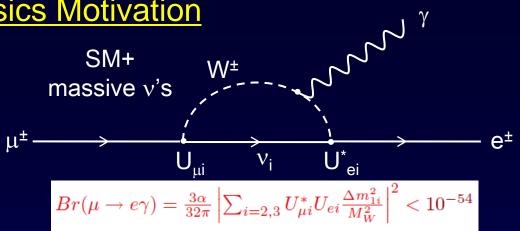
# New Results from the MEG Experiment in the Search for $\mu^+ \rightarrow e^+\gamma$

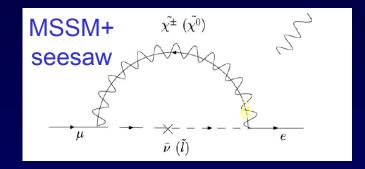
The 11th International Workshop on Tau Lepton Physics Manchester, UK MANCHESTER September 13, 2010

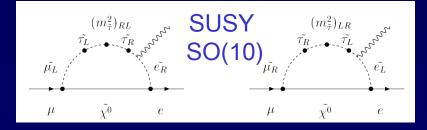
11 1

The University of Manchester

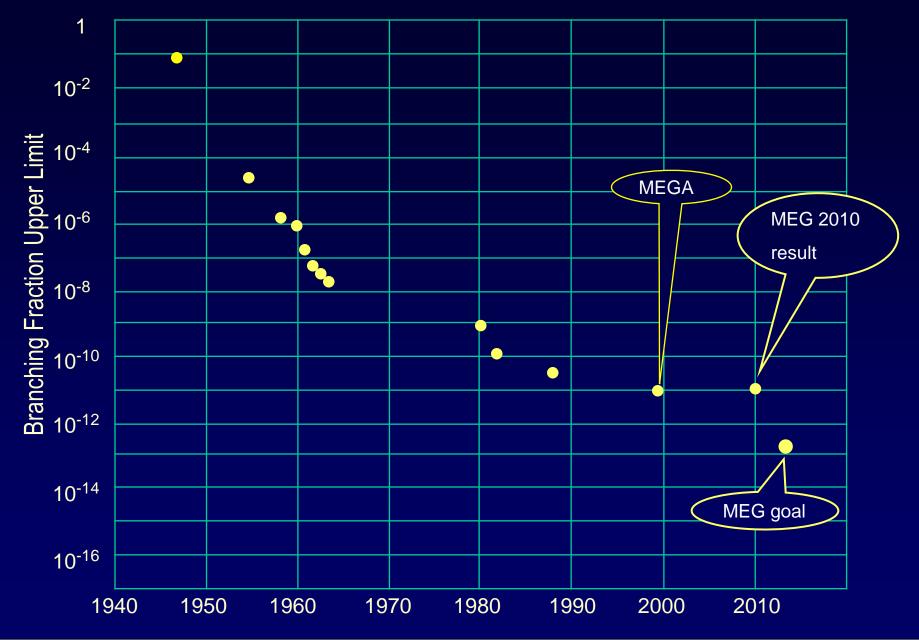

1824

Ben Golden - University of California, Irvine on behalf of the MEG collaboration

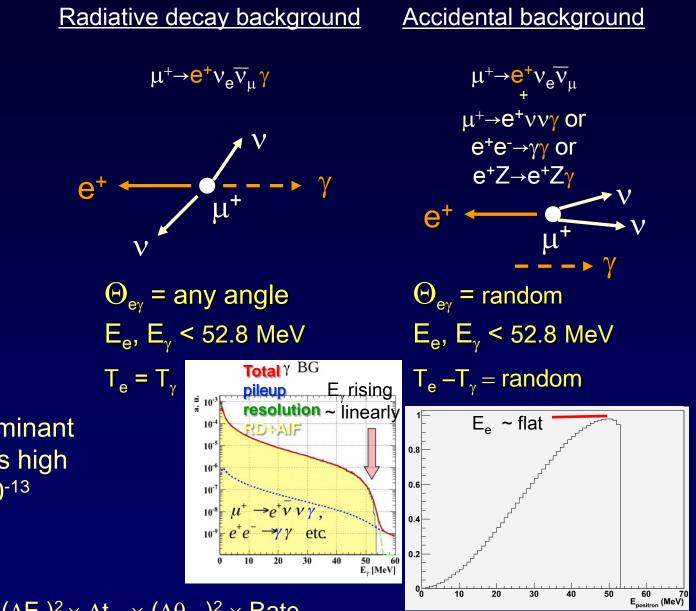

# Talk Outline


- Physics motivation
- MEG experiment
  - Event signatures
  - Hardware design
  - Timeline
- 2009 performance
- Analysis
  - Techniques
  - Results
  - Diagnostics
- Summary
- Future prospects

