WHAT'S GOING ON WITH V_{us} FROM HADRONIC τ DECAYS?

K. Maltman

Tau 2010, Manchester, September 14, 2010

OUTLINE

- A few basics
- Some technical issues and the current situation
- Results, assessment and the future

THE BASIC APPROACH

• $I_{ij}^w(s_0)$, ij = ud, us: $s \le s_0$, w(s)-weighted integrals over flavor ud, $us \lor + A \tau$ decay distributions; $[\delta J^w(s_0)]_{OPE}$: the OPE representation of

$$\delta J^{w}(s_{0}) \equiv \frac{I^{w}_{ud}(s_{0})}{|V_{ud}|^{2}} - \frac{I^{w}_{us}(s_{0})}{|V_{us}|^{2}}$$

$$\Rightarrow |V_{us}| = \sqrt{I_{us}^{w}(s_0) / \left[\frac{I_{ud}^{w}(s_0)}{|V_{ud}|^2} - [\delta J^{w}(s_0)]_{OPE}\right]}$$

• $[\delta J^w(s_0)]_{OPE}$ typically at the ~ few to several % level of $I^w_{ud}(s_0) \Rightarrow$ accurate $|V_{us}|$ from modest OPE errors [Gamiz et al., JHEP 0301: 060] • V,A ij = ud, us, (J) = (0 + 1), (0) spectral functions from experimental differential decay distributions

$$dR_{V/A;ij}/ds = 12\pi^2 |V_{ij}|^2 S_{EW} \left[w_{(00)}(y_{\tau}) \rho_{V/A;ij}^{(0+1)}(s) + w_L(y_{\tau}) \rho_{V/A;ij}^{(0)}(s) \right] / m_{\tau}^2$$

with
$$R_{V/A;ij} \equiv \frac{\Gamma[\tau \to \nu_{\tau} \text{ hadrons}_{V/A;ij}(\gamma)]}{\Gamma[\tau^- \to \nu_{\tau} e^- \bar{\nu}_e(\gamma)]}, \ y_{\tau} = s/m_{\tau}^2$$

 $w_{(00)}(y) = (1-y)^2(1+2y), \ w_L(y) = -2y(1-y)^2$

• "longitudinal": (0) part of (0+1)/(0) decomposition

• $[\delta J^w(s_0)]_{OPE}$: OPE on RHS of FESR relation $\int_0^{s_0} w(s) \rho(s) ds = -\frac{1}{2\pi i} \oint_{|s|=s_0} w(s) \Pi(s) ds$

valid for $\Pi(s) = \Pi_{ud,us;V/A}^{(0+1)}(s), \ s\Pi_{ud,us;V/A}^{(0)}(s)$

(Data on LHS, OPE on RHS)

• Bad integrated (J) = (0) D = 2 OPE convergence \Rightarrow phenomenological treatment needed. Fortunately

 $-\pi$, K contributions accurately known

- strong continuum suppression ($\propto (m_i \mp m_j)^2$)
- small us continuum contribution from us scalar, PS analyses (constrained by m_s)
- impact on V_{us} small (~ 0.0002 or less)
- \Rightarrow essentially $\Delta \Pi \equiv \Pi_{ud:V+A}^{(0+1)} \Pi_{us;V+A}^{(0+1)}$ FESRs

A PUZZLE: CURRENT RESULTS FOR THE KINEMATIC $w_{(00)}(y)$ WEIGHT CASE

- $s_0 = m_{\tau}^2$, kinematic weight $w_{(00)}(s) \Rightarrow I_{ud,us}^w$ from $B_{ud;TOT}$, $B_{us;TOT}$
- \Rightarrow recent improved us branching fractions sufficient for improved $|V_{us}|$ determination (true for $s_0 = m_{\tau}^2$ AND $w = w_{(00)}$ weight choice only)
- Experimentally more difficult inclusive $dR_{us;V+A}/ds$ distribution required for other w(s) and/or s_0 [expected from BaBar, Belle, but still some time in future]

- The experimental situation:
 - $I_{ud}^w(s_0)$: ~ 0.5% errors for range of w and s_0 [ALEPH 2005 data and covariances]
 - $I_{us}^w(s_0)$: pre-2007 us errors ~ 3 4% [ALEPH99 distribution, rescaled mode-by-mode for exclusive usB changes] ($\Rightarrow \sim 1.5 - 2\%$ on $|V_{us}|$)
 - Recent improved B values for several us exclusive modes [BaBar, Belle] (but not yet full dR_{us}/ds)
 - Current $B_{us;TOT}$ error 2.0% [Lusiani, ICHEP10] \Rightarrow 1% on $|V_{us}|$

