Lepton flavour violation in D and B decays at Belle

Marko Petrič

on behalf of

13th September 11th International Workshop on Tau Lepton Physics

- Search for lepton-flavour violating $D^0
 ightarrow e^\pm \mu^\mp$
- Search for flavour-changing neutral current decays $D^0 \to \mu^+\mu^-, e^+e^-$
- Search for lepton-number violating decay $B^-
 ightarrow D^+ \ell^- \ell^-$

Search for $D^0 \rightarrow \ell^+ \ell^-$ - Motivation

- FCNC decays are highly suppressed in SM (allowed at higher order)
- With long distance contributions $\mathcal{B} \sim 10^{-13}$
- LFV decays are forbidden in SM
- Certain NP scenarios can enhance \mathcal{B} by many orders of magnitude
- Charm FCNC and LFV decays probe couplings of up-quark sector in contrast to *B* and *K*

M. Petrič 💏

E. Golowich, J. Hewett, S. Pakvasa, A. A. Petrov PRD79 114030 (2009)

- Except Family Symmetry all NP exceed the SM prediction
- I. Dorsner, S. Fajfer, J. F. Kamenik, and N. Kosnik, PLB682 67 2009
 - Leptoquark explanation of f_D⁺₅ discrepancy

 ${\cal B}(D^0\to \mu^+\mu^-)>1.6\times 10^{-7}$

Search for $D^0 \rightarrow \ell^+ \ell^-$ - Method

- B
- Search based on 659 fb⁻¹ taken at $\Upsilon(4S)$ and 60 MeV below.
- To suppress background:
 - use high momentum $D^{*+}
 ightarrow D^0 \pi^+$ decays from $e^+e^-
 ightarrow c ar c$
- Measurement relative to well measured $D^0 \to \pi^+\pi^-$

$$\mathcal{B}(D^0 o \ell^+ \ell^-) = rac{N_{\ell\ell}}{N_{\pi\pi}} rac{\epsilon_{\pi\pi}}{\epsilon_{\ell\ell}} \mathcal{B}(D^0 o \pi^+ \pi^-)$$

Normalisation channel (data)

Fit of $m(\pi, \pi)$ distribution: Double Gaussian + FSR tail + linear $\sim 50 \times 10^3 D^0 \rightarrow \pi^+\pi^-$ decays

- Standard charged track and PID selection
- *D*⁰ daughters fitted to common vertex (decay vertex)
- IP constrained fit of D^0 and $\pi_{\rm slow}$ to find D^0 production vertex
- $p_{cms}^{D^{*+}} > 2.5 \text{ GeV/c}$ to suppress bkg. (also rejects D^0 from B)
- Candidate D⁰ mesons selected using two kinematic observables:
 - invariant mass of D^0 daughters: $1.81 < M < 1.91 \text{ GeV}/c^2$
 - energy released in D^{*+} decay: q < 20 MeV

M. Petrič 💏

Search for $D^0 \rightarrow \ell^+ \ell^-$ - Background

- Background in $D^0
 ightarrow \ell^+ \ell^-$ according to generic MC simulation
 - 80% from semileptonic B decays
 - 10% from D⁰ decays
 - 10% other sources
- Can be grouped into:
 - 1 smooth combinatorial background
 - 2 peaking background from mis-ID of $D^0
 ightarrow \pi^+\pi^-$
- To further suppress background:
 - requirements on signal region size in M and q
 - maximal allowed missing energy in the event E_{miss} to suppress bkg. from semileptonic B decays (undetected neutrinos!)

Search for $D^0 \rightarrow \ell^+ \ell^-$ - Optimisation

- For optimisation we select:
 - signal region size $(M_{low}, M_{up}, \Delta q)$
 - maximal allowed E_{miss}
- Optimised to obtain the best upper limits
- Figure-of-merit: $\mathcal{F} = \epsilon_{\ell\ell}/N_{UL}$
 - $\epsilon_{\ell\ell}$... efficiency obtained from tuned signal MC
 - N_{UL} ... Poisson average of Feldman-Cousins 90% C.L. upper limits obtained with expected bkg. and no signal, using generic MC
- Each leptonic decay channel optimised separately

- parameter a determined from fit to MC sample
- Peaking background (mis-ID of $D^0 \rightarrow \pi^+\pi^-$)
 - estimated from reconstructed $D^0 \rightarrow \pi^+\pi^-$ by replacing pion mass with lepton mass and by weighting each event with mis-ID probability
 - mis-ID probabilities measured using $D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K^- \pi^+$
 - resulting distribution normalised absolutely

