

Y(nS) at BABAR: New physics searches with lepton flavor violation, lepton universality, or final states with tau leptons

Elisa Guido

University & INFN Genova

(on behalf of **BABAR Collaboration**)

The 11th International Workshop on Tau Lepton Physics Manchester, UK, 14th September 2010

Outline

BABAR $\Upsilon(3,2S)$ datasets have produced several results in the search for New Physics (NP) effects:

- Charged Lepton Flavor Violation as a probe of NP (search \checkmark for LFV in $\Upsilon(3,2S) \rightarrow e^{\pm}\tau^{\mp}$, $\mu^{\pm}\tau^{\mp}$ decays) PRL 104, 151802 (2010)
- Searches for the beyond Standard Model-Higgs A⁰: \checkmark
 - \checkmark in $\Upsilon(3S) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+ \tau^-$
 - \checkmark Lepton Universality test in Y(1S) decays

PRL 103, 181801 (2009) [arXiv:0906.2219]

[arXiv:1001.1883]

PRL 104, 191801 (2010)

[arXiv:1002.4358]

BABAR data samples

- PEP-II asymmetric energy e⁺e⁻-collider operating at the Y resonances \checkmark
- **BABAR** recorded luminosity \checkmark

Charged LFV as a NP probe

- \checkmark In the SM with v-masses oscillation LFV can occur
- ✓ Never observed in processes involving **charged** LFV, for instance $\Upsilon \rightarrow II'$ decays: tree-level contribution suppressed by $(\Delta m_{\nu}^2/M_W^2)^2 \leq 10^{-48}$ to undetectable levels
- Enhancements close to experimental sensitivity (BR~ $\mathcal{O}(10^{-8})$) in many extensions of the SM

- ✓ Observation of charged LFV clear signature of NP
- Search for charged LFV at BABAR in several other decays (see talks in the LFV sections)

LFV in Y decays

PRL 104, 151802 (2010)

1. Strategy

- ✓ Search for $\Upsilon(nS) \rightarrow l^{\pm}T^{\mp}$ with n=2,3 and l=e,µ
- ✓ Signature:
 - 1 primary lepton (e or μ)

– 1 τ detected through a leptonic (μ or e) or hadronic ($\pi^{\pm}+\pi^{0}$) decay

 in case of a leptonic τ decay, the τdaughter is opposite in flavor w.r.t. the primary lepton

Process	т decay	Channel	
Ү(3,2S)→ет	τ→μνν	leptonic et	
Ү(3,2S)→ет	$\tau \rightarrow \pi^{\pm} \pi^{0} \vee / \pi^{\pm} \pi^{0} \pi^{0} \vee$	hadronic et	
Ύ(3,2S)→µт	T→evv	leptonic µT	
Ύ(3,2S)→µт	$\tau \rightarrow \pi^{\pm} \pi^{0} \vee / \pi^{\pm} \pi^{0} \pi^{0} \vee$	hadronic μτ	

- ✓ Background events:
 - Bhabha and μ -pair (and mis-ID)
 - τ-pair
 - multiple π and additional γ
- ✓ Selection partially common to the 4 channels, partially channel-specific (particle-ID, T-daughter kinematics)

2. Signal extraction and results

- \checkmark Discriminating variable: **x** = primary lepton momentum/beam energy
- Unbinned extended maximum-likelihood fit

3. Constraints on NP

- ✓ NP constraint using effective field theory
- ✓ Charged LFV-Y decays parameterized as a $b\bar{b}l^{\pm}\tau^{\mp}$ contact interaction with a NP coupling constant ($\alpha_{l\tau}$) and a mass scale ($\Lambda_{l\tau}^2$)

A⁰: a light CP-odd Higgs boson

- ✓ Next to Minimal Super-symmetric SM (NMSSM) foresees a light pseudo-scalar Higgs boson $A^0 = cos(\theta_A)a_{MSSM} + sin(\theta_A)a_{singlet}$
 - \checkmark Not excluded by LEP limits
 - Light -> accessible to B-factories
- ✓ Radiative decays of narrow Y resonances have predicted BRs up to $\sim O(10^{-4})$:
 - \checkmark $\Upsilon(nS) \rightarrow \gamma A^0$, with $A^0 \rightarrow l^+l^- (l=\mu,\tau)$
 - \checkmark Y(nS) \rightarrow γ A⁰, with A⁰ \rightarrow invisible