- Results of conventional $w_{(00)}(s)$ analysis:
 - CIPT+Adler function/CIPT+correlator D = 2 OPE evaluations used previously in literature, $K_{\mu 2}$ for Kcontribution, yield updated $|V_{us}|$ results

 $0.2166(22)_{exp}(5??)_{th}$ (CIPT + Adler function) $0.2162(22)_{exp}(5??)_{th}$ (CIPT + correlator)

- $|V_{us}|$ nominally 3.6 σ low c.f. 3-family unitarity expectations, $K_{\ell 3}$ and $\Gamma[K_{mu2}]/\Gamma[\pi_{\mu 2}]$
- (More on ?? in nominal theory error later)

WHAT'S GOING ON?

- Problem(s) with the *ud* V+A data?
- Problem(s) with the *us* V+A data? (Especially possible missing higher multiplicity modes at higher *s*?)
- Underestimate of theory uncertainties/unreliable central OPE values?
- None of the above, i.e., new physics?

SOME INVESTIGATIVE TOOLS

- Definite problem(s) if |V_{us}| not independent of both s₀ and w(s)
- Use of polynomial $w(y) = \sum_{m} b_m y^m$, $y = s/s_0$ to test/check higher D OPE contributions ($D = 2k \propto 1/s_0^{k-1}$, "absent" if $b_{k-1} = 0$)
- Alternate D = 2 OPE prescriptions differing only at higher order in α_s than truncation order (CIPT+correlator, CIPT+Adler function, FOPT) should give results compatible within D = 2 truncation error estimate

- "Supplementary" *us* V+A FESRs
 - Remove $ud \lor + A$ data as potential problem source
 - $|V_{us}|$ from FESRs for flavor $us \vee A$ correlator combination:

$$|V_{us}| = \sqrt{\frac{I_{us;V+A}^w(s_0)}{I_{OPE}^w(s_0)}}$$

– us spectral data needed identical to that for $ud\mathchar`ud$

- OPE side of us V+A FESRs
 - * $O(m_s^2 \alpha_s^m)$ D = 2 coefficients almost identical to those of ud - us V+A series
 - * CAUTION: presence of D = 0, $\langle \alpha_s G^2 \rangle D = 4$ OPE contributions \Rightarrow some increase in OPE error
- IF OPE OK, problem due to missing higher s usspectral strength $\Rightarrow |V_{us}|$ must be larger at lower s_0
- $|V_{us}|$ lower at lower $s_0 \Rightarrow$ definite OPE problem (additional us data problem not precluded)

Problems with the ud data?

- τ vs CVC+IB electroproduction expectation discrepancy for $\pi\pi$ [minor for BaBar EM, non-trivial for KLOE, Novosibirsk]
- Similar τ vs EM discrepancy for 4π [still non-trivial, even for preliminary BaBar LP07 4π EM]
- HOWEVER, correlations in PDG global τ branching fractions fit dominantly to "nearby multiplicity" nonstrange modes \Rightarrow impact on $|V_{us}|$ likely small

Problems with the *us* data?

- *B* for some moderately large exclusive modes not yet remeasured by B factories [Table]
- Missing modes above $s \sim 2 \ GeV^2$ ($\delta V_{us} \sim 0.0004$ for each $\delta B \sim 10^{-4}$), e.g., for $w_{(00)}(s)$, $s_0 = m_{\tau}^2$,

$$-B[K^{-}\pi^{0}\pi^{0}\nu_{\tau}] \text{ up } 3\sigma \Rightarrow \delta|V_{us}| = +0.0025$$

- $-B[(K \Im \pi)^{-} \nu_{\tau}] \text{ up } \Im \sigma \Rightarrow \delta |V_{us}| = +0.0030$
- ALEPH99 *K* 4π rough estimate $\Rightarrow \delta |V_{us}| = +0.0013$
- (See later, however, re s_0 stability issues etc.)

