Study of the hadronic three-prong decays of the tau lepton in the Belle experiment

> MyeongJae Lee (Seoul National University, Korea)

TAU 2010, Sep. 14, 2010.

Three-prong decays of tau lepton

In this study, we consider the three-prong decays with no neutral particles.

 $\Box \quad \tau \to \pi \pi \pi \nu_{\tau} \ (a_1 \to \rho \pi), \ \tau \to K \pi \pi \nu_{\tau} \ (K_1 \to K^* \pi, K_1 \to K \rho),$ $\tau \to K K \pi \nu_{\tau}, \ \tau \to K K K \nu_{\tau}$

- BF have been measured with large error
- Precise measurements showed large scatter of BF
- Unfolded mass spectra have not been measured
- A preliminary result had been shown at TAU08, now we update BF result with considering unfolded mass

spectra.

Hadronic three-prong decays

Importance : To measure the spectral function, Vus, Leptonic CP violation, Wess-Zumino anomaly...

- Status before this work
 - □ Precise measurement (BaBar,2008) showed large deviation from previous world averages.
 - No study on the mass spectrum
- Difficulty : Estimation of cross-feeding background
 - Main Background of $\tau \rightarrow K\pi\pi\nu$ is $\tau \rightarrow \pi\pi^+\pi^-\nu_{\tau}$
 - 4 modes are correlated and should be studied simultaneously.
 - Kaon identification is the most important in this analysis
 - We use **unfolding** to estimate cross-feed BG.

Main backgrounds	Discrimination	Background estimation
Bhabha, dimuon ($e^+e^- \rightarrow e^+e^-, \mu^+\mu^-$)	Reconstructed total energy, momentum, multiplicity	Estimated from MC
Continuum ($e^+e^- \rightarrow qq, q=uds$)	Event topology, thrust, invariant mass, multiplicity	
Two-photon	Small transverse momentum, Missing mass/momentum reconstruction	
Beam background	Quality of decay vertex	
Other tau decays	Ks, pi0, gamma veto	
Cross-feed		Unfolding

Event selection for $\tau^- \rightarrow h^- h^+ h^- v$

- 1. Tau candidate selection
 - Number of charged track = 4 and sum of charge = 0, with proper Calorimeter energy, vertex, and transverse momentum requirement
- 2. Background suppression
 - Require missing momentum should be properly reconstructed, to suppress 2-γ and q-qbar background
 - Tight likelihood ratio cut for Kaon ID
 - Select a event with one e or μ , and three K or π
 - Event shape : thrust, 3-1 prong topology
 - Invariant mass cut : require tau mass range
- 3. Final event selection
 - No Ks, π^0 , energetic gamma candidate

KID is the most important : FOM study result a tight cut for kaon (L(K)/(L(K)+L(π))>0.9)

Result of event selection, other BG estimation

Mode	N(rec)	N(others)	Main component in N(others)
τ→πππν	8.86×10^{6}	$9.35 \times 10^{5}(10.6\%)$	τ→ππππ ⁰ ν (64.2%)
τ→Κππν	7.94×10^{5}	9.60×10 ⁴ (12.1%)	τ→ππππ ⁰ ν (34.3%)
 τ→ΚΚπν	1.08×10^{5}	7.16×10 ³ (6.66%)	ee→qq (30.3%)
τ→ΚΚΚν	3.16×10^{3}	$1.71 \times 10^{2}(5.41\%)$	ee→qq (53.0%)

Branching ratio calculation

$$N_i^{true} = \varepsilon^{-1}_{ij} (N_j^{rec} - N_j^{Others})$$

 N_i^{true} : Number of true signal events for *i*-th mode

 N_i^{rec} : Number of reconstructed events for *i*-th mode

 N_i^{Others} : Number of estimated background for *i*-th mode from non-three-prong decay

E : efficiency migration matrix

The efficiency is tuned by using the unfolded mass spectra :

1. Estimate the efficiency with MC

2. Scale the efficiency distribution over invariant mass using the unfolded spectra

3. By summing normalizing, re-estimate the efficiency matrix

Efficiency migration matrix $\boldsymbol{\epsilon}$ & the differences after tuning

rec true	τ→πππν	τ→Κππν	τ→ΚΚπν	τ→KKKv	
τ→πππν	0.22 (-0.1%)	0.079 (-0.1%)	0.002 (-1.1%)	6.4×10 ⁻² (+2.6%)	
τ→Κππν	0.012 (-0.2%)	0.18 (-0.5%)	0.047 (+1.4%)	0.019 (-3.1%)	
τ→ΚΚπν	3.9×10 ⁻⁴ (+0.3%)	4.7×10 ⁻³ (-4.4%)	0.12 (-1.0%)	0.051 (-0.4%)	
$\tau \rightarrow KKKv$	5.0×10 ⁻⁶ (+4.5%)	1.3×10 ⁻⁴ (-9.1%)	2.3×10 ⁻³ (-14.0%)	0.081 (+1.2%)	