1.82 1.84 1.86

Data

0.03

0.02

0.01

To estimate background inside the signal region we rely (almost) exclusively on experimental data

Combinatorial background (smooth)

M. Petrič 👷

D->ππ

M[GeV/c²

Search for $D^0 \rightarrow \ell^+ \ell^-$ - Results

M. Petrič 🕵

Search for $B^- \rightarrow D^+ \ell^- \ell^-$ - Motivation

- Lepton-number violating decay forbidden in SM
- Possible in new physics scenarios: multi-Higgs-boson, leptoquarks, Majorana neutrinos, etc.
- In Majorana case up to $\mathcal{B} \sim 10^{-7}$ (M Zhang, G Wang, arXiv:1003.5570v2 [hep-ex])

Search for $B^- \rightarrow D^+ \ell^- \ell^-$ - Event selection

- Search based on 710 $\rm fb^{-1}$
- Standard charged track and PID selection
- Use $K^-\pi^+\pi^+$ to construct D^+
- Require $\Delta M_{K^-\pi^+\pi^+} < 0.044~{
 m GeV/c^2}$
- Lepton requirement:
 - $p_e > 0.395 {
 m GeV/c}, \ p_\mu > 0.69 \ {
 m GeV/c}$
 - $E_{\ell\ell} > 1.3 \; {
 m GeV/c^2}$
- Combine D⁺ candidate and two highest energy same charge leptons
- Require window $(M_{bc}, \Delta E)$:

•
$$M_{\rm bc} = \sqrt{E_{\rm beam}^2 - p_{\rm B}^2}$$

• $\Delta E = E_{\rm B} - E_{\rm beam}$

M. Petrič 👷

Search for $B^- \rightarrow D^+ \ell^- \ell^-$ - Variables

To suppress backgrounds, we use background and signal PDFs of the following variables:

- Missing energy $E_{\text{miss}} = 2E_{\text{heam}} \sum E$
- Distance between helix parameter z of two leptons (δz)
- *B* flight direction $\cos \theta_{B^*} = \frac{\vec{P}_z^{\mathcal{D}}}{|\vec{p}^B|}$

0.8

cos0_

Search for $B^- \rightarrow D^+ \ell^- \ell^-$ - Optimisation

- From PDFs \rightarrow likelihood ratio ${\cal R}$
- b
 ightarrow c decays and $e^+e^-
 ightarrow q\overline{q}$, (q=u,d,s,c) contribute to background
- Using FoM = $N_{
 m sig}/\sqrt{N_{
 m bkg}}$ determine ${\cal R}$ cut
- Use counting method to evaluate signal yield
- Signal region defined in $(M_{\rm bc}, \Delta E)$:
 - $5.27 < M_{bc} < 5.29 \text{ GeV}/c^2$
 - $-0.055(-0.035) < \Delta E < 0.035$ GeV

M. Petrič 💏

- Background from b
 ightarrow c and $e^+e^-
 ightarrow q\overline{q}$
- Background form rare decays:
 - hadronic $b \rightarrow s, u, d$
 - semileptonic $b
 ightarrow u \ell \nu$
 - both contributions negligible
- Topologically similar background:
 - $B^+ \to J/\psi {\cal K}^+ \pi^+ \pi^+$ lepton ID inefficiency and lepton misID
 - $B^+ \rightarrow D^- h^+ h'^+$ lepton misID
- No significant background peaking
- Background in signal region estimated from $(M_{\rm bc}, \Delta E)$ sideband:
 - $5.20 < M_{bc} < 5.29 \text{ GeV}/c^2$
 - $-0.3 < \Delta E < 0.3$ GeV

• Branching fraction determined

$$\mathcal{B} < rac{\textit{N}_{\text{UL}}}{\textit{eff}. imes \mathcal{B}(D^+
ightarrow K^- \pi^+ \pi^+) imes \textit{N}_{B\overline{B}}}$$

- Upper limit N_{UL} calculated using program pole by Conrad (PRD 67 012002 2003)
- extension of Feldman-Cousins method by inclusion of systematic errors