PRE-2007 vs Lusiani ICHEP10 $us \ B$ VALUES

Mode	$B_{2006}(\%)$	$\mathcal{B}_{ICHEP10}$ (%)
$K^ [au$ decay]	0.685(23)	0.696(10)
(Alt: $[K_{\mu 2}]$)	(0.715(3))	(0.715(3))
$K^{-}\pi^{0}$	0.454(30)	0.431(15)[††]
$\bar{K}^0\pi^-$	0.878(38)	0.827(18) [††]
$K^{-}\pi^{0}\pi^{0}$	0.058(24)	0.060(22)[**]
$\bar{K}^0 \pi^0 \pi^-$	0.360(40)	0.349(15)[††]
$K^-\pi^-\pi^+$	0.330(50)	0.294(7)[††]
$K^-\eta$	0.027(6)	0.016(2)
$(ar{K}\eta\pi)^-$	0.029(9)	0.0141(19)
$(ar{K}$ 3 $\pi)^-$	0.141(37)	0.165(39)[**]
$K\phi$		$0.0037(1)[\dagger\dagger]$
$(ar{K}4\pi)^-$ (est'd)	0.011(7)	[**]
$(ar{K}5\pi)^-$ (est'd)	0.006	[**]
TOTAL	2.973(86)	2.857(58)
	(3.003(83))	(2.876(58))

OPE Problems?

- Key OPE problem: slow D = 2 (0 + 1) series convergence at the correlator level
- $\Delta \Pi(Q^2) \equiv \Pi_{ud;V+A}^{(0+1)} \Pi_{us;V+A}^{(0+1)}$, $\Delta \rho(s)$: correlator and corresponding spectral function for ud-us V+A FESRs
- D = 2 OPE series, $\overline{m}_s = m_s(Q^2)$, $\overline{a} = \alpha_s(Q^2)/\pi$, \overline{MS} scheme [Baikov, Chetyrkin, Kuhn PRL95:012003]

$$\left[\Delta \Pi(Q^2) \right]_{D=2} = \frac{3}{2\pi^2} \frac{\bar{m}_s}{Q^2} \left[1 + 2.333\bar{a} + 19.933\bar{a}^2 + 208.746\bar{a}^3 + (2378 \pm 200)\bar{a}^4 + \cdots \right]$$

- $a(m_{\tau}^2) \sim 0.1 \Rightarrow very$ slow convergence at spacelike point on $|s| = s_0$, even for maximum $s_0 = m_{\tau}^2$
- (Not surprisingly) integrated D = 2 (0 + 1) series typically also dicey, e.g., behavior to $O(\bar{a}^4)$ of the $w_{(00)}$ CIPT+Adler function (1st line), CIPT+correlator (2nd line), FOPT (3rd line) D = 2 prescriptions is, for $s_0 = m_{\tau}^2$:

 $\sim [1 + 0.286 + 0.103 - 0.039 - (0.197) + \cdots]$ $\sim [1 + 0.151 + 0.017 - 0.120 - (0.293) + \cdots]$ $\sim [1 + 0.405 + 0.257 + 0.154 + (0.081) + \cdots]$

- Options for dealing with the slow D = 2 convergence:
 - Take advantage of improved convergence in CIPT away from spacelike point via choice of weight [Here: w_{20} , \hat{w}_{10} , w_{10} of PRD62 (2000) 093020]
 - FESRs for alternate flavor-breaking correlator combinations with suppressed D = 2 OPE at correlator level [involves combination of EM, τ decay data]
 - s_0 -stability checks to test that actual control of OPE convergence has been achieved

SOME ILLUSTRATIVE RESULTS

- ud V+A spectral integrals, errors from ALEPH 2005 data, covariances
- $us \lor +A$ spectral integrals results using $K_{\mu 2}$ input, modeby-mode rescaled ALEPH 1999 us distribution to handle $w \neq w_{(00)}$, $s_0 \neq m_{\tau}^2$ cases
- Rescaling necessary as updated distributions publicly available only for $K^-\pi^+\pi^-$, $K^-K^+K^-$ [BaBar]
- NOTE: test of rescaling for weighted $K^-\pi^+\pi^-$ integrals (BaBar vs rescaled ALEPH99) shows rescaling very reliable for central values, despite large rescaling

$s_{0}\text{-}\mathsf{STABILITY}$ for the $w_{(00)}$ fesr

 $|V_{us}|$ from the $W_{(00)}$ FESR

s_0 -STABILITY FOR THE w_{10} , \hat{w}_{10} FESRs

CAUTION: VERY slow FOPT convergence for both

DECENT STABILITY, D=2 CONVERGENCE CASES

 $|V_{us}|$ from reasonable stability/convergence ud-us FESRs

THE us V+A FESRs

 $|V_{us}|$ from the us V+A FESRs

Impact of $3\sigma B$ increases for largest us modes not yet remeasured by BaBar or Belle