Effect of mass dependence of efficiency and the discrepancies btw unfolded and MC distribution Efficiency : 10 ~ 20%, Fake rate from $\pi\pi\pi$ to $K\pi\pi$ is sufficiently small

Systematic uncertainties and Normalization

Source	πππ	Κππ	ΚΚπ	KKK	Method
Tracking eff.	+2.2/-2.0	+2.1/-2.0	+2.1/-2.0	+2.1/-1.9	$D^* \rightarrow \pi D^0, D^0 \rightarrow \pi \pi K_S, K_S \rightarrow \pi^+ \pi^-$
Particle ID	±1.9	+4.0/-4.1	±2.3	+5.4/-5.6	$\gamma\gamma \rightarrow ee/\mu\mu$, $D^{*+} \rightarrow D^0\pi_s^{+}(D^0 \rightarrow K^-\pi^+)$ Apply the eff. change and obtain BF
Mass spectrum	±0.1	±0.1	±0.1	+0.5/-0.8	Apply 1σ variations of unfolded mass spectrum to obtain new eff. Matrix
Trigger	± 0.5	± 0.5	± 0.6	± 0.6	Trigger simulation
γ veto	±0.9	±1.5	±1.7	± 0.5	Different cut for γ energy
K _s veto	± 0.2	± 0.2	±0.1	±0.3	Remove K _s veto condition
BG estimation	±0.3	±1.3	±0.3	± 0.4	Varying BFs of other τ decay BG modes
Leptonic τ decay	± 0.2	± 0.2	±0.2	± 0.2	Err. of BF($\tau \rightarrow e/\mu\nu\nu$)
Tot. [%]	+3.1/-3.0	± 5.0	±3.6	+5.9/-6.0	

Result on branching ratio

	Branching ratio		
$\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$	$(8.42 \pm 0.00(\text{st.})^{+0.26}_{-0.25}(\text{sy.})) \times 10^{-2}$		
$\tau \rightarrow K^{-}\pi^{+}\pi^{-}\nu_{\tau}$	$(3.30 \pm 0.01 (\text{st.})^{+0.16}_{-0.17} (\text{sy.})) \times 10^{-3}$		
$\tau \rightarrow K^{-}K^{+}\pi^{-}\nu_{\tau}$	$(1.55 \pm 0.01(\text{st.})^{+0.06}_{-0.05}(\text{sy.})) \times 10^{-3}$		
$\tau \rightarrow K^- K^+ K^- \nu_{\tau}$	$(3.29 \pm 0.17(\text{st.})^{+0.19}_{-0.20}(\text{sy.})) \times 10^{-5}$		

Published at PRD 81,113007 (2010)

Correlation coefficient

	$\tau \rightarrow K^- \pi^+ \pi^- \nu_{\tau}$	$\tau^- \rightarrow K^- K^+ \pi^- \nu_{\tau}$	$\tau^- \rightarrow K^- K^+ K^- \nu_{\tau}$
$\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$	+0.175	+0.049	-0.053
$\tau^- \rightarrow K^- \pi^+ \pi^- \nu_{\tau}$		+0.080	+0.035
$\tau^- \rightarrow K^- K^+ \pi^- \nu_{\tau}$			-0.008

Strong correlation between

 $\tau^- {\rightarrow} \pi^- \pi^+ \pi^- \nu_\tau$ and $\tau^- {\rightarrow} K^- \pi^+ \pi^- \nu_\tau$

Unfolding to measure the mass spectrum

In general, unfolding is a "inverse problem" :

 $\hat{A}x = b$

- x : real (unfolded) distribution (so, cross-feed background subtracted)
- b: distribution before unfolding (including (only) cross-feed background. Other backgrounds are estimated/subtracted using MC)
- A : detector response matrix (expansion of efficiency matrix(4x4))

 $\hat{A} = \frac{\text{Number of event reconstructed at i - th bin and generated at j - th bin}}{\text{Number of event generated at j - th bin}}$

(Bin : decay mode and binning on invariant mass)

4 modes are combined and the response matrix includes the modemigration effects

→ Cross-feeding BG from mis-PID can be subtracted after unfolding

- Algorithm : Developed in ALEPH
 - Singular Value Decomposition, Tikhonov-type regularization

Response matrix (A)/mass spectrum before unfolding

Result of Unfolding (x) and check

Many other tests on the unfolding algorithm with different samples
: Max. ~1% discrepancies between the generated and unfolded distributions.

