Search for Associated Higgs Boson Production at DØ

Jonas Strandberg
on behalf of the DØ collaboration
Introduction

- The SM parameters fit to EW precision data prefers a light Higgs boson.
- The most sensitive search channels for $114 < m_H < \sim 135$ GeV at the Tevatron is associated Higgs production.
- Leptonically decaying W or Z boson allows for rejection of multijet background.

- DØ results for the summer are still in internal review, no updated results in this talk.
 - Typical $\mathcal{L} \approx 1 \, \text{fb}^{-1}$.
 - No RunIIb data (2006-2007 data).
- Try to give an idea of what to expect for the Lepton-Photon conference (LP07).
The DØ Detector

- Liquid Ar and U calorimeter.
- Three-layer Muon system with coverage out to $|\eta| < 2$.
- Magnetic fields provided by a 2 T solenoid and a 1.8-2 T toroid.

- Si and Fiber Tracking detectors.
- New innermost layer of the silicon detector installed in spring 2006.
 - Will be used in updated results shown at LP07.
Higgs Production at the Tevatron

- Expected cross section $\sigma(VH)$ of the order of 0.1 pb.
- With $BR(W \rightarrow \ell\nu) \sim 0.1$ and typical event selection efficiency of $\sim 10\%$, expect about 2 event/fb$^{-1}$ of data (per lepton type).
Higgs Decay and b-tagging

- For $114 < m_H < \sim 135$ GeV, the decay $H \rightarrow b\bar{b}$ dominates.
- For $m_H \gtrsim 135$ GeV the $H \rightarrow WW$ decay is more sensitive.
- Decays of b-hadrons produce displaced tracks and vertices.
- All analyses use a NN-based b-tagging algorithm.
 - High I.P. tracks, SVX ...
WH - Cut Based Analysis

- WH is the most sensitive channel for a Higgs with $m_H < 135$ GeV.
- Expected $\sigma(WH) \times Br(H \rightarrow b\bar{b}) = 0.13$ pb for $m_H = 115$ GeV.
- 1 fb\(^{-1}\) of data analyzed in the e+jets and the μ+jets channels.
- Event Selections:
 - Equal to two jets with $p_T > 20$ GeV and $|\eta| < 2.5$.
 - An electron or a muon with $p_T > 20$ GeV.
 - A well reconstructed primary vertex with > 2 tracks.
 - $E_T > 20$ GeV.
 - Either two loose NN b-tagged jets ($70\% b$, $4.5\% l$-tag eff.) . . .
 - . . . or one tight NN b-tagged jet ($48\% b$, $0.5\% l$-tag eff.).
Sample before b-tagging

- Multijet (QCD) background estimated from data, other backgrounds estimated from simulated samples. Relatively pure W+jets sample.
Limit on $\sigma(WH) \times Br(H \rightarrow b\bar{b})$ derived from the invariant mass distribution of the jets. Expected 3.6 signal events ($m_H = 115$ GeV).
WH - Using Matrix Element (ME) Discriminant

- Using LO ME to compute WH probability:

$$D(\vec{x}) = \frac{P_{WH}(\vec{x})}{P_{WH}(\vec{x}) + \sum_i c_i P_{B;i}(\vec{x})}$$

- Code imported from single top analysis.
 - Selections still to be optimized for WH.
- 900 pb$^{-1}$ analyzed.
- Around 2σ excess of events in double tags.
 - Low statistics.
 - Not seen for ST.
Dominant syst. uncertainties JES, b-tagging and W+h.f. content.

Updated result using 1.5 fb$^{-1}$ and NN discriminant for LP07.
$ZH \rightarrow \ell\ell bb$ Analysis

- ZH with $Z \rightarrow \ell^+\ell^-$ is one of the more sensitive channels.
- Small production rate, $\sigma(ZH) \times Br(H \rightarrow b\bar{b}) = 0.085-0.02$ pb.
- 920 (840) pb$^{-1}$ of data analyzed in the ee ($\mu\mu$) channel.