- **Physics Motivation**
- nLFV has been studied by many experiments (e.g. SuperK, KamLAND, SNO) and implies the existence of CLFV at the level of at least BR(μ→eγ)~10<sup>-54</sup> with<u>out new</u> physics




- CLFV has been elusive with a current U.L. of BR( $\mu \rightarrow e\gamma$ )<1.2 x 10<sup>-11</sup>
- Predictions from many SUSY models lie close to the current limit (e.g. MSSM+seesaw, SUSY SO(10) GUT)
- Even in non-SUSY solutions to gauge hierarchy problem,  $\mu \rightarrow e\gamma$  is generically present
  - Extended technicolor with nonuniversal gauge groups
  - Little Higgs
  - Extra dimensions
- MEG aims to reach ~ 10<sup>-13</sup> sensitivity






<u>History of  $\mu \rightarrow e\gamma$  Searches</u>

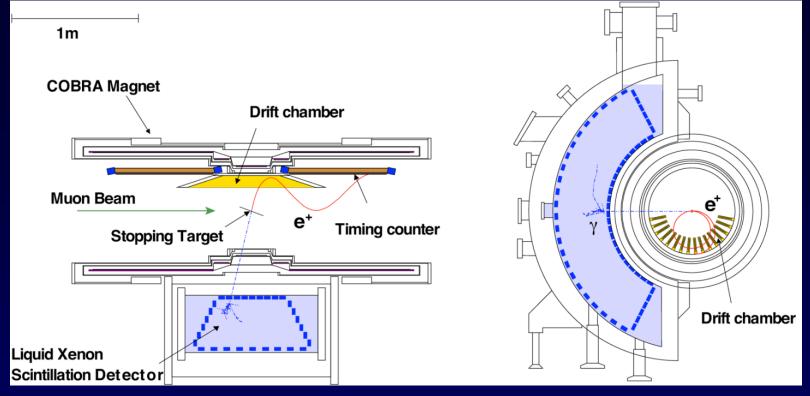


## Signal and Background



Signal

**μ**<sup>+</sup>→**e**<sup>+</sup>γ


e<sup>+</sup> ← → γ μ<sup>+</sup>

 $\Theta_{e\gamma} = 180^{\circ}$  $E_{e} \approx E_{\gamma} \approx 52.8 \text{ MeV}$  $T_{e} = T_{\gamma}$ 

 Accidentals are dominant background at rates high enough to reach 10<sup>-13</sup> sensitivity

•  $N_{accidental}/N_{\mu} \propto \Delta E_{e} \times (\Delta E_{\gamma})^{2} \times \Delta t_{e\gamma} \times (\Delta \theta_{e\gamma})^{2} \times Rate$ 

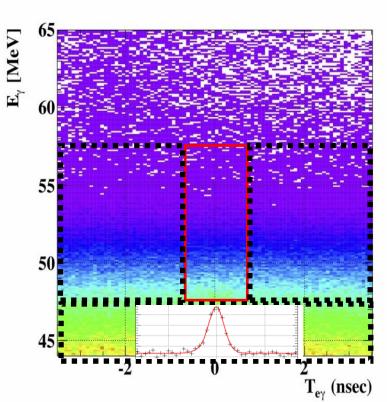
## MEG Experiment Design



- ~  $3x10^7 \mu^+$ /s beam incident on a thin, depolarizing stopping target
- Positron detection
  - Gradient B-field to sweep out e<sup>+</sup> quickly and keep bending radius constant
  - Low mass drift chambers to measure energy and emission angles
  - Timing counter with scintillating plastic for precise time measurement
- Photon detection
  - Energy, position, and time measured in a liquid xenon calorimeter
  - Fast response time, high light yield, high photocathode coverage

