}\left[0+\frac{1}{3} \bar{a}+4.3839 \bar{a}^{2}\right.} \\
&\left.+44.943 \bar{a}^{3}+\cdots\right]
\end{aligned}
$$

$-D=4$

$$
\begin{aligned}
& {\left[\Delta \Pi\left(Q^{2}\right)\right]_{D=4}=\frac{\left\langle m_{s} \bar{s} s\right\rangle-\left\langle m_{\ell} \bar{\ell} \ell\right\rangle}{Q^{4}}\left[-2-2 \bar{a}-\frac{26}{3} \bar{a}^{2}\right]} \\
& {\left[\Delta \Pi^{E M, \tau}\left(Q^{2}\right)\right]_{D=4}=\frac{\left\langle m_{s} \bar{s} s\right\rangle-\left\langle m_{\ell} \bar{\ell} \ell\right\rangle}{Q^{4}}\left[0+\frac{8}{3} \bar{a}+\frac{59}{3} \bar{a}^{2}\right]}
\end{aligned}
$$

- FESRs based on $\Delta \Pi^{E M, \tau} \Rightarrow$ (suppressing s_{0}-dependence of the OPE and spectral integrals)

$$
\left|V_{u s}\right|=\sqrt{\frac{I_{u s ; V+A}^{w}}{\frac{3}{2} I_{E M, I=0}^{w}-\frac{1}{2} I_{u d ; V}^{w}+I_{u d ; A}^{w}-I_{O P E}^{w}}}
$$

(with $I_{E M, I=0}^{w}$ normalized as for a charged current correlator)

- Strong suppression of $D=2,4$ contributions $\Rightarrow w(y)$ usable even without improved $D=2$ convergence, hence e.g. $w_{N}(y)=1-\frac{N}{N-1} y+\frac{1}{N-1} y^{N}$
- Advantages of w_{N} FESR choice:
- single integrated $D>4$ contribution $(D=2 N+2)$ (up to $O\left(\alpha_{s}^{2}\right)$ corrections)
$-D=2 N+2$ suppressed by relevant w_{N} coefficient, $1 /(N-1)$
$-1 / s_{0}^{N}$ dependence provides handle on integrated $D=$ $2 N+2$ contributions
- NOTE: $D>4$ typically NOT suppressed at correlator level: E.g. in VSA, $D=6$ a factor of $9 / 2$ larger for $\Delta \Pi^{E M, \tau}$ than for $\Delta \Pi \Rightarrow$ small relevant coefficient values useful
- However, can fit $D>4$ strengths to data via s_{0}-dependence, especially when only one such contribution present

MIXED τ-EM vs. the $w_{(00)} u d-u s$ FESR
$\left|\mathrm{V}_{\mathrm{us}}\right|$ from the EM- τ FESRs

CURRENT RESULTS/OBSERVATIONS

- The $u d-u s \mathrm{~V}+\mathrm{A}$ FESRs:
- Clear s_{0}-stability problem for $w_{(00)}$, CIPT $D=2$; us $V+A$ results \Rightarrow significant OPE component
- Better convergence, stability with FOPT for $w_{(00)}$, $\left|V_{u s}\right|=0.2183(5)_{u d}(22)_{u s}(? ?)_{t h}$ (~ 0.0020 higher c.f. CIPT)
- Best of improved CIPT convergence weights, \widehat{w}_{10}, yields $\left|V_{u s}\right|=0.2182(5)_{u d}(22)_{u s}(? ?)_{t h}$
- OPE uncertainties (s_{0}-instability, $w(y)$-dependence) clearly much larger than $\delta V_{u s} \sim 0.0005$ at present
- Upward B shifts for as-yet-unremeasured us modes could still shift $\left|V_{u s}\right|$ significantly, but N.B. re stability issues
- EM- τ FESR results:
- Good s_{0}-stability, $w(y)$ independence
- For $w_{(00)}, s_{0}=m_{\tau}^{2}$, including variation with weightchoice in theory error (totally dominant)

$$
\left|V_{u s}\right|=0.2214(22)_{u s ; V+A}(5)_{u d ; V, A}(28)_{E M}(6)_{t h}
$$

- Theory errors much better BUT experimental errors much worse c.f. ud-us $\mathrm{V}+\mathrm{A}$ ($\mathrm{EM}-\tau$ spectral integral differences, with independent errors)

