<u>Lepton Flavor Violating (LFV) τ decays into</u> <u>leptons and hadrons</u>

Presented on behalf of the BaBar collaboration Presented by: Mateusz Lewczuk

University of Victoria

Lepton Flavor Violation

- Lepton flavor would be conserved in the SM if neutrinos were massless.
- Super K observed neutrino oscillation between ν_μ->ν_τ, which was closely followed by observation of neutrino oscillation at SNO lab of ν_e->ν_μ.
- Neutrino oscillation implies that neutrinos have mass, and so LFV was observed.

Lepton Flavor Violation

- Decays such as μ ->e γ or $\tau \rightarrow e\gamma$ would be a sign of I FV.
- One can draw loop diagrams which oscillate a neutrino from one flavor to another and hence conserve lepton flavor at each vertex.

$$\frac{\tau^{-} v_{\tau} v_{\mu} \mu^{-}}{W} B \sim 10^{-100}$$

- ·55
- These rates are far below current experimental sensitivity and so measuring an LFV decay is a sign of new physics.

Beyond the Standard Model

- Rates can be calculated in extensions to the Standard Model.
- Predicted rates are very sensitive to parameters; regions sensitive to current experiments have not all been ruled out.

SM Extensions with heavy singlet Dirac neutrions: A.IIkovac, Phys. Rev. D 62, 03601 R-parity violating SUSY: J.P. Saha and A. Kundu, Phys. Rev. D 66, 054021 MSSM-seesaw: E. Arganda, J.M. Herrero, J. Portoles, JHEP 0806, 079

BaBar at PEPII

- Accelerates electrons and positrons
- The τ -pair production cross-section at BaBar is: $\sigma_{\tau\tau} = 0.92$ nb
- Majority of data acquired at the Y(4S).

Positron Return Line

Sector-10 PEP II

e- injector

PEP II Low Energy Bypass (LEB)

North Damping Ring [1.15 GeV]

South Damping

Ring [1.15 GeV]

Linac

Sector-4 PEP II

e+ injector

3 km

e-gun

200 MeV

injector

Asymmetric energy electrons and positrons are used.

Positron Source

PEP II High Energy Bypass (HEB)

PEP II

Low Energy

Ring (LER) [3.1 GeV]

PEP II

High Energy Ring (HER)

[9 GeV]

 PEP-II rings store electrons and positrons, that later collide at the BaBar detector

PEP II

IR-2

Detector

General Selections

 Selections are applied to:

 Energy and Momenta of the tag and signal side particles.
 Spatial arrangement of the event in the detector

General schematic of an event in

the c.m. frame

Charged Tracks

$\tau^{-} \rightarrow \ell K_{s}^{0} (\ell = e \text{ or } \mu)$

 Estimates on this branching fraction are not well understood.

[Phys. Rev. D 66, 054021 (2002)] [Phys. Rev. D 62, 036010 (2000)]

- This decay has not been excluded from the current level of sensitivities offered at the B factories.
- Previous limits were set by Belle at:

B(
$$\tau^- \to e^- K_s^0$$
) < 5.6×10⁻⁸ @90%CL
B($\tau^- \to \mu^- K_s^0$) < 4.9×10⁻⁸ @90%CL
Belle: Phys. Lett. B 639, 159 (2006)

Specific selection for $\tau^{-} \rightarrow \ell K_{s}^{0}$

- K0s candidates are reconstructed from two oppositely charged tracks where the π mass is assumed for both.
- The reconstructed K0s mass is required to be within: $0.482 < M_{K^0_1} < 0.514 \text{ GeV/c}^2$
- Additional track is required to be an e or μ.
- Cut on the defined tag side mass:

$$m_{Tag}^2 = (\hat{p}_{tag} - \hat{p}_{v})^2 < 2.6 \ (\text{GeV/c}^2)^2$$

Using missing momentum as neutrinos momentum.

• Signal region boundary set at: ΔM_{τ} within 0 ± 0.35 GeV/c²

 ΔE_{τ} within 0 ± 0.40 GeV/c²

0

1

 m_{TAG}^2 ((GeV/c²)²)

Measuring $\tau \rightarrow \ell K_{s}^{0}$

• Utilize discriminating variable X_{full}^2 , which is the X^2 of geometrical and kinematical fit for the whole decay tree, and additional constraint: $\Delta M = 0$ $\Delta E = 0$

- No excess above background is found using the counting method
- Use CLs method, which is optimal for small statistics, to determine the limit.
 T. Junk, Nucl. Instrum. Meth. A 434, 435 1999

Results for $\tau^{-} \rightarrow \ell K_{s}^{0}$

- Using the likelihood ratio of $Q = \frac{L}{I}$ where L(S+B) is the likelihood of finding signal in a signal + background hypothesis and L(B) is the likelihood of finding observed events in background only.
- BF are determined from plots of $CL_S = CL_{S+B}/CL_B$ at the 90% level.