 $w_{(00)}$ FESR w_{10} , \hat{w}_{10} , w_{20} FESRs

3

THE ALTERNATE EM- τ FESRs

- Slow convergence of the integrated D = 2 OPE series for ΔΠ due to slow convergence at the correlator level (for scales kinematically accessible in τ decay)
- Suggests trying alternate flavor-breaking combinations with suppressed D = 2 OPE contributions, e.g.,

 $\Delta \Pi^{EM,\tau} \equiv 9\Pi_{EM} - \left[5\Pi_{ud;V} - \Pi_{ud;A} + \Pi_{us;V+A} \right]$

(same normalization for $us \vee +A$ as in $\Delta \Pi$)

• D = 2 suppression choice also suppresses D = 4

-D=2

$$\begin{split} \left[\Delta \Pi(Q^2) \right]_{D=2} &= \frac{3}{2\pi^2} \frac{\bar{m}_s}{Q^2} \left[1 + \frac{7}{3} \bar{a} + 19.933 \bar{a}^2 \right. \\ &\quad + 208.75 \bar{a}^3 + \cdots \right] \\ \left[\Delta \Pi^{EM,\tau}(Q^2) \right]_{D=2} &= \frac{3}{2\pi^2} \frac{\bar{m}_s}{Q^2} \left[0 + \frac{1}{3} \bar{a} + 4.3839 \bar{a}^2 \right. \\ &\quad + 44.943 \bar{a}^3 + \cdots \right] \end{split}$$

-D = 4

$$\begin{bmatrix} \Delta \Pi(Q^2) \end{bmatrix}_{D=4} = \frac{\langle m_s \bar{s}s \rangle - \langle m_\ell \bar{\ell}\ell \rangle}{Q^4} \begin{bmatrix} -2 - 2\bar{a} - \frac{26}{3}\bar{a}^2 \end{bmatrix}$$
$$\begin{bmatrix} \Delta \Pi^{EM,\tau}(Q^2) \end{bmatrix}_{D=4} = \frac{\langle m_s \bar{s}s \rangle - \langle m_\ell \bar{\ell}\ell \rangle}{Q^4} \begin{bmatrix} 0 + \frac{8}{3}\bar{a} + \frac{59}{3}\bar{a}^2 \end{bmatrix}$$

• FESRs based on $\Delta \Pi^{EM,\tau} \Rightarrow$ (suppressing s_0 -dependence of the OPE and spectral integrals)

$$|V_{us}| = \sqrt{\frac{I_{us;V+A}^{w}}{\frac{3}{2}I_{EM,I=0}^{w} - \frac{1}{2}I_{ud;V}^{w} + I_{ud;A}^{w} - I_{OPE}^{w}}}$$

(with $I_{EM,I=0}^{w}$ normalized as for a charged current correlator)

• Strong suppression of D = 2,4 contributions $\Rightarrow w(y)$ usable even without improved D = 2 convergence, hence e.g. $w_N(y) = 1 - \frac{N}{N-1}y + \frac{1}{N-1}y^N$

- Advantages of w_N FESR choice:
 - single integrated D > 4 contribution (D = 2N + 2)(up to $O(\alpha_s^2)$ corrections)
 - D = 2N + 2 suppressed by relevant w_N coefficient, 1/(N-1)
 - $1/s_0^N$ dependence provides handle on integrated D = 2N + 2 contributions
- NOTE: D > 4 typically NOT suppressed at correlator level: E.g. in VSA, D = 6 a factor of 9/2 larger for $\Delta \Pi^{EM,\tau}$ than for $\Delta \Pi \Rightarrow$ small relevant coefficient values useful
- However, can fit D > 4 strengths to data via s_0 -dependence, especially when only one such contribution present

MIXED τ -EM vs. the $w_{(00)}$ ud - us FESR

CURRENT RESULTS/OBSERVATIONS

- The ud us V+A FESRs:
 - Clear s_0 -stability problem for $w_{(00)}$, CIPT D = 2; usV+A results \Rightarrow significant OPE component
 - Better convergence, stability with FOPT for $w_{(00)}$, $|V_{us}| = 0.2183(5)_{ud}(22)_{us}(??)_{th}$

 $(\sim 0.0020 \text{ higher c.f. CIPT})$

- Best of improved CIPT convergence weights, \hat{w}_{10} , yields $|V_{us}| = 0.2182(5)_{ud}(22)_{us}(??)_{th}$
- OPE uncertainties (s_0 -instability, w(y)-dependence) clearly much larger than $\delta V_{us} \sim 0.0005$ at present

- Upward B shifts for as-yet-unremeasured us modes could still shift $|V_{us}|$ significantly, but N.B. re stability issues
- EM- τ FESR results:
 - Good s_0 -stability, w(y) independence
 - For $w_{(00)}$, $s_0 = m_\tau^2$, including variation with weightchoice in theory error (totally dominant)