Systematics			
Source	Dee	$De\mu$	$D\mu\mu$
Unit		%	
MC signal efficiency	1.1	1.1	0.9
Tracking efficiency	5.2	5.2	5.2
${\cal K}^\pm\pi^\pm$ ID	1.3	1.4	1.4
Lepton ID	3.0	3.4	3.5
M_{bc} and ΔE shape	1	5	1
D^+ mass shape	0.2	0.2	0.2
$N(B\overline{B})$	1.4	1.4	1.4
$\mathcal{B}\left(D^+ ightarrow K^- \pi^+ \pi^+ ight)$	2.7	2.7	2.7
LR cut	5	5	5
Sum in quadrature	8.6	10.1	8.8

Search for $B^- \rightarrow D^+ \ell^- \ell^-$ - Preliminary results

Channel	events	estimated background
$D^+e^-e^-$	0	0.2 ± 0.1
$D^+e^-\mu^-$	0	0.8 ± 0.3
$D^+\mu^-\mu^-$	0	1.4 ± 0.4

No signal observed

Calculated 90% C.L. upper limits (preliminary)

$$\begin{array}{lll} \mathcal{B} \left(B^{-} \to D^{+} e^{-} e^{-} \right) &< 2.7 \times 10^{-6} \\ \mathcal{B} \left(B^{-} \to D^{+} e^{-} \mu^{-} \right) &< 1.9 \times 10^{-6} \\ \mathcal{B} \left(B^{-} \to D^{+} \mu^{-} \mu^{-} \right) &< 1.1 \times 10^{-6} \end{array}$$

First measurement

Search for leptonic decays of D^0 (PRD81 091102 2010)

- Found no evidence of these decays.
- Set new upper limits on branching fractions for these decays $\mathcal{O}(10^{-7})$
- Our results can further constrain the size of certain NP parameters
- The upper limit for $D^0 \rightarrow \mu^+ \mu^-$ (1.4 × 10⁻⁷) strongly disfavours a leptoquark contribution as the explanation for the f_{D_s} discrepancy (PLB682 67 2009)

Search for LNV decay $B^- \rightarrow D^+ \ell^- \ell^-$ (Preliminary result)

- First measurement
- No signal observed
- Obtained upper limit $\mathcal{O}(10^{-6})$

Backup

Lepton flavour violation in D and B decays at Belle (18 / 17)

Search for $D^0 \rightarrow \ell^+ \ell^-$ - Background determination C

- Misidentification of $D^0 \rightarrow \pi^+\pi^-$ (peaking)
 - Shape \rightarrow replacing the pion mass with the lepton mass in $D^0 \rightarrow \pi^+\pi^-$ decays
 - Weighting each event with misidentification probability measured on data
 - Misidentification probabilities measured in data with $D^0 \rightarrow K^- \pi^+$, in bins of particle momentum p and cosine of polar angle θ
 - Resulting shape absolutely normalised

M. Petrič 💏

Lepton flavour violation in D and B decays at Belle (19 / 17)

The analysis has considered:

- Flat background form b
 ightarrow c and $e^+e^-
 ightarrow q\overline{q}$
- Non-peaking background form rare decays:
 - hadronic $b \rightarrow s, u, d$
 - semileptonic $b
 ightarrow u \ell \nu$
 - both contributions negligible
- Peking background:
 - $B^+ \rightarrow J/\psi K^+ \pi^+ \pi^+$ lepton ID inefficiency and lepton misID
 - $B^+ \rightarrow D^- h^+ h'^+$ lepton misID
 - both contributions non-peaking

- B=1.5 T
- Tracking system:
 - Silicon Vertex Detector (SVD)
 - Central Drift Chamber (CDC)
- Particle identification :
 - CDC(dE/dx)
 - Aerogel Čerenkov Counter (ACC),
 - Time Of Flight (TOF)
 - Electromagnetic calorimeter (ECL)
 - Detector K_L and μ (KLM)

Experiment Belle

- KEK, Tsukuba, Japan
- KEKB: asymmetric $e^+e^$ collider at the energy of the resonance $\Upsilon(4S) = 10.56 \text{ GeV}/c^2$ $(e^+(3.5GeV) \rightarrow \leftarrow e^-(7GeV))$
- Luminosity: $dN/dt = \mathcal{L}\sigma$, $\mathcal{L} = 2.1 \cdot 10^{34}/cm^2/s$
- Integrated luminosity: $\int \mathcal{L} dt = 1000 f b^{-1}$