(with the different A⁰ decays dominant for different mass regions)

 If the photon is energetic enough, it can be detected in the energy spectrum M(A⁰)<2M(τ) 2M(τ)<M(A⁰)<7.5 GeV/c² 7.5<M(A⁰)<8.8 GeV/c² 8.8<M(A⁰)<9.2 GeV/c²

 $\Upsilon(3S) \rightarrow \chi A^0, A^0 \rightarrow \tau^+ \tau^-$

PRL 103, 181801 (2009)

- 1. Strategy
- \checkmark 1 photon with E_Y > 100 MeV
- \checkmark τ reconstructed through $\tau \rightarrow l\nu_l \overline{\nu}_{\tau}$ with $l=e,\mu$
 - ✓ 2 oppositely-charged leptons
 - ✓ final state not fully reconstructed
 - ✓ 3 samples: Yee, $Y\mu\mu$ and $Ye\mu$
- ✓ Bkg: QED events (e⁺e⁻→ γ T⁺T⁻, and higher-order processes) and peaking events $\Upsilon(3S) \rightarrow \gamma \chi_{bJ}(2P)$, $\chi_{bJ}(2P) \rightarrow \gamma \Upsilon(nS)$, with J=0,1,2 and n=1,2
- \checkmark Event selection optimized in 5 overlapping regions of E_{γ}
- ✓ Signal extraction:
 - ✓ scan for peaks in the E_Y distribution in a range corresponding to 4.03 < M(A⁰) < 10.10 GeV/c²
 - ✓ set of binned maximum-likelihood fits
 - distribution of fit results agrees with the null hypothesis

2. Constraints on NP

- ✓ no statistically significant signal yield -> 90% C.L. upper limits
- \checkmark BR(Y(3S)→γA⁰)·BR(A⁰→ττ) < (1.5–16)·10⁻⁵

region $\chi_{bJ}(2P) \rightarrow \gamma \Upsilon(1S)$ excluded [9.52 < M(A⁰) < 9.61 GeV/c²]

2. Constraints on NP

✓ no statistically significant signal yield -> 90% C.L. upper limits

11

Lepton Universality test (see M.A.Sanchis-Lozano's talk)

PRL 104, 191801 (2010)

 In the SM couplings between gauge bosons and leptons are independent of lepton flavor

1. Theory

- ✓ SM expectation for R_{ll'} = BR(Y(1S)→l⁺l⁻)/BR(Y(1S)→l'⁺l'⁻) is ~ 1 (except for small lepton-mass effects, R_{Tµ} ~ 0.992)
- ✓ NMSSM: deviations of $R_{II'}$ from SM expectation are possible in the hypothesis of existence of A^0
- \checkmark A⁰ may mediate the decay chain of the Y(1S):

 $\Upsilon(1S) \to A^0 \gamma, A^0 \to l^+ l^- \tag{1}$

 $\Upsilon(1S) \rightarrow \eta_b(1S) \gamma, \ \eta_b(1S) \leftrightarrow A^0 \rightarrow l^+l^- \ (2)$

h_b intermediate b state or bb continuum Int.J.Mod.Phys.A19, 2183 (2004); PL B653, 67 (2007);

JHEP 0901, 061 (2009)

- \checkmark If the photon is undetected, the lepton pair would be ascribed to the Y(1S)
 - ✓ It can result in a deviation of $R_{ll'}$ from SM expectation (lepton universality breaking) -> NP effect

 \checkmark Effect more evident when one of the leptons is a τ (up to 4%) -> $R_{\tau\mu}$