FUTURE PROSPECTS/DIRECTIONS

- The $u d-u s \mathrm{~V}+\mathrm{A}$ FESRs:
- Many us B errors already reduced, others still needed
- Ingredients for full remeasurement of actual us spectral distribution in place and work in progress
- Some obvious targets for near term BaBar, Belle attention $\left(K^{-} \pi^{0} \pi^{0}, K 3 \pi, K 4 \pi, \cdots\right)$
- Updates on $u d 2 \pi, 4 \pi \tau$ decay modes desirable
- Better understanding of $D=2$ OPE truncation error needed to significantly reduce theory error
- The flavor-breaking EM- τ FESR:
- us $\mathrm{V}+\mathrm{A}$ error reductions as for $u d-u s$
- us V+A distribution allows $s_{0}<m_{\tau}^{2}$, reduced EM spectral integral error impact
- Much improved s_{0}-stability, $w(y)$-independence compatible with OPE as significant error source for udus $\mathrm{V}+\mathrm{A}$ FESRs
- Need resolution of EM vs $\tau \pi \pi$ and 4π issues
- Significantly reduced $\sigma_{E M}^{I=0}$ errors likely needed to make competitive with other methods

SUPPLEMENTARY PAGES

- Details on the handling of potential $D>6$ OPE contributions
- Rough scale of longitudinal subtraction, $(0+1)$ OPE relative to ud spectral integrals
- Details on the integrated $D=2$ for improved-CIPTconvergence Kambor-Maltman weights
- Impact of 3σ increases of $B\left[K^{-} 2 \pi^{0}\right], B[K 3 \pi]$ on $\left|V_{u s}\right|$ from the us V+A FESR

HIGHER D OPE CONTRIBUTIONS

- rough estimates for $D=6$ condensates, $D>6$ combinations unknown, usually assumed negligible
- $w(y)=\sum_{m} c_{m} y^{m}, y=s / s_{0} \Rightarrow$ integrated $D=2 k+2$ OPE $\propto c_{k} / s_{0}^{k}$ (up to logs) \Rightarrow avoid large $c_{k}, k \geq 2$
- neglect of non-negligible higher D terms $\Rightarrow s_{0}$-instability of output \Rightarrow need to study output as function of s_{0}

RELATIVE SCALES IN THE $u d-u s$ V+A FESR

E.g., ud -us $V+A, s_{0}=m_{\tau}^{2}$ contributions:

- $R_{u d ; V+A}=3.478(16)$
- Longitudinal subtraction $\left[\delta R_{\tau}^{(0)}\right]_{L}=0.1544(37)$
(0.1204 from K, π poles, 0.0340 from continuum)
- $\left[\delta R_{\tau}^{(0+1)}\right]_{O P E}=0.0612(15)$ (Gamiz et al. 2008)
[90% of uncertainty from $m_{s}^{2} D=2$ scale]

CONVERGENCE OF w_{10}, \widehat{w}_{10} and w_{20}-WEIGHTED $D=2$ OPE SERIES FOR VARIOUS $D=2$
PRESCRIPTIONS, $s_{0}=m_{\tau}^{2}$

- First lines: CIPT + Adler function; second lines: CIPT + correlator; third lines: FOPT
- \widehat{w}_{10} :

$$
\begin{aligned}
& \sim[1+0.391+0.278+0.215+(0.167)+\cdots] \\
& \sim[1+0.241+0.185+0.150+(0.109)+\cdots] \\
& \sim[1+0.514+0.432+0.400+(0.411)+\cdots]
\end{aligned}
$$

- w_{10} :

$$
\begin{aligned}
& \sim[1+0.371+0.246+0.173+(0.115)+\cdots] \\
& \sim[1+0.226+0.160+0.114+(0.062)+\cdots] \\
& \sim[1+0.487+0.387+0.332+(0.325)+\cdots]
\end{aligned}
$$

- w_{20} :

$$
\begin{aligned}
& \sim[1+0.412+0.307+0.246+(0.198)+\cdots] \\
& \sim[1+0.255+0.205+0.172+(0.126)+\cdots] \\
& \sim[1+0.558+0.502+0.490+(0.535)+\cdots]
\end{aligned}
$$

Impact of 3σ increases of $B\left[K^{-} 2 \pi^{0}\right], B[K 3 \pi]$ on $\left|V_{u s}\right|$ from the us $\mathrm{V}+\mathrm{A}$ FESR

us $\mathrm{V}+\mathrm{A}$ FESR, $\mathrm{K}^{-} 2 \pi^{0}$, $\mathrm{K} 3 \pi$ up 3σ