## MEG Timeline: Past, Present, and Future

- 1998: Original LOI (PSI-RR-99-05)
- 2002: Proposal with a goal of 10<sup>-13</sup> sensitivity
- 2007: (Nov-Dec): Engineering run
- 2008: (Sep-Dec): 1<sup>st</sup> physics run, some hardware problems leading to low efficiency and suboptimal resolutions
- 2009:
  - Analysis of 2008 data
    - Sensitivity = 1.3 x 10<sup>-11</sup>
    - 90% CL UL = 2.8 x 10<sup>-11</sup>
    - Nuclear Physics B, Volume 834, Issues 1-2, 21 July 2010, Pages 1-12
  - 2<sup>nd</sup> physics run (Nov-Dec)
    - Hardware upgrades
    - 43 days of data taking
    - 93 TB data taken (22.3M triggers)
- 2010:
  - Analysis of 2009 data (primary content of this talk)
  - 3<sup>rd</sup> physics run (starting July)
- 2011-2012: continue data taking


# **Detector & Reconstruction Performance**

| Quantity                                                                                                                                                        | Resolution(σ)<br>or Efficiency      | uw                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Photon energy (%)                                                                                                                                               | 2.1 (w > 2 cm)                      | y v                                                                                                            |
| Photon position (mm)                                                                                                                                            | 5(u,v) / 6(w)                       | Z Z                                                                                                            |
| e <sup>+</sup> momentum (%)                                                                                                                                     | 0.74 (core), 79% in core            |                                                                                                                |
| e <sup>+</sup> angle (mrad)                                                                                                                                     | 7.4(φ core), 85% in core<br>11.2(θ) | Inner face                                                                                                     |
| Muon vertex position (mm)<br>Correlated with and dominated by e <sup>+</sup><br>angle resolution                                                                | 2.3 (R), 2.8 (Z)                    |                                                                                                                |
| Photon - e <sup>+</sup> timing (psec)                                                                                                                           | 142 (core), 70% in core             |                                                                                                                |
| Photon efficiency (%)                                                                                                                                           | 58                                  | <b>2</b> 2400                                                                                                  |
| Trigger efficiency (%)                                                                                                                                          | 84                                  | 2200<br>2200<br>2000                                                                                           |
| $ \begin{array}{c}       1 \\       0.8 \\       0.6 \\       0.4 \\       0.2 \\       9 \\       0 51 52 53 54 55 \\       E_{e} (MeV) \\       \end{array} $ |                                     | $\begin{array}{c} 2400 \\ 2200 \\ 2000 \\ 1800 \\ 1400 \\ 1400 \\ 1000 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $ |

#### **Blind Analysis Technique**

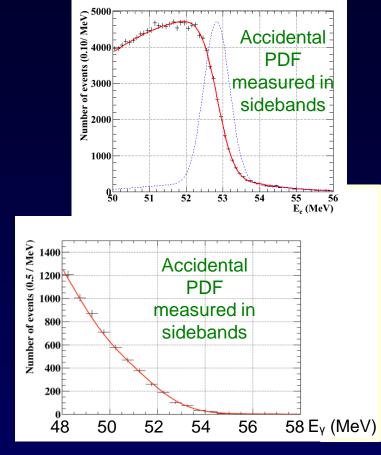
- A rare decay search is very sensitive to the exact values of selection cuts
- If it is known which events satisfy cuts during analysis, 2 extreme cases of bias:
  - Cut to eliminate individual events, yielding better upper limit than justified
  - Cut to retain individual events, producing a signal where none is present
- MEG uses "Hidden Signal Box" technique (0.2% of data in signal box)
  - Signal-like events were hidden until selection cuts and PDFs were determined
    - $48 \le E_{\gamma} \le 58 \text{ MeV}$
    - $|T_{e\gamma}| \le 0.7 \text{ ns}$
  - Sidebands adjacent to signal box (16% of data)
    - Can look at radiative decays for  $E_{\gamma} \leq 48 \mbox{ MeV}$
    - Can look at accidental photons in  $\mid T_{e\gamma} \mid > 0.7 \mbox{ ns}$

- Analysis Window (~ 10σ width)
  - $-48 \le E_{\gamma} \le 58 \text{ MeV}$
  - $-\mid T_{e\gamma}\mid \leq 0.7~ns$
  - $-|\phi_{e\gamma}|$ ,  $|\theta_{e\gamma}| \le 50$  mrad (angles btw. reversed e+ and  $\gamma$  vectors)
  - $-50 \le E_e \le 56 \text{ MeV}$