2. Strategy

- \checkmark 122.10⁶ Y(3S) from BABAR
- ✓ Tag Y(1S) exploiting Y(3S)→Y(1S)π⁺π⁻, with Y(1S)→T⁺T⁻ or Y(1S)→ $\mu^+\mu^-$ events:
 - ✓ BF($\Upsilon(3S) \rightarrow \Upsilon(1S)\pi^+\pi^-$) ~ 4.5%
 - \checkmark select τ 1-prong decays
 - ✓ 4-charged tracks final state topology
- \checkmark Any number of extra photons allowed
- ✓ Separate selections for $\Upsilon(1S) \rightarrow \tau^+ \tau^-$ and $\Upsilon(1S) \rightarrow \mu^+ \mu^-$ events
- ✓ Bkg: $q\bar{q}$ events, τ -pairs, QED events, $\Upsilon(1S)$ generic decays
- \checkmark A multivariate analysis approach in $\tau^+\tau^-$ channel
- ✓ Signal extraction efficiencies (estimated on MC simulations):

where $\mathbf{t}^{\pm} = \mu^{\pm}$ or $\mathbf{t}^{\pm} =$ charged track from τ^{\pm} decay (accompanied by neutral particles)

3. Signal extraction

- Extended and unbinned maximumlikelihood fit:
 - ✓ in $\mu^+\mu^-$ channel a 2-dim likelihood based on $M_{\pi+\pi^-}^{reco}$ and $M_{\mu+\mu^-}$
 - ✓ in T^+T^- channel a 1-dim likelihood based on $M_{\pi+\pi^-}^{reco}$

 $M_{\mu+\mu-} \text{ invariant } \mu^{+}\mu^{-} \text{ mass}$ $M_{\pi+\pi-}^{\text{reco}} = \sqrt{s + M_{\pi^{+}\pi^{-}}^{2} - 2 \cdot \sqrt{s} \cdot \sqrt{M_{\pi^{+}\pi^{-}}^{2} + p_{\pi^{+}\pi^{-}}^{*2}}}$

- \checkmark PDFs chosen from a data sub-sample (~1/10 of the total), then discarded
- ✓ Fit performed simultaneously to the 2 datasets
- \checkmark R_{Tµ} returned

- \checkmark Correction for known differences between data and simulation efficiencies
- \checkmark Systematic uncertainty contributions (up to 2.2%):
 - ✓ event selection efficiency

trigger efficiency

✓ µ identification

 \checkmark

- ✓ imperfect knowledge of signal and bkg shapes
- ✓ peaking background yield
- $R_{\tau\mu}(\Upsilon(1S))$: 1.005 ± 0.013 (stat.) ± 0.022 (syst.) (1) green Significant improvement in precision JHEP 0901,061 (2009) 1. (2) black 0.08 (1)+(2) red 0.07 a) Y(1S) [Previous best result by CLEO: 68%C.L. 90%C.L R_{τμ}(Y(1S)) : 1.02 ± 0.02 (stat.) ± 0.05 (syst.)] 0.06 $\Gamma[\eta_{b0}]=5 \text{ MeV}$ 0.05 $X_d = \cos \vartheta_A \tan \beta = 12$ Γ PRL98, 052002 (2007) $M[\eta_b]$ as measured by *BABAR* 0.04 PRL101,071801 (2008) 0.03 No significant deviations w.r.t. SM 2. 0.02 expectations ($R_{\tau\mu}(\Upsilon(1S)) \sim 0.992$) 0.01 Excluded $M(A^0)$ <9 GeV/c² @90%C.L. 3. 9.5 9.1 9.2 9.3 9.4 9.6 9 (for large couplings) $M(A^0) \text{ GeV/c}^2$

Conclusions

- ✓ BABAR data are a rich harvest for several important searches beyond the SM
- \checkmark Y(3S) and Y(2S) datasets give important results
- ✓ Recent results on:
 - ✓ LFV searches in Y decays
 - \checkmark Searches for A⁰ in final states with τ leptons
 - \checkmark Lepton Universality in Y(1S) decays
- ✓ BABAR results are now able to dialogue with theoretical limits and able (or near) to exclude some foreseen parameters' space regions for several models