$\tau^{-} \rightarrow \ell V^{0} (\ell = e \text{ or } \mu)$

- V⁰ is reconstructed from:
- Experimental precision is sensitive to some theoretical predictions involving new physics models.

$$\begin{array}{c}
\phi \rightarrow \mathrm{K}^{+}\mathrm{K}^{-} \\
\rho \rightarrow \pi^{+}\pi^{-} \\
\mathrm{K}^{*} \rightarrow \mathrm{K}^{+}\pi^{-} \\
\overline{\mathrm{K}}^{*} \rightarrow \mathrm{K}^{-}\pi^{+}
\end{array}$$

- Using Data Sample of 451fb⁻¹, which corresponds to: $N_{\tau\tau} = (4.15 \pm 0.03) \times 10^8$
- Background and efficiency modeled with Monte Carlo studies.

Selection $\tau^{-} \rightarrow \ell^{-} V^{0} (\ell = e \text{ or } \mu)$

- Selection is tuned for each of the 8 possible channels.
 - $\begin{array}{ll} M_{hh} &= \text{Invariant mass of two hadrons in 3-prong hemisphere.} \\ M_{1\text{-pr}} &= \text{Invariant mass of one prong hemisphere.} \\ P_{\text{miss}}^{\text{T}} &= \text{Missing transverse momentum in the event.} \\ P_{\text{cms}}^{\text{T}} &= \text{Scalar sum of all transverse momentum in the event.} \\ n_{\text{1pr}}^{\gamma} &= \text{number of photons in one prong hemisphere} \\ n_{\text{3pr}}^{\gamma} &= \text{number of photons in three prong hemisphere} \end{array}$
- All selection criteria is optimized to provide smallest expected upper limit on the branching fraction in the background only hypothesis

Signal Box $\tau^{-} \rightarrow \ell^{-} V^{0} (\ell = e \text{ or } \mu)$

 Signal box boundaries are also optimized for smallest limit in the background only hypothesis.

Results $\tau \rightarrow \ell V^0$ ($\ell = e \text{ or } \mu$)

Efficiency (ϵ) determined from LFV tau decay Monte Carlo. N_{bkg} is number of background events determined from data sidebands. N_{obs} is number of observed data events in the signal box. $N_{^{90}}_{UL}$ is the observed upper limit at 90% CL on number of signal events. $B_{^{90}}_{exp}$ is the mean upper limit expected in the background only hypothesis. $B_{^{90}}_{UL} = N_{^{90}}_{UL}/(2\epsilon N_{\tau\tau})$ is the observed 90% CL Upper limit on the BF.

						10 -8
Mode	ε [%]	$N_{ m bgd}$	$N_{\rm obs}$	$N_{ m UL}^{90}$	$\mathcal{B}^{90}_{\mathrm{exp}}$	$\mathcal{B}^{90}_{\mathrm{UL}}$
$e\phi$	6.43 ± 0.16	0.68 ± 0.12	0	1.8	5.0	3.1
$\mu\phi$	5.18 ± 0.27	2.76 ± 0.16	6	8.7	8.2	19
$e\rho$	7.31 ± 0.18	1.32 ± 0.17	1	3.1	4.9	4.6
$\mu\rho$	4.52 ± 0.41	2.04 ± 0.19	0	1.1	8.9	2.6
eK^*	8.00 ± 0.19	1.65 ± 0.23	2	4.3	4.8	5.9
μK^*	4.57 ± 0.36	1.79 ± 0.21	4	7.1	8.5	17
$e\overline{K}^*$	7.76 ± 0.18	2.76 ± 0.28	2	3.2	5.4	4.6
$\mu \overline{K}^*$	4.11 ± 0.32	1.72 ± 0.17	1	2.7	9.3	7.3

Phys.Rev.Lett.103:021801,2009

- No evidence for a statistically significant LFV signal.
- New high precision limits have been set on the

 $\tau \rightarrow \ell K_{s}^{0}$ and decays $\tau \rightarrow \ell V^{0}$.

Phys.Rev.D79:012004,2009 Phys.Rev.Lett.103:021801,2009

These results can be used to restrict some of the theoretical phase space on new physics models.

Presented by Mateusz Lewczuk, University of Victoria

The CLs Method

- Particularly useful for studies involving small statistics.
- Confidence levels have been shown to be more conservative than direct summation.
- Method relies on definition of test statistic "X" which discriminates signal-like outcomes from background-like outcomes.

$$CL_{s+b} = P_{s+b}(X \le X_{obs}) \qquad CL_b = P_b(X \le X_{obs})$$
$$X_i = \underbrace{\left(\frac{e^{-(s_i+b_i)}(s_i+b_i)^{d_i}}{d_i!}\right)}_{d_i!} \underbrace{\left(\frac{e^{-b_i}b_i^{d_i}}{d_i!}\right)}_{d_i!}$$

T. Junk, Nucl. Instrum. Meth. A 434, 435 1999