Determination of $\alpha_s(M_{\tau}^2)$ **: a conformal mapping approach**

Irinel Caprini

Department of Theoretical Physics, NIPNE, Bucharest, Romania

- in collaboration with Jan Fischer (Prague) -

11th International Workshop on au Lepton Physics, September 14, 2010

Outline

Status of α_s determination

 α_s from τ decays: basic formulas and open problems

Divergent series, analyticity, conformal mappings

- New expansions in perturbative QCD
- Determination of $\alpha_s(M_{\tau}^2)$

Status of $\alpha_{\rm s}$ determination

Summary of α_s measurements

S. Bethke, EPJC 2009

World average 2009: $\alpha_s(M_7^2) = 0.1184 \pm 0.0007$

Determination of $\alpha_{\rm s}$ from τ decays

$$\mathsf{R}_{\tau} = \frac{\Gamma[\tau \rightarrow \mathsf{hadrons} + \nu_{\tau}]}{\Gamma[\tau \rightarrow \mu + \bar{\nu}_{\mu} + \nu_{\tau}]} = 3.640 \pm 0.010$$

Basic formulae

theoretical expression

$$\begin{split} \mathsf{R}_{\tau} &= 12\pi \int_{4\mathsf{M}_{\tau}^2}^{\mathsf{M}_{\tau}^2} \frac{\mathsf{d}\mathsf{s}}{\mathsf{M}_{\tau}^2} \left(1 - \frac{\mathsf{s}}{\mathsf{M}_{\tau}^2}\right)^2 \left(1 + 2\frac{\mathsf{s}}{\mathsf{M}_{\tau}^2}\right) \mathsf{Im}\,\mathsf{\Pi}(\mathsf{s}) \,\sim 1 + \delta^{(0)} \end{split}$$

- causality and unitarity: $\Pi(s)$ real analytic in the s-plane cut for $s > 4M_{\pi}^2$
- Solution
 Cauchy theorem: \Rightarrow

$$\delta^{(0)} = \frac{1}{2\pi \mathsf{i}} \oint_{|\mathbf{s}| = \mathsf{M}_{\tau}^2} \frac{\mathsf{ds}}{\mathsf{s}} \,\omega(\mathbf{s}) \,\widehat{\mathsf{D}}(\mathbf{s})$$

•
$$\omega(\mathbf{s}) = 1 - 2\mathbf{s}/\mathsf{M}_{\tau}^2 + 2(\mathbf{s}/\mathsf{M}_{\tau}^2)^3 - (\mathbf{s}/\mathsf{M}_{\tau}^2)^4$$

•
$$\widehat{\mathsf{D}}(\mathsf{s}) = -\operatorname{s} \frac{\mathsf{d}}{\mathsf{d}\mathsf{s}} \left[\mathsf{\Pi}(\mathsf{s}) \right] - 1$$
 Adler function

Basic formulae

• $\alpha_{s}(M_{\tau}^{2})$ determined from the equation

• $\delta_{\text{theor}}^{(0)}$ calculated from the perturbation expansion

$$\widehat{\mathsf{D}}(\mathsf{s}) = \sum_{\mathsf{n} \ge 1} [\mathsf{K}_{\mathsf{n}} + \kappa_{\mathsf{n}}(\mathsf{s}/\mu^{2})] (\mathsf{a}_{\mathsf{s}}(\mu^{2}))^{\mathsf{n}}, \qquad \mathsf{a}_{\mathsf{s}} = \frac{\alpha_{\mathsf{s}}}{\pi}$$

$$\kappa_{n}(s/\mu^{2}) = \sum_{k=1}^{n} \gamma_{kn} \ln^{k}(-s/\mu^{2})$$

 $\bullet \ \ K_1=1, \ K_2=1.64, \ K_3=6.37, \ K_4=49.08, \ K_5\sim 283$

 ${\scriptstyle \bullet } ~~ \gamma_{kn} :$ calculated in terms of K_n and the coefficients of the β function

Theoretical problems

- validity of the OPE near the timelike axis
- nonperturbative contributions (condensates)
- ambiguity of the perturbative expansion
 - choice of μ^2 (CIPT versus FOPT)
 - alternative expansions from various motivations
- present work: include theoretical knowledge about the high order behaviour of the series and the singularities at $\alpha_s = 0$

Perturbation theory: high-order behaviour

from particular classes of Feynman diagrams
K_n \sim n!