A list of all NP recent results @ BABAR

- 1. Search for Production of Invisible Final States in Single-Photon Decays of Y(1S): submitted to PRL, arXiv:1007.4646
- Test of Lepton Universality in Y(1S) decays at BaBar: PRL 104, 191801 (2010)
- 3. Search for Charged Lepton Flavor Violation in Narrow Y Decays: PRL 104, 151802 (2010)
- 4. A Search for Invisible Decays of the Y(1S): PRL 103, 251801 (2009)
- 5. Search for a low-mass Higgs boson in $\Upsilon(3S) \rightarrow \gamma A^0$, $A^0 \rightarrow \tau^+ \tau^-$ at BaBar: PRL 103, 181801 (2009)
- 6. Search for Dimuon Decays of a Light Scalar Boson in Radiative Transitions $\Upsilon \rightarrow \gamma A^0$: PRL 103, 081803 (2009)

BACKUP SLIDES

The BABAR detector

Y(3S)->γA⁰, A⁰->τ⁺τ⁻

 \checkmark Bkg (smooth distribution):

$$f = (p(1-x)^r / E_{\gamma}^q + s / E_{\gamma}^5) \cdot \beta(x) \cdot (3 - \beta^2(x))$$

$$\beta(x) \equiv \sqrt{1 - 4m_{\tau}^2 / (m_{3S}^2(1-x))} \qquad x \equiv 2E_{\gamma} / m_{3S}$$

- ✓ Signal: Crystal Ball
- ✓ E_Y distributions for the different TT decay modes
- Fit results superimposed, with bkg components highlighted

Lepton Universality Test

 $\checkmark \quad \text{Likelihood written as:} \qquad \mathcal{L}_{ext} = \mathcal{L}_{ext}^{\mu} \cdot \mathcal{L}_{ext}^{\tau}, \qquad \mathcal{L}_{ext}^{i} = \frac{e^{-N'_{i}}(N'_{i})^{N_{i}}}{N_{i}!} \prod_{k=1}^{N_{i}} \mathcal{P}_{k}^{i}$

$$\mathcal{P}_{k}^{\mu} \equiv \frac{N_{sig\mu}}{N_{\mu}'} \mathcal{P}_{k}^{\mu} (M_{\pi^{+}\pi^{-}}) \cdot \mathcal{P}_{k}^{\mu} (M_{\mu^{+}\mu^{-}}) + \frac{N_{bkg\mu}}{N_{\mu}'} \mathcal{P}_{k}^{bkg\mu} (M_{\pi^{+}\pi^{-}}) \cdot \mathcal{P}_{k}^{bkg\mu} (M_{\mu^{+}\mu^{-}})$$

$$\mathcal{P}_{k}^{\tau} \equiv \frac{\epsilon_{\tau\tau}}{\epsilon_{\mu\mu}} \frac{N_{sig\mu}}{N_{\tau}'} R_{\tau\mu} \mathcal{P}_{k}^{\tau} (M_{\pi^{+}\pi^{-}}^{reco}) + \frac{N_{bkg\tau}}{N_{\tau}'} \mathcal{P}_{k}^{bkg\tau} (M_{\pi^{+}\pi^{-}}^{reco})$$

✓ Asymmetric Gaussian with non-Gaussian tails functional form:

$$\mathcal{F}(x) = exp\Big\{-rac{(x-\mu)^2}{2\sigma^2(L,R)+lpha(L,R)(x-\mu)^2}\Big\}$$

 ✓ Summary of systematic uncertainties:

	$\mu^+\mu^-$	$\tau^+\tau^-$	
event selection	1.2%		
PID		—	
Trigger	0.18%	0.10%	
BGF	negl.	negl.	
PDFs parameters		1.1%	
Bkg PDF		0.22%	
Agreement $\mu^+\mu^- vs. \tau^+\tau^-$ in $MassPiPiReco$	0.6%		
Peaking bkg	_	0.4%	
MC statistics	0.08%	0.09%	
TOTAL	2.2%		
Corrections to efficiency:			
PID		—	
Trigger		1.020	
Corrections to signal yield:			
Peaking bkg		0.996	