Systematic errors of unfolded mass spectra

Source	πππ	Κππ	ΚΚπ	KKK	Method
Unfolding (1)	0.5	0.1	0.4	0.6	Unfolding an independent signal MC sample
Unfolding (2)	0.1	1.5	0.9	4.0	Varying the effective rank of unfolding
Kaon ID	0.4	0.8	1.1	0.9	KID eff. variation from D* sample, Varying Response matrix.
BG estimation	0.2	0.5	0.3	1.1	Varying BF of other BG component
γ veto	0.4	0.4	0.9	3.2	Different cut for γ energy
Momentum scale	0.0	0.2	0.3	3.1	$\phi \rightarrow K^+K^-, D^+ \rightarrow K^-\pi^+\pi^+$ recon. for mom. scale Assign 0.01% variation of recon. mass spectrum
Tot. sys.	0.7	1.9	1.7	6.2	
Stat.	0.2	0.8	0.8	4.6	
Tot. [%]	0.8	2.0	1.9	7.7	
(*) Error at the peak of mass spectrum Correlation $= cov(i i)/\sqrt{[cov(i i)]} cov(i i)]$					
		• • • (1	J/ L	(-,-) • •	Bin numbers of M _{inv}

Result : Contributions to spectral function

$$v_1^{\rm S}(s)/a_1^{\rm S}(s) = \frac{m_\tau^2}{6|V_{\rm us}|^2 S_{\rm ew}} \left(1 - \frac{s}{m_\tau^2}\right)^{-2} \left(1 + \frac{2s}{m_\tau^2}\right)^{-1} \frac{B(\tau \to (V/A)^{(S=-1,J=1)}\nu_\tau)}{B(\tau \to e^-\bar\nu_e\nu_\tau)} \frac{1}{N_{\rm V/A}} \frac{\mathrm{d}N_{\rm V/A}}{\mathrm{d}s}$$

The spectral function can be improved significantly.

Result : Mass spectrum of $\tau \rightarrow KK\pi v$ decay

Theoretical work on the decay dynamics is still necessary.

Summary and Conclusion

• We measured the branching ratio and mass spectra of $\tau \rightarrow \pi \pi \pi \nu$, $\tau \rightarrow K \pi \pi \nu$, $\tau \rightarrow K K \pi \nu$, $\tau \rightarrow K K K \nu$ decays, using 666.2fb⁻¹ data collected at **Belle** experiment.

We also measured the mass spectra of three-prong decays of τ .

- A special unfolding techniques to remove any dependence to the MC model and to subtract the dominant cross-feed backgrounds.
- Comparable accuracies with large statistics BF measurements
- Large differences with MC (current theoretical) predictions on the mass spectra
- First measurements on the mass spectra with large statistics.

Backup slides

Comparison of M_{INV} distribution of $\tau^- \rightarrow h^- h^+ h^- v_{\tau}$ for data and MC background

Test of unfolding

- Testing of unfolding is important since we used some new techniques in constructing the b and A.
- Tikhonov regularization check with $\rho(770)$ MC sample
- Tikhonov regularization check with $\tau \rightarrow$ hhhv MC sample
- Tikhonov regularization check with L-curve analysis
- Truncated SVD (TSVD) method check
- Conjugated Gradient Least Square (CGLS) method
- Unfolding of ToyMC samples to measure the correction factor
- All test results maximum ~1% discrepancies between the generated distribution and unfolded distribution.

Regularization

- Direct inversion of matrix A (although Singular value decomposition is used) is know to generate fast-fluctuating solution. So we need special regularization techniques.
- Most well known regularization method is "Tikhonov regularization"

$$\min\{||Ax - b||_{2}^{2} + \lambda^{2}||Lx||_{2}^{2}\}$$

(A.Hoecker and V.Karvelishvili, NIMA 372 (1996))

- Very popular method in HEP
- \Box λ : regularization parameter
- L : a-priori information on the curvature of the solution
- Also, the initial distribution (x^{init}) is required to rescale the histogram.
 Signal MC samples are used.
- This method also involves the inversion of any matrix, and Singular value decomposition (SVD) is used.

Tikhonov regularization test with $\tau \rightarrow hhh\nu MC$ sample

- Deferent (independent) MC sample which is enriched by the signal $modes(\tau \rightarrow hhhv)$ are generated as a test data.
- This test data were unfolded using the same algorithm.
 - The same process with unfolding the real data, but input was MC
 - Used statistically independent MC set to construct response matrix

Truncated SVD method

 When solving reverse problem Ax=b, response matrix A can be inverted using SVD (Singular value decomposition)

$$A = U\Sigma V^T \quad x_i = A_{ij}^{-1} b_j = \sum_j \sum_k^{rank(A)} \frac{V_{ik} U_{kj}^T}{\sigma_k} b_j$$

• TSVD : rank(A) can be truncated to "effective rank (A) = λ ", to suppress fluctuating solution

Efficiency dependence on $M(K\pi\pi)$

• To check any dependence of efficiency to decay model, phase space decay of signal mode is simulated.