## Maximum Likelihood Analysis

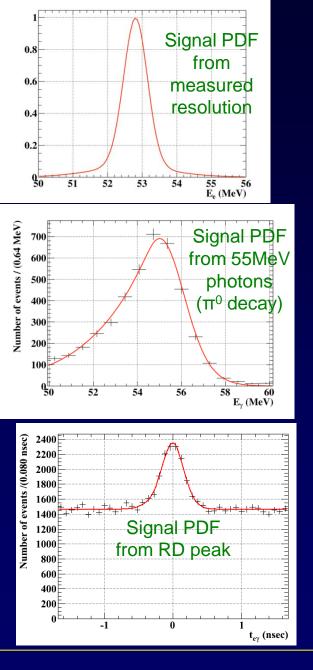
 Fit for numbers of signal (N<sub>Sig</sub>), radiative decay (N<sub>RD</sub>), and accidental (N<sub>Acc</sub>) events by maximizing an extended likelihood function


$$L(N_{Sig}, N_{RD}, N_{Acc}) = \frac{N^{N_{obs}} \exp(-N)}{N_{obs}!} \prod_{i=1}^{N_{obs}} \left[\frac{N_{Sig}}{N}S + \frac{N_{RD}}{N}R + \frac{N_{Acc}}{N}A\right]$$

- N= N<sub>Sig</sub> + N<sub>RD</sub> + N<sub>Acc</sub>

– Kinematic observables: E\_e, E\_{\gamma}, T\_{e\gamma}, \phi\_{e\gamma}, \theta\_{e\gamma}

- PDF procurement
  - Position dependent photon PDFs
  - Positron PDFs split into 2 classes of events based on event quality (fitting uncertainty, TIC-DCH projection agreement, etc.)
  - Most PDFs inferred from data
  - RD correlations obtained by convolving response functions with RD BR from theory
- Diagnostic checks
  - Checks with fits to events with  $T_{\gamma}$   $T_e \neq 0$ : expect no signal or radiative decay
  - Checks with fits to events with small  $E_{\gamma}$ : more RD events, no signal
  - Three independent likelihood analyses done to check systematic effects
- Normalization sample is a highly pre-scaled, simultaneous Michel e<sup>+</sup> sample: BR( $\mu \rightarrow e\gamma$ )= N<sub>Sig</sub> / 1.0 ± 0.1 x 10<sup>12</sup>


# PDF shapes



#### • Positron energy

#### • Photon energy

#### Relative time

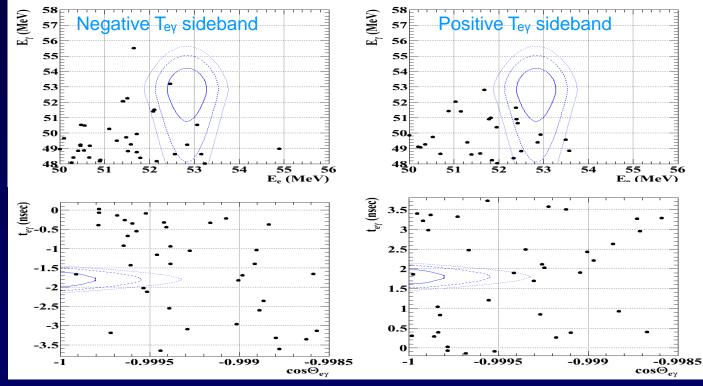


#### • Relative angle

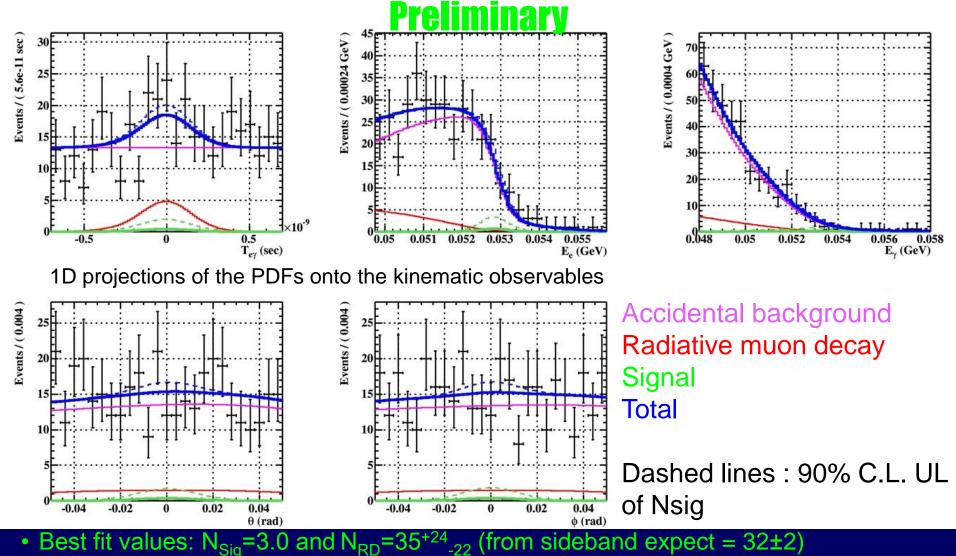
- Signal computed from measured position & and angle resolutions
- Accidental from sidebands