- Event Selections:
 - At least two jets with $p_T > 15$ GeV and $|\eta| < 2.5$.
 - Two electrons or two muons with $p_T > 15$ GeV.
 - The $\ell\ell$ invariant mass within $65 < M_{\ell\ell} < 115$ GeV (ee) or $70 < M_{\ell\ell} < 110$ GeV ($\mu\mu$).
 - The reconstructed Z $p_T > 20$ GeV in the $\mu\mu$ channel.
 - A well reconstructed primary vertex with > 2 tracks.
 - 2 jets b-tagged with a NN-based tagger (72% b, 6% l-tag eff.).
ZH → ℓℓbb Data Sample Before b-tagging

- Dominant background is Z+jets.
- Simulated Z+jets samples are scaled to the yield in the Z peak.
- Reconstructed Z gives good rejection against multijet events.

- The Z p_T distribution poorly simulated in the Z+light jets sample.
 - Events are reweighted before b-tagging to correct this.
- Reweighted distribution shown.
• Look for mass peak in M_{jj} after b-tagging has been applied.

• For $m_H = 105-155$ GeV, look for excess in mass window $m_H - 1.5w < M_{jj} < m_H + 1.5w$ (ee)
 $m_H - 1w < M_{jj} < m_H + 2w$ (μμ)
 where w is exp. width of M_{jj}.

• Dominant syst. uncertainties:
 - Jet energy scale.
 - b-tagging efficiency.
 - Z+heavy flavor cross sections.

• Work ongoing to update the result using a NN discriminant.
ZH → ννbb Analysis

- $BR(Z \rightarrow \nu\nu) \approx 20\%$ in contrast with $BR(Z \rightarrow ee/\mu\mu) \approx 3.34\%$.
- No visible leptons to trigger on, also harder to reject multijet events.
- 930 pb$^{-1}$ of data analyzed.
- Event Selections:
 - At least two jets with $p_T > 20$ GeV and $|\eta| < 2.5$.
 - No isolated leptons.
 - $\Delta\phi(jet_1, jet_2) < 165^\circ$.
 - $H_T < 240$ GeV.
 - A well reconstructed primary vertex with > 2 tracks.
 - One tight NN b-tagged jet (43% b, 0.3% l-tag eff.).
 - One loose NN b-tagged jet (72% b, 6% l-tag eff.).
 - Selections to remove multijet:
 $min\Delta\phi(E_T, jets)$
 $\Delta\phi(E_T, p_T^{neg.\, trk.})$
 $Asym(E_T, H_T)$
ZH → ννbb Cross Section Limit

- Expect 1.4 ZH events after b-tagging with an expected background of 63.3 events.
- Limit on $\sigma(ZH) \times BR(H \rightarrow b\bar{b})$ extracted from the the M_{jj} distribution.

- Limit ranges from 2.7 to 1.6 pb for $m_H = 105$-135 GeV.
- Overall syst. uncertainty 15% (14%) for signal (background).
- Expect updated result using 1.5 fb$^{-1}$ for the LP07 conference.
Conclusions and Outlook

- Limits on the $\sigma(VH) \times Br(H \rightarrow b\bar{b})$ production rate for $m_H = 115$ GeV:

<table>
<thead>
<tr>
<th>Channel ($\mathcal{L} \approx 1$ fb$^{-1}$)</th>
<th>Exp. Limit</th>
<th>Obs. Limit</th>
<th>SM Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH cut based</td>
<td>1.1</td>
<td>1.3</td>
<td>0.13</td>
</tr>
<tr>
<td>WH ME discriminant</td>
<td>1.2</td>
<td>1.7</td>
<td>0.13</td>
</tr>
<tr>
<td>$Z(\rightarrow \ell\ell)H$</td>
<td>2.8</td>
<td>2.7</td>
<td>0.08</td>
</tr>
<tr>
<td>$Z(\rightarrow \nu\nu)H$</td>
<td>1.9</td>
<td>2.5</td>
<td>0.08</td>
</tr>
</tbody>
</table>

- Expect updated results with 1-1.5 pb$^{-1}$ for LP07. Besides increased data set, several improvements are envisioned for these analyses:
 - Trigger selections, NN, event selections, $WH \rightarrow WWW \ldots$

- Combined with CDF, we will soon start probing the expected standard model production rates. Stay tuned!