Understanding neutral Pion Photoproduction using Chiral Perturbation Theory.

Lloyd Cawthorne
Judith McGovern
Our aim is to describe the purple blob.
Our aim is to describe the purple blob.

Motivated by new data from the A2 and CB-TAPS collaborations at MAMI.
First ChPT theories

First theories in ChPT were developed by Bernard et al.
First theories in ChPT were developed by Bernard et al.
First ChPT theories

First theories in ChPT were developed by Bernard et al.

Theory only agrees with data for \(~25\) MeV.

Chiral Perturbation Theory
Chiral Perturbation Theory

Mass of the proton $\sim 100 \times$ mass of its constituent quarks.
Chiral Perturbation Theory

Mass of the proton ~ 100 x mass of its constituent quarks.

If the quarks were massless the proton would still have mass.
Mass of the proton $\sim 100 \times$ mass of its constituent quarks.

If the quarks were massless the proton would still have mass.

The mass is a result of chiral symmetry breaking in QCD.
Chiral Perturbation Theory

Mass of the proton ~ 100 x mass of its constituent quarks.

If the quarks were massless the proton would still have mass.

The mass is a result of chiral symmetry breaking in QCD.

The pions are the Goldstone bosons of this broken symmetry.
Chiral Perturbation Theory

Take required symmetries from QCD and write them in their simplest form.
Chiral Perturbation Theory

Take required symmetries from QCD and write them in their simplest form.

Effective field theory. Work below a large energy, $\Lambda_{\chi} \sim 1$ GeV.
Chiral Perturbation Theory

Take required symmetries from QCD and write them in their simplest form.

Effective field theory. Work below a large energy, $\Lambda_x \sim 1$ GeV.

Accuracy determined by number of derivatives, $(q/\Lambda_x)^n$. 
Chiral Perturbation Theory

Take required symmetries from QCD and write them in their simplest form.

Effective field theory. Work below a large energy, $\Lambda_\chi \sim 1$ GeV.

Accuracy determined by number of derivatives, $(q/\Lambda_\chi)^n$.

Work with pions and nucleons, not quarks or gluons.
Each term in the Lagrangian has a constant.
Low Energy Constants

Each term in the Lagrangian has a constant.

$$\mathcal{L}_{\pi N}^{(1)} = \bar{\Psi} (i\gamma^\mu D_\mu - \tilde{m}) \Psi + \ldots$$
Low Energy Constants

Each term in the Lagrangian has a constant.

\[ \mathcal{L}^{(1)}_{\pi N} = \bar{\Psi} \left( i \gamma^\mu D_\mu - \hat{m} \right) \Psi + \frac{1}{2} g_A \bar{\Psi} \gamma_\mu \gamma_5 \omega_\mu \Psi \]
Low Energy Constants

Each term in the Lagrangian has a constant.

\[ \mathcal{L}^{(1)}_{\pi N} = \bar{\Psi} \left( i \gamma^\mu D_\mu - \hat{m} \right) \Psi + \frac{1}{2} \bar{\Psi} \gamma_\mu \gamma_5 u^\mu \Psi \]

Fit these parameters to data.
Each term in the Lagrangian has a constant.

$$\mathcal{L}_{\pi N}^{(1)} = \overline{\Psi} \left( i\gamma^\mu D_\mu - \hat{m} \right) \Psi + \frac{1}{2} g_A \overline{\Psi} \gamma_\mu \gamma_5 u^\mu \Psi$$

Fit these parameters to data.

For 4\textsuperscript{th} order Neutral Pion Photoproduction we have 5 LECs.
Feynman Diagrams

Tree Level:
Feynman Diagrams

Tree Level:

Class 1:
Feynman Diagrams

Tree Level:

Class 1:
Feynman Diagrams

Tree Level:

Class 1:

Class 2:
Feynman Diagrams

Tree Level:

Class 1:

Class 2:

Class 3:

The Fit So Far

![Graphs showing data and fits with labels and energy values: $\theta = 93^\circ$, $E_\gamma = 168$ MeV, $E_\gamma = 187$ MeV, $E_\gamma = 206$ MeV.](image)

- Red circle: Rel. $\chi^2$PT $O(p^3)$

---

26 31/03/15
The Fit So Far

- HBχPT $O(p^4)$
- Rel. $χPT \ O(p^3)$

$\theta = 93^\circ$

$E_\gamma = 168$ MeV

$E_\gamma = 187$ MeV

$E_\gamma = 206$ MeV
The Fit So Far
The Fit So Far

The Delta (1232) Resonance
The Delta-Nucleon mass difference is small, $M_{\Delta} - M_N \approx 293$ MeV.

The Delta (1232) Resonance
The Delta-Nucleon mass difference is small, $M_\Delta - M_N \approx 293$ MeV.
The Delta-Nucleon mass difference is small, $M_\Delta - M_N \approx 293$ MeV.
Including the Delta

\[
\frac{d\sigma}{d\Omega} \quad (\mu b/sr) \\
E_\gamma \quad (MeV)
\]

\[
\theta = 93^\circ \quad (\text{degree})
\]

\[
\theta_{cm} \quad (\text{degree})
\]

\[
E_\gamma = 168, 187, 206 \quad (MeV)
\]

\[
\chi^2_{\text{red.}} \\
E_\gamma \quad (MeV)
\]
Summary

ChPT is a simpler systematic approach to QCD.
ChPT is a simpler systematic approach to QCD.

ChPT can accurately describe experimental data.
Summary

ChPT is a simpler systematic approach to QCD.

ChPT can accurately describe experimental data.

ChPT can include low-lying hadronic resonances.
We would like to thank David Hornidge for providing us with the data and the STFC for funding the research.