## Sensitivity Computation and Sideband Diagnostics

Sensitivity Calculation


# Preliminary

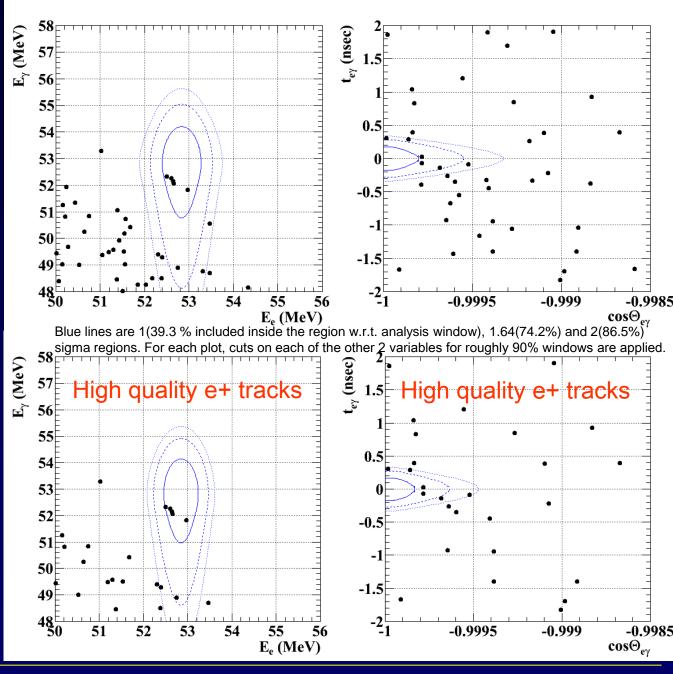
- Set  $N_{Sig}$ =0 and  $N_{RD}$ ,  $N_{Acc}$ =best fit values from real data in analysis box
- Generate many toy MC experiments according to PDFs and fit each one
- Compute upper limit at 90% C.L. for each
- Average 90% C.L. upper limit =  $6.1 \times 10^{-12}$
- Sideband fits
  - Consistent
     with
     sensitivity
     estimate
  - Br<4~6×10<sup>-12</sup>
     90% CL


• MEGA result:

# Br<12×10<sup>-12</sup>






#### Results of Maximum Likelihood Fit



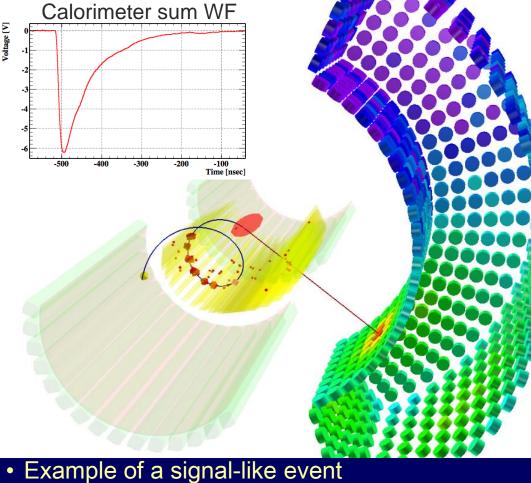
- Nsig < 14.5 @ 90% C.L (N<sub>Sig</sub>=0 is in 90% confidence region)
- Fitting was done by three groups with different parameterizations, analysis windows and statistical approaches, and confirmed to be consistent (Nsig best fit = 3.0-4.5, UL = 1.2-1.5×10<sup>-11</sup>)