 \Rightarrow the renormalized perturbation series is divergent

- from independent arguments it is known that D, regarded as a function of α_s , is singular at $\alpha_s = 0$, at least along the whole negative real semiaxis of the α_s plane
 't Hooft 1979
 - for QED these facts are known since 1952, but do not affect the precision since α is small Dyson 1952
 - for a large coupling like $\alpha_s(\mathsf{M}^2_{ au})$ these facts do matter

- the expanded function is badly singular at the expansion point, while the powers of α_s are all holomorphic, without any singularities
- It would be more reasonable to expand \widehat{D} in some special set of functions $W_n(\alpha_s)$, which resemble as much as possible the expanded Adler function in the following aspects:
 - (1) the location of singularities in the complex plane, and(2) the nature of the singularities
- the problem (1) can be solved rigorously in the Borel u-plane for the Borel transform B(u)

Borel transform of the Adler function

$$b_n = \frac{K_{n+1}}{\beta_0^n n!}$$
, $n \ge 0$, $\Rightarrow B(u) = \sum_{n=0}^{\infty} b_n u^n$ converges in a disk

B(u) has singularities on the real axis for $u \leq -1$ and $u \geq 2$ (UV and IR renormalons)

 \widehat{D} recovered by the prescription: $\widehat{D}(s) = \frac{1}{\beta_0} PV \int_{0}^{\infty} e^{-u/(\beta_0 a_s(s))} B(u) du$

reproduces the standard expansion in powers of a_s

• consistent with general properties of $\widehat{D}(s)$ IC & Neubert, JHEP 1999

"Series acceleration" in the Borel plane

$${\color{black} {\bullet}} \ B(u) = \sum\limits_{n=0}^{\infty} b_n u^n$$
 converges only in the disk $|u| < 1$

range in Laplace integral extends beyond the convergence radius

- $\ensuremath{{\scriptstyle \bullet}}$ Look for a new expansion $\ B(u) = \sum\limits_{n=0}^\infty c_n(w(u))^n$ that:
 - converges in a larger domain
 - has a better convergence at every point

Conformal mappings

Lemma (Ciulli & Fischer, NP1961): Let D_1 and D_2 two domains in the u-plane, with D_2 included in D_1 . Consider the conformal mappings

$$\begin{split} &z_1 = \tilde{z}_1(u) : D_1 \to D = \{z_1 : |z_1| < 1\} \\ &z_2 = \tilde{z}_2(u) : D_2 \to D = \{z_2 : |z_2| < 1\} \\ &\text{such that } z_1(0) = 0 \text{ and } z_2(0) = 0. \end{split}$$

$$\begin{aligned} &\text{Then } |z_1(u)| < |z_2(u)| \text{ for all } u \in D_2. \end{aligned}$$

Proof: based on Schwarz Lemma

Schwarz Lemma: Let $D = \{z : |z| < 1\}$ be the open disk in the complex plane, centered at the origin, and $f : D \rightarrow D$ a holomorphic map such that f(0) = 0. Then $|f(z)| \leq |z|$ for all $z \in D$. Moreover, if |f(z)| = |z| at some $z \neq 0$, then $f(z) = e^{i\phi}z$.

Conformal mappings and series convergence

Theorem (Ciulli & Fischer, NP1961): Let B(u) holomorphic in D_1 and the expansions $B(u) = \sum\limits_{0}^{\infty} c_{n,1} (\tilde{z}_1(u))^n$ and $B(u) = \sum\limits_{0}^{\infty} c_{n,2} (\tilde{z}_2(u))^n$ convergent in the unit disks $|z_1| < 1$ and $|z_2| < 1$, respectively. Then the first series has a better asymptotic convergence rate than the second.