 $|V_{us}| = 0.2214(22)_{us;V+A}(5)_{ud;V,A}(28)_{EM}(6)_{th}$

- Theory errors much better BUT experimental errors much worse c.f. ud-us V+A (EM- τ spectral integral differences, with independent errors)

FUTURE PROSPECTS/DIRECTIONS

- The ud us V+A FESRs:
 - Many us B errors already reduced, others still needed
 - Ingredients for full remeasurement of actual us spectral distribution in place and work in progress
 - Some obvious targets for near term BaBar, Belle attention $(K^{-}\pi^{0}\pi^{0}, K3\pi, K4\pi, \cdots)$
 - Updates on $ud \ 2\pi$, $4\pi \ \tau$ decay modes desirable
 - Better understanding of D = 2 OPE truncation error needed to significantly reduce theory error

- The flavor-breaking EM- τ FESR:
 - us V+A error reductions as for ud us
 - $us \vee A$ distribution allows $s_0 < m_{\tau}^2$, reduced EM spectral integral error impact
 - Much improved s_0 -stability, w(y)-independence compatible with OPE as significant error source for udus V+A FESRs
 - Need resolution of EM vs τ $\pi\pi$ and 4π issues
 - Significantly reduced $\sigma_{EM}^{I=0}$ errors likely needed to make competitive with other methods

SUPPLEMENTARY PAGES

- Details on the handling of potential D > 6 OPE contributions
- Rough scale of longitudinal subtraction, (0 + 1) OPE relative to ud spectral integrals
- Details on the integrated D = 2 for improved-CIPTconvergence Kambor-Maltman weights
- Impact of 3σ increases of $B[K^-2\pi^0]$, $B[K3\pi]$ on $|V_{us}|$ from the $us \vee + A \; FESR$

HIGHER D OPE CONTRIBUTIONS

- rough estimates for D = 6 condensates, D > 6 combinations unknown, usually assumed negligible
- $w(y) = \sum_{m} c_{m} y^{m}$, $y = s/s_{0} \Rightarrow$ integrated D = 2k + 2OPE $\propto c_{k}/s_{0}^{k}$ (up to logs) \Rightarrow avoid large c_{k} , $k \ge 2$
- neglect of non-negligible higher D terms $\Rightarrow s_0$ -instability of output \Rightarrow need to study output as function of s_0

RELATIVE SCALES IN THE ud - us V+A FESR

E.g., ud - us V + A, $s_0 = m_{\tau}^2$ contributions:

•
$$R_{ud;V+A} = 3.478(16)$$

• Longitudinal subtraction $\left[\delta R_{\tau}^{(0)}\right]_{L} = 0.1544(37)$ (0.1204 from K, π poles, 0.0340 from continuum)

•
$$\left[\delta R_{\tau}^{(0+1)}\right]_{OPE} = 0.0612(15)$$
 (Gamiz et al. 2008)

[90% of uncertainty from $m_s^2 D = 2$ scale]

CONVERGENCE OF w_{10} , \hat{w}_{10} and w_{20} -WEIGHTED D = 2 OPE SERIES FOR VARIOUS D = 2PRESCRIPTIONS, $s_0 = m_{\tau}^2$

 First lines: CIPT + Adler function; second lines: CIPT + correlator; third lines: FOPT

• \hat{w}_{10} :

 $\sim [1 + 0.391 + 0.278 + 0.215 + (0.167) + \cdots]$ $\sim [1 + 0.241 + 0.185 + 0.150 + (0.109) + \cdots]$ $\sim [1 + 0.514 + 0.432 + 0.400 + (0.411) + \cdots]$ • w₁₀:

 $\sim [1 + 0.371 + 0.246 + 0.173 + (0.115) + \cdots]$ $\sim [1 + 0.226 + 0.160 + 0.114 + (0.062) + \cdots]$ $\sim [1 + 0.487 + 0.387 + 0.332 + (0.325) + \cdots]$

• w₂₀:

 $\sim [1 + 0.412 + 0.307 + 0.246 + (0.198) + \cdots]$ $\sim [1 + 0.255 + 0.205 + 0.172 + (0.126) + \cdots]$ $\sim [1 + 0.558 + 0.502 + 0.490 + (0.535) + \cdots]$

Impact of 3σ increases of $B[K^-2\pi^0]$, $B[K3\pi]$ on $|V_{us}|$ from the $us \vee + A FESR$