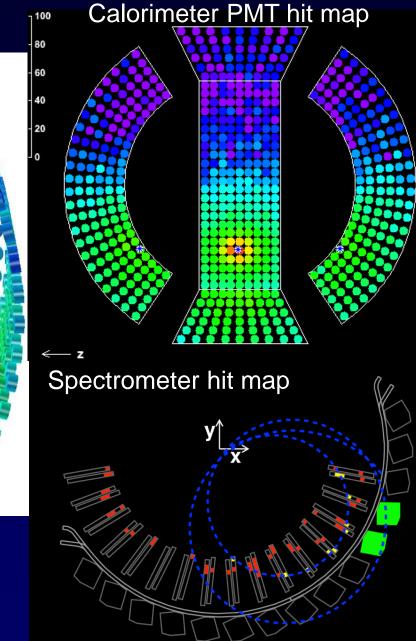
#### **Event Distributions of Kinematic Observables**

- Check of kinematic variable distributions before and after selecting high quality positron tracks
- Selected by number of drift chamber (DC) hits, energy and angle fitting uncertainties, track fitting  $\chi^2$ , r and z difference between timing counter hit and extrapolation of a track.
- Events near signal region persist



## **Candidate Event Checking**


 Events with large signal likelihood are examined carefully


 $- E_{\gamma} = 52.25 \text{ MeV}$ 

 $- E_{e+} = 52.84 \text{ MeV}$ 

 $- T_{e\gamma} = 26.8 \text{ ps}$ 

 $- \Theta_{e\gamma} = 178.8 \text{ degrees}$ 





# <u>Synopsis</u>

- MEG acquired 2 months of data with stable detector operation in 2009
- Preliminary results
  - Estimated sensitivity: 6.1×10<sup>-12</sup>
  - -90% C.L. includes N<sub>Sig</sub>=0
  - 90% C.L. upper limit: 1.5×10<sup>-11</sup>
  - Probability to get  $N_{Sig} \ge 3.0$  from null hypothesis ~ 2-3%
- 2010 data collection in progress
  - 3 years of DAQ are anticipated to reach few ×10<sup>-13</sup> sensitivity
  - Can elucidate our result

# Future Prospects

| Resolution(σ)<br>or Efficiency                                                                                                                                                                                                                                                  | 2009                                                                                                                                                                              | 2010<br>(estimate)                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Gamma Energy (%)<br>Gamma Timing (psec)<br>Gamma Position (mm)<br>Gamma Efficiency (%)<br>e <sup>+</sup> Momentum (%)<br>e <sup>+</sup> Angle (mrad)<br>e <sup>+</sup> Efficiency (%)<br>e <sup>+</sup> -gamma timing (psec)<br>Muon Decay Point (mm)<br>Trigger efficiency (%) | $\begin{array}{c} 2.1(w > 2 cm) \\ > 67 \\ 5(u,v) \ / \ 6(w) \\ 58 \\ 0.74(core) \\ 7.4(\phi, \ core) \ / 11.2(\theta) \\ 40 \\ 142(core) \\ 2.3(R) \ / 2.8(Z) \\ 84 \end{array}$ | $ \begin{array}{c} 1.5(w>2cm) \\ 68 \\ \leftarrow \\ 0.7 \\ 8(\phi)/8(\theta) \\ \leftarrow \\ 120 \\ 1.4(R)/2.5(Z) \\ 94 \end{array} $ |
| Stopping Muon Rate (sec <sup>-1</sup> )                                                                                                                                                                                                                                         | 2.9 × 10 <sup>7</sup> (300µm)                                                                                                                                                     | 3 × 10 <sup>7</sup> (300µm)                                                                                                             |
| DAQ time/Real time (days)                                                                                                                                                                                                                                                       | 35/43                                                                                                                                                                             | 95/117                                                                                                                                  |
| Sensitivity                                                                                                                                                                                                                                                                     | 6.1 × 10 <sup>-12</sup>                                                                                                                                                           | 2.0×10 <sup>-12</sup>                                                                                                                   |
| BR upper limit (obtained)                                                                                                                                                                                                                                                       | 1.5 × 10 <sup>-11</sup>                                                                                                                                                           | -                                                                                                                                       |