Proof: We must estimate the ratio $\mathcal{R}_n = \frac{|c_{n,1}(\tilde{z}_1(u))^n|}{|c_{n,2}(\tilde{z}_2(u))^n|}$ at large n.

$$\begin{split} & \lim_{n \to \infty} (c_{n,j})^{1/n} = 1 \ \Rightarrow |c_{n,j}| \sim e^{g_j(n)} \text{ where } g_j(n)/n \to 0 \text{ for } n \to \infty. \\ & \hline \mathcal{R}_n \sim e^{g(n)} \cdot \rho^n \end{split} \text{ where } g(n) = g_1(n) - g_2(n), \ \rho = |z_1(u)/z_2(u)| \end{split}$$

• g(n)/n
ightarrow 0 and ho < 1 cf. Lemma

 $\Rightarrow \ln \mathcal{R}_n \sim n[g(n)/n + \ln \rho]$ is negative for n large.

 \Rightarrow $|\mathcal{R}_{\mathsf{n}} < 1$ for large n

Consequences

the "optimal" variable maps the whole holomorphy domain onto the unit disk

- converges in the whole u-plane up to the cuts
- best asymptotic convergence rate for interior points

"Singularity softening"

- near the first branch-points $B(u) \sim (1+u)^{-\gamma_1}, \ B(u) \sim (1-u/2)^{-\gamma_2}, \text{ where } \gamma_1 > 0 \text{ and}$ $\gamma_2 > 0 \text{ are known from RGE} \quad \text{Mueller 1985, Beneke et al 1997}$
- Ithe convergence of the expansion can be improved by "softening" the singularities with suitable factors
 Soper, Surguladze 1996
- unlike the optimal conformal mapping, "singularity softening" is not unique
- suitable choice:

IC & Fischer, EPJC 2009

$$(1 - w)^{2\gamma_1}(1 + w)^{2\gamma_2}\mathsf{B}(\tilde{\mathsf{u}}(w)) = \sum_n \mathsf{c}_n w^n$$

 $\tilde{u}(w) = \frac{8w}{3-2w+3w^2}$ the inverse of $w = \tilde{w}(u)$

New perturbation expansion

CIPT version

$$\begin{split} \widehat{D}(s) &= \sum_{n} \widetilde{c}_{n}(s) \widetilde{\mathcal{W}}_{n} \\ \widetilde{\mathcal{W}}_{n} &= \frac{1}{\beta_{0}} PV \int_{0}^{\infty} e^{-u/(\beta_{0}a_{s}(M_{\tau}^{2}))} \frac{w^{n}}{(1+w)^{2\gamma_{1}}(1-w)^{2\gamma_{2}}} du \end{split}$$

IC & Fischer, EPJC 2009

Properties of the new expansion

- when reexpanded in powers of α_s , it reproduces the coefficients K_n known from Feynman diagrams
- Ithe functions \mathcal{W}_n are singular at $\alpha_s = 0$ and their expansion in powers of the coupling are divergent
- under certain conditions, the expansion

$$\widehat{\mathsf{D}}(s) = \sum\limits_{n} c_{n} \mathcal{W}_{n}(s)$$

is convergent in a domain of the complex plane

IC & Fischer, PRD 2000, EPJC 2002

Other conformal mappings

- after "softening" the first singularities are milder (ex: $(1 u/2)^{\gamma_2}$ with $\gamma_2 > 0$ is a branch point, but is finite at u=2)
- the effect of a mild singularity is expected to appear only at larger orders in an expansion
- at low orders we can use other conformal mappings, which account only for the next singularities in the u-plane
- define the mappings:

$$\tilde{w}_{jk}(u) = \frac{\sqrt{1+u/j} - \sqrt{1-u/k}}{\sqrt{1+u/j} + \sqrt{1-u/k}}, \qquad j \geq 1, \quad k \geq 2$$

 \tilde{w}_{jk} maps the u-plane cut for u < -j and u > k onto $|w_{jk}| < 1$

Examples

 $\tilde{w}_{23}(u)$

New expansions (CIPT version)

$$\widehat{\mathsf{D}}(s) = \sum\limits_{n} c_{n}^{jk} \, \mathcal{W}_{n}^{jk}(s)$$

•
$$S_{jk}(u) = \left(1 - \frac{\tilde{w}_{jk}(u)}{\tilde{w}_{jk}(-1)}\right)^{\gamma'_1} \left(1 - \frac{\tilde{w}_{jk}(u)}{\tilde{w}_{jk}(2)}\right)^{\gamma'_2}$$