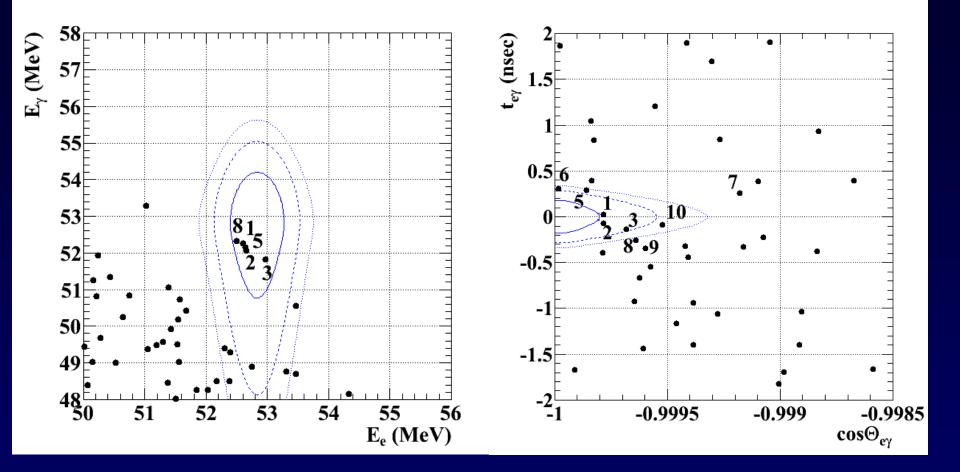
• 2010 data taking underway

#### • Foreseen improvements

- Reduction of electronic noise in DCH waveforms
- Potential for better understanding of e<sup>+</sup> spectrometer using monochromatic e<sup>+</sup>s from Mott scattering
- DRS4 timing improvements from hardware fine tuning
- Use of TIC fibers to increase trigger efficiency
- 2010 data will triple the statistics in 2009
- Refinements in calorimeter analysis:  $\sigma_E/E \rightarrow 1.5\%$

• Remember  $N_{accidental}/N_{\mu} \propto \Delta E_{e} \times (\Delta E_{\gamma})^{2} \times \Delta t_{e\gamma} \times (\Delta \theta_{e\gamma})^{2} \times Rate$ 

Back up slides


# **Normalization**

- Result is normalized to the number of detected Michel decays, cancelling many sources of uncertainty
  - Positron acceptance + reconstruction efficiency is nearly identical, small correction for different momentum interval for the signal and Michel decays
- Most efficiencies or acceptances can be derived from data
- Photon reconstruction efficiency from MC, cross check with  $\pi^0$  data: detect  $\gamma$  in NaI, measure probability of reconstructing opposite photon
- Signal trigger efficiency relies on MC

| $B(\mu \rightarrow e\gamma) = B(\mu \rightarrow e\nu\nu)$                | Michel branching fraction                       | known           |
|--------------------------------------------------------------------------|-------------------------------------------------|-----------------|
| Χ Ν(μ→eγ)                                                                | Number of signal events                         | counted         |
| / N(μ→eνν)                                                               | Number of Michel events                         | counted         |
| / P(μ→evv)                                                               | prescale factor                                 | known           |
| X f(µ→evv)                                                               | fraction of Michel > 50 MeV                     | calculated      |
| X $G^{e}_{\mu \rightarrow e \nu \nu} / G^{e}_{\mu \rightarrow e \gamma}$ | positron geometrical acceptance ratio           | definition      |
| X $R_{\mu \to e \nu \nu}^{e} / R_{\mu \to e \gamma}^{e}$                 | Positron acceptance+ reconstruction ratio       | data            |
| / G <sup>y</sup> :e <sup>+</sup>                                         | Conditional geom. acceptance for photon         | MC              |
| $/ R^{\gamma}$                                                           | Photon reconstruction efficiency                | MC (data check) |
| / Trig <sub>μ→eνν</sub> / Trig <sub>μ→eγ</sub>                           | Trigger efficiency ratio                        | MC              |
| $/ \epsilon(\delta t)$                                                   | selection on photon-positron time               | data            |
| $/ \epsilon(E_{\gamma})$                                                 | selection on photon energy (in rec. eff)        | data            |
| $/ \epsilon(E_e)$                                                        | selection on positron energy                    | data            |
| / ε(pileup, CR)                                                          | selection criteria for pileup, cosmic rays, etc | data estimate   |

 $B(\mu \rightarrow e\gamma) = 1.0 \times 10^{-12} \times N(\mu \rightarrow e\gamma)$ 

#### Labeled Events



Blue lines are 1(39.3 % included inside the region w.r.t. analysis window), 1.64(74.2%) and 2(86.5%) sigma regions.

For each plot, cuts on other two variables for roughly 90% windows are applied.

Numbers in figures are ranked by L<sub>sig</sub>/(L<sub>RMD</sub>+L<sub>BG</sub>). Like-numbered dots in the right and the left figure are an identical event.