• $\gamma'_1 = \{2\gamma_1 \text{ for } j = 1; \gamma_1 \text{ for } j \neq 1\}$

•
$$\gamma'_2 = \{2\gamma_2 \text{ for } k = 2; \gamma_2 \text{ for } k \neq 2\}$$

Tests on "physical" models

$$\begin{aligned} \widehat{D}(a_s) &= \frac{1}{\beta_0} \, PV \, \int_0^\infty e^{-u/(\beta_0 a_s(s))} \, B(u) \, du \\ \bullet & B(u) \,= \, B_1^{\rm UV}(u) + B_2^{\rm IR}(u) + B_3^{\rm IR}(u) + d_0^{\rm PO} + d_1^{\rm PO} u \\ & B_p^{\rm IR}(u) \,= \, \frac{d_p^{\rm IR}}{(p-u)^{1+\tilde{\gamma}}} \left[\, 1 + \tilde{b}_1(p-u) + \tilde{b}_2(p-u)^2 + \dots \, \right] \\ & B_p^{\rm UV}(u) \,= \, \frac{d_p^{\rm UV}}{(p+u)^{1+\tilde{\gamma}}} \left[\, 1 + \bar{b}_1(p+u) + \bar{b}_2(p+u)^2 \, \right] \end{aligned}$$

The free parameters (d_1^{\rm UV}, d_2^{\rm IR}, d_2^{\rm IR}, d_0^{\rm PO}, d_1^{\rm PO}) are fixed by reproducing the known values of $K_n,~n\leq 5$

$$\Rightarrow$$
 d₁^{UV} = -0.015, d₂^{IR} = 3.13 Beneke & Jamin, 2008

Beneke & Jamin model; Laplace integral for a=0.25

Exact value: $\frac{1}{a} PV \int_0^\infty e^{-u/a} B(u) du = 0.438518$

Ν	Stand.Pert.	Sing.soft.u	w_{12}	w_{13}	$w_{1\infty}$	w_{23}
2	0.37286	0.514666	0.415187	0.428041	0.40750	0.436599
3	0.39789	0.366626	0.42055	0.422045	0.418303	0.421829
4	0.41934	0.378312	0.44414	0.440538	0.442288	0.441093
5	0.43309	0.485122	0.444632	0.44456	0.442969	0.444296
6	0.45076	0.43901	0.442506	0.44426	0.442805	0.443279
8	0.48789	0.752828	0.439019	0.440782	0.44122	0.439871
10	0.56348	1.13108	0.439260	0.439472	0.44001	0.43966
12	0.8589	-2.40697	0.438691	0.439678	0.43976	0.43823
14	3.1139	-35.1106	0.438760	0.439202	0.439959	0.43698
15	-5.96303	89.100	0.438674	0.438818	0.440061	0.438250
17	-113.893	352.619	0.438601	0.438372	0.440085	0.425381
18	526.9	-406.753	0.438599	0.438351	0.439981	0.457510

Beneke & Jamin model; Laplace integral for a=0.4

Exact value: $\frac{1}{a} PV \int_0^\infty e^{-u/a} B(u) du = 0.387625$

Ν	Stand.Pert.	Sing.soft.u	w_{12}	w_{13}	$w_{1\infty}$	w_{23}
2	0.407522	0.843259	0.497684	0.500514	0.518631	0.509974
3	0.471611	0.404904	0.501175	0.495415	0.512709	0.495926
4	0.559468	0.41256	0.438639	0.473403	0.421621	0.467317
5	0.649575	0.178016	0.423404	0.440652	0.410426	0.423464
6	0.834911	0.921353	0.400717	0.41373	0.40286	0.403333
8	1.71815	0.304534	0.395083	0.385329	0.386413	0.385393
10	6.7374	-14.7768	0.387473	0.386253	0.38156	0.375753
12	61.8365	-97.6926	0.387251	0.379201	0.381715	0.378451
14	1192.37	-77.7393	0.385062	0.372344	0.37905	0.446065
15	-5348.3	-1177.25	0.385254	0.375683	0.375558	0.336412
17	-230325.	-45847.4	0.386237	0.388202	0.364298	0.908281
18	1.66×10^{6}	233453	0.386069	0.391481	0.357045	-0.603685

Other models

More general expression

$$\mathsf{B}(\mathsf{u}) \,=\, \sum_{\mathsf{p} \leq -1} \mathsf{B}^{\rm UV}_\mathsf{p}(\mathsf{u}) + \sum_{\mathsf{q} \geq 2} \mathsf{B}^{\rm IR}_\mathsf{q}(\mathsf{u}) + \mathsf{d}^{\rm PO}_0 + \mathsf{d}^{\rm PO}_1 \mathsf{u} + \mathsf{d}^{\rm PO}_2 \mathsf{u}^2$$

- \checkmark Extreme cases: impose $d_2^{\rm IR}=1$ or $d_2^{\rm IR}=5$
- Various possibilities were examined numerically
 - How plausible are they physically?

Beneke & Jamin model; $\alpha_{\rm s}({\rm M}_{ au}^2)=0.34$

 $\delta^{(0)}$ as a function of the truncation order. Left: standard CIPT and FOPT; right: new CIPT and FOPT

Model with
$$d_2^{IR} = 1$$
; $\alpha_s(M_\tau^2) = 0.34$

 $\delta^{(0)}$ as a function of the truncation order. Left: standard CIPT and FOPT; right: new CIPT and FOPT

Model with $d_2^{IR} = 5$; $\alpha_s(M_\tau^2) = 0.34$

 $\delta^{(0)}$ as a function of the truncation order. Left: standard CIPT and FOPT; right: new CIPT and FOPT

Conclusions from the numerical tests

- the expansion based on the optimal conformal mapping is numerically confirmed for all models investigated and all values of a_s
- good results up to rather high orders orders are obtained also with other expansion functions after softening the first singularities
- CIPT gives results better than FOPT

CITP versus FOPT for the optimal expansion

Real part of $\hat{D}(s)$ for $s=m_{\tau}^2{\rm e}^{{\rm i}\varphi}$ for the optimal expansion based on the conformal mapping w_{12}

Left: new CIPT; right: new FOPT; clearly shows the poor convergence of the expansion of $\alpha_s(s)$ on the circle

Determination of $\alpha_{s}(M_{\tau}^{2})$

Expansion	$lpha_{ m s}({ m M}_{ au}^2)$	
Standard expansion in powers of u	0.3425 (0.3421)	
Singul. Soften. & expansion in powers of u	0.3176 (0.3178)	
Singul. Soften. & expansion in powers of $w_{12}(u)$	0.3198 (0.3199)	
Singul. Soften. & expansion in powers of $w_{13}(\boldsymbol{u})$	0.3212 (0.3211)	
Singul. Soften. & expansion in powers of $w_{1\infty}(u)$	0.3186 (0.3187)	
Singul. Soften. & expansion in powers of $w_{23}(\boldsymbol{u})$	0.3197 (0.3197)	

 $\begin{array}{ll} \delta^0=0.2042, \quad {\sf K}_5=283 & {\sf Beneke, Jamin, JHEP 2008} \\ \delta^0=0.2038, \quad {\sf K}_5=275 & {\sf Pich, 2010} & ({\sf numbers in parentheses}) \\ {\sf Average of the new determinations: } \alpha_{\sf s}({\sf M}_{\tau}^2)=0.3219\pm0.0007 \\ {\sf Adding all the errors (exp. + K_5 + scale):} & {\sf IC \& Fischer, EPJC 2009} \end{array}$

 $lpha_{
m s}({
m M}_{ au}^2)=0.320\pm 0.011$

Conclusions

- An improved systematic perturbative expansion in QCD can be derived using the optimal conformal mapping of the Borel plane
- The new expansion functions are singular at \(\alpha_s = 0\) and have divergent expansions in powers of \(\alpha_s\), resembling the expanded function \(\begin{aligned} D \) itself
- Several other choices of "singularity softening" and conformal mappings give consistent results up to rather high orders
- In the CIPT version, they provide a solid theoretical frame for the determination of $\alpha_s(M_{\tau}^2)$ from τ decays, at the present and future levels of loop